Biological Plausibility of Using Plasma Amino Acid Profile Determination as a Potential Biomarker for Pediatric Patients with Mild Traumatic Brain Injuries
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Amino Acid Profiles of Pediatric Patients with mTBIs
3.2. Analysis of the Glutamine/Glutamate Index and the GLX Index (Glutamate + Glutamine) in Patients with mTBIs
3.3. Amino Acid Kinetics over Time in Patients with mTBIs: Analysis of the Magnitude of Change in Pairwise Comparison with the 28-Day Post-Injury Baseline
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
BBB | Blood–brain barrier |
CIs | Confidence intervals |
CNS | Central nervous system |
CT | Computed tomography |
GCS | Glasgow Coma Scale |
MRI | Magnetic resonance imaging |
mTBI | Mild TBI |
SD | Standard deviation |
TBI | Traumatic brain injury |
References
- Menon, K.; Schwab, K.; Wright, D.W.; Maas, A.I. Demographics and Clinical Assessment Working Group of the International and Interagency Initiative toward Common Data Elements for Research on Traumatic Brain Injury and Psychological Health. Position Statement: Definition of Traumatic Brain Injury. Arch. Phys. Med. Rehabil. 2010, 91, 1637–1640. [Google Scholar] [CrossRef]
- Khellaf, A.; Khan, D.Z.; Helmy, A. Recent advances in traumatic brain injury. J. Neurol. 2019, 266, 2878–2889. [Google Scholar] [CrossRef]
- Capizzi, A.; Woo, J.; Verduzco-Gutierrez, M. Traumatic Brain Injury: An Overview of Epidemiology, Pathophysiology, and Medical Management. Med. Clin. N. Am. 2020, 104, 213–238. [Google Scholar] [CrossRef]
- Teasdale, G.; Jennett, B. Assessment of coma and impaired consciousness. A practical scale. Lancet 1974, 2, 81–84. [Google Scholar] [CrossRef]
- Savitsky, B.; Givon, A.; Rozenfeld, M.; Radomislensky, I.; Peleg, K. Traumatic brain injury: It is all about definition. Brain Inj. 2016, 30, 1194–1200. [Google Scholar] [CrossRef]
- Lefevre-Dognin, C.; Cogné, M.; Perdrieau, V.; Granger, A.; Heslot, C.; Azouvi, P. Definition and epidemiology of mild traumatic brain injury. Neurochirurgie 2021, 67, 218–221. [Google Scholar] [CrossRef]
- Osborn, A.J.; Mathias, J.L.; Fairweather-Schmidt, A.K. Depression following adult, non-penetrating traumatic brain injury: A meta-analysis examining methodological variables and sample characteristics. Neurosci. Biobehav. Rev. 2014, 47, 1–15. [Google Scholar] [CrossRef]
- Popernack, M.L.; Gray, N.; Reuter-Rice, K. Moderate-to-Severe Traumatic Brain Injury in Children: Complications and Rehabilitation Strategies. J. Pediatr. Health Care 2015, 29, e1–e7. [Google Scholar] [CrossRef]
- Perry, D.C.; Sturm, V.E.; Peterson, M.J.; Pieper, C.F.; Bullock, T.; Boeve, B.F.; Miller, B.L.; Guskiewicz, K.M.; Berger, M.S.; Kramer, J.H.; et al. Association of traumatic brain injury with subsequent neurological and psychiatric disease: A meta-analysis. J. Neurosurg. 2016, 124, 511–526. [Google Scholar] [CrossRef]
- Dewan, M.C.; Rattani, A.; Gupta, S.; Baticulon, R.E.; Hung, Y.C.; Punchak, M.; Agrawal, A.; Adeleye, A.O.; Shrime, M.G.; Rubiano, A.M.; et al. Estimating the global incidence of traumatic brain injury. J. Neurosurg. 2018, 130, 1080–1097. [Google Scholar] [CrossRef]
- Hon, K.L.; Leung, A.K.C.; Torres, A.R. Concussion: A Global Perspective. Semin. Pediatr. Neurol. 2019, 30, 117–127. [Google Scholar] [CrossRef] [PubMed]
- Azouvi, P.; Arnould, A.; Dromer, E.; Vallat-Azouvi, C. Neuropsychology of traumatic brain injury: An expert overview. Rev. Neurol. 2017, 173, 461–472. [Google Scholar] [CrossRef] [PubMed]
- Maas, A.I.; Stocchetti, N.; Bullock, R. Moderate and severe traumatic brain injury in adults. Lancet Neurol. 2008, 7, 728–741. [Google Scholar] [CrossRef]
- Pinto, P.S.; Meoded, A.; Poretti, A.; Tekes, A.; Huisman, T.A. The unique features of traumatic brain injury in children. Review of the characteristics of the pediatric skull and brain, mechanisms of trauma, patterns of injury, complications, and their imaging findings—Part 2. J. Neuroimaging 2012, 22, e18–e41. [Google Scholar] [CrossRef]
- Agrawal, S.; Branco, R.G. Neuroprotective measures in children with traumatic brain injury. World J. Crit. Care Med. 2016, 5, 36–46. [Google Scholar] [CrossRef]
- Nestler, E.J.; Hyman, S.E.; Malenka, R.C. Seizures and Stroke. In Molecular Neuropharmacology. A Foundation for Clinical Neuroscience; McGraw-Hill: New York, NY, USA, 2000; pp. 479–503. [Google Scholar]
- Pavlovic, D.; Pekic, S.; Stojanovic, M.; Popovic, V. Traumatic brain injury: Neuropathological, neurocognitive and neurobehavioral sequelae. Pituitary 2019, 22, 270–282. [Google Scholar] [CrossRef]
- Papa, L.; Edwards, D.; Ramia, M. Exploring Serum Biomarkers for Mild Traumatic Brain Injury. In Brain Neurotrauma: Molecular, Neuropsychological, and Rehabilitation Aspects; Kobeissy, F.H., Ed.; CRC Press/Taylor & Francis: Boca Raton, FL, USA, 2015; Chapter 22. [Google Scholar]
- Janigro, D.; Bailey, D.M.; Lehmann, S.; Badaut, J.; O’Flynn, R.; Hirtz, C.; Marchi, N. Peripheral Blood and Salivary Biomarkers of Blood–Brain Barrier Permeability and Neuronal Damage: Clinical and Applied Concepts. Front. Neurol. 2021, 11, 577312. [Google Scholar] [CrossRef]
- Kobeissy, F.H.; Sadasivan, S.; Oli, M.W.; Robinson, G.; Larner, S.F.; Zhang, Z.; Hayes, R.L.; Wang, K.K. Neuroproteomics and systems biology-based discovery of protein biomarkers for traumatic brain injury and clinical validation. Proteom. Clin. Appl. 2008, 2, 1467–1483. [Google Scholar] [CrossRef]
- Kuppermann, N.; Holmes, J.F.; Dayan, P.S. Identification of children at very low risk of clinically- important brain injuries after head trauma: A prospective cohort study. Lancet 2009, 374, 1160–1170. [Google Scholar] [CrossRef]
- Bazarian, J.J.; Biberthaler, P.; Welch, R.D.; Lewis, L.M.; Barzo, P.; Bogner-Flatz, V.; Brolinson, P.G.; Büki, A.; Chen, J.Y.; Christenson, R.H.; et al. Serum GFAP and UCH-L1 for prediction of absence of intracranial injuries on head CT (ALERT-TBI): A multicentre observational study. Lancet Neurol. 2018, 17, 782–789. [Google Scholar] [CrossRef]
- Ingebrigtsen, T.; Romner, B. Biochemical serum markers for brain damage: A short review with emphasis on clinical utility in mild head injury. Restor. Neurol. Neurosci. 2003, 21, 171–176. [Google Scholar] [CrossRef]
- Kövesdi, E.; Lückl, J.; Bukovics, P.; Farkas, O.; Pál, J.; Czeiter, E.; Szellár, D.; Dóczi, T.; Komoly, S.; Büki, A. Update on protein biomarkers in traumatic brain injury with emphasis on clinical use in adults and pediatrics. Acta Neurochir. 2010, 152, 1–17. [Google Scholar] [CrossRef]
- Korley, F.K.; Jain, S.; Sun, X.; Puccio, A.M.; Yue, J.K.; Gardner, R.C.; Wang, K.K.W.; Okonkwo, D.O.; Yuh, E.L.; Mukherjee, P.; et al. TRACK-TBI Study Investigators. Prognostic value of day-of-injury plasma GFAP and UCH-L1 concentrations for predicting functional recovery after traumatic brain injury in patients from the US TRACK-TBI cohort: An observational cohort study. Lancet Neurol. 2022, 21, 803–813. [Google Scholar] [CrossRef]
- Mastandrea, P.; Mengozzi, S.; Bernardini, S. Systematic review and meta-analysis of observational studies evaluating glial fibrillary acidic protein (GFAP) and ubiquitin C-terminal hydrolase L1 (UCHL1) as blood biomarkers of mild acute traumatic brain injury (mTBI) or sport-related concussion (SRC) in adult subjects. Diagnosis 2024, 12, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Romeo, M.J.; Espina, V.; Lowenthal, M.; Espina, B.H.; Petricoin, E.F., 3rd; Liotta, L.A. CSF proteome: A protein repository for potential biomarker identification. Expert. Rev. Proteom. 2005, 2, 57–70. [Google Scholar] [CrossRef]
- Bloomfield, S.M.; McKinney, J.; Smith, L.; Brisman, J. Reliability of S100B in predicting severity of central nervous system injury. Neurocritical Care 2007, 6, 121–138. [Google Scholar] [CrossRef]
- Shinozaki, K.; Oda, S.; Sadahiro, T.; Nakamura, M.; Hirayama, Y.; Abe, R.; Tateishi, Y.; Hattori, N.; Shimada, T.; Hirasawa, H. S-100B and neuron-specific enolase as predictors of neurological outcome in patients after cardiac arrest and return of spontaneous circulation: A systematic review. Crit. Care 2009, 13, R121. [Google Scholar] [CrossRef]
- Undén, J.; Romner, B. A new objective method for CT triage after minor head injury—Serum S100B. Scand. J. Clin. Lab. Investig. 2009, 69, 13–17. [Google Scholar] [CrossRef]
- Undén, J.; Romner, B. Can low serum levels of S100B predict normal CT findings after minor head injury in adults? An evidence-based review and meta-analysis. Head. Trauma. Rehabil. 2010, 25, 228–240. [Google Scholar] [CrossRef]
- Ruan, S.; Noyes, K.; Bazarian, J.J. The economic impact of S-100B as a pre-head CT screening test on emergency department management of adult patients with mild traumatic brain injury. J. Neurotrauma 2009, 26, 1655–1664. [Google Scholar] [CrossRef]
- Jeter, C.B.; Hergenroeder, G.W.; Hylin, M.J.; Redell, J.B.; Moore, A.N.; Dash, P.K. Biomarkers for the diagnosis and prognosis of mild traumatic brain injury/concussion. J. Neurotrauma 2013, 30, 657–670. [Google Scholar] [CrossRef]
- Michetti, F.; D’Ambrosi, N.; Toesca, A.; Puglisi, M.A.; Serrano, A.; Marchese, E.; Corvino, V.; Geloso, M.C. The S100B story: From biomarker to active factor in neural injury. J. Neurochem. 2019, 148, 168–187. [Google Scholar] [CrossRef]
- Nylén, K.; Ost, M.; Csajbok, L.Z.; Nilsson, I.; Blennow, K.; Nellgård, B.; Rosengren, L. Increased serum-GFAP in patients with severe traumatic brain injury is related to outcome. J. Neurol. Sci. 2006, 240, 85–91. [Google Scholar] [CrossRef]
- Feala, J.D.; Abdulhameed, M.D.; Yu, C.; Dutta, B.; Yu, X.; Schmid, K.; Dave, J.; Tortella, F.; Reifman, J. Systems biology approaches for discovering biomarkers for traumatic brain injury. J. Neurotrauma 2013, 30, 1101–1116. [Google Scholar] [CrossRef]
- Diaz-Arrastia, R.; Wang, K.K.; Papa, L.; Sorani, M.D.; Yue, J.K.; Puccio, A.M.; McMahon, P.J.; Inoue, T.; Yuh, E.L.; Lingsma, H.F.; et al. TRACK-TBI Investigators. Acute biomarkers of traumatic brain injury: Relationship between plasma levels of ubiquitin C-terminal hydrolase-L1 and glial fibrillary acidic protein. J. Neurotrauma 2014, 31, 19–25. [Google Scholar] [CrossRef]
- Welch, R.D.; Bazarian, J.J.; Chen, J.Y.; Chandran, R.; Datwyler, S.A.; McQuiston, B.; Caudle, K. A high-performance core laboratory GFAP/UCH-L1 test for the prediction of intracranial injury after mild traumatic brain injury. Am. J. Emerg. Med. 2025, 89, 129–134. [Google Scholar] [CrossRef] [PubMed]
- Douglas-Escobar, M.; Yang, C.; Bennett, J.; Shuster, J.; Theriaque, D.; Leibovici, A.; Kays, D.; Zheng, T.; Rossignol, C.; Shaw, G.; et al. A pilot study of novel biomarkers in neonates with hypoxic-ischemic encephalopathy. Pediatr. Res. 2010, 68, 531–536. [Google Scholar] [CrossRef] [PubMed]
- Brophy, G.M.; Mondello, S.; Papa, L.; Robicsek, S.A.; Gabrielli, A.; Tepas, J., 3rd; Buki, A.; Robertson, C.; Tortella, F.C.; Hayes, R.L.; et al. Biokinetic analysis of ubiquitin C terminal hydrolase-L1 (UCH-L1) in severe traumatic brain injury patient biofluids. J. Neurotrauma 2011, 28, 861–870. [Google Scholar] [CrossRef]
- Berger, R.P.; Hayes, R.L.; Richichi, R.; Beers, S.R.; Wang, K.K. Serum concentrations of ubiquitin C-terminal hydrolase-L1 and αII-spectrin breakdown product 145 kDa correlate with outcome after pediatric TBI. J. Neurotrauma 2012, 29, 162–167. [Google Scholar] [CrossRef]
- Berger, R.P.; Adelson, P.D.; Pierce, M.C.; Dulani, T.; Cassidy, L.D.; Kochanek, P.M. Serum neuron-specific enolase, S100B, and myelin basic protein concentrations after inflicted and noninflicted traumatic brain injury in children. J. Neurosurg. 2005, 103 (Suppl. 1), 61–68. [Google Scholar] [CrossRef]
- Sun, Y.; Wang, S.; Gan, S.; Niu, X.; Yin, B.; Bai, G.; Yang, X.; Jia, X.; Bai, L.; Zhang, M. Serum Neuron-Specific Enolase Levels Associated with Connectivity Alterations in Anterior Default Mode Network after Mild Traumatic Brain Injury. J. Neurotrauma 2021, 38, 1495–1505. [Google Scholar] [CrossRef]
- Marzano, L.A.S.; Batista, J.P.T.; de Abreu Arruda, M.; de Freitas Cardoso, M.G.; de Barros, J.L.V.M.; Moreira, J.M.; Liu, P.M.F.; Teixeira, A.L.; Simões, E.; Silva, A.C.; et al. Traumatic brain injury biomarkers in pediatric patients: A systematic review. Neurosurg. Rev. 2022, 45, 167–197. [Google Scholar] [CrossRef] [PubMed]
- Glushakova, O.Y.; Glushakov, A.V.; Hayes, R.L. Finding effective biomarkers for pediatric traumatic brain injury. Brain Circ. 2016, 2, 129–132. [Google Scholar] [CrossRef] [PubMed]
- Morello, A.; Schiavetti, I.; Lo Bue, E.; Portonero, I.; Colonna, S.; Gatto, A.; Pavanello, M.; Lanotte, M.M.; Garbossa, D.; Cofano, F. Update on the role of S100B in traumatic brain injury in pediatric population: A meta-analysis. Childs Nerv. Syst. 2024, 40, 3745–3756. [Google Scholar] [CrossRef]
- Ganeshalingham, A.; Beca, J. Serum biomarkers in severe pediatric traumatic brain injury-a narrative review. Transl. Pediatr. 2021, 10, 2720–2737. [Google Scholar] [CrossRef]
- Papa, L.; Ramia, M.M.; Kelly, J.M.; Burks, S.S.; Pawlowicz, A.; Berger, R.P. Systematic review of clinical research on biomarkers for pediatric traumatic brain injury. J. Neurotrauma 2013, 30, 324–338. [Google Scholar] [CrossRef]
- Filippidis, A.S.; Papadopoulos, D.C.; Kapsalaki, E.Z.; Fountas, K.N. Role of the S100B serum biomarker in the treatment of children suffering from mild traumatic brain injury. Neurosurg. Focus. 2010, 29, E2. [Google Scholar] [CrossRef]
- Berger, R.P. The use of serum biomarkers to predict outcome after traumatic brain injury in adults and children. J. Head. Trauma. Rehabil. 2006, 21, 315–333. [Google Scholar] [CrossRef]
- Dingledine, R.; Borges, K.; Bowie, D.; Traynelis, S.F. The glutamate receptor ion channels. Pharmacol. Rev. 1999, 51, 7–61. [Google Scholar] [CrossRef]
- Faden, A.I.; O’Leary, D.M.; Fan, L.; Bao, W.; Mullins, P.G.; Movsesyan, V.A. Selective blockade of the mGluR1 receptor reduces traumatic neuronal injury in vitro and improves outcome after brain trauma. Exp. Neurol. 2001, 167, 435–444. [Google Scholar] [CrossRef]
- Hardingham, G.E. Coupling of the NMDA receptor to neuroprotective and neurodestructive events. Biochem. Soc. Trans. 2009, 37 Pt 6, 1147–1160. [Google Scholar] [CrossRef]
- Zlotnik, A.; Ohayon, S.; Gruenbaum, B.F.; Gruenbaum, S.E.; Mohar, B.; Boyko, M.; Klin, Y.; Sheiner, E.; Shaked, G.; Shapira, Y.; et al. Determination of factors affecting glutamate concentrations in the whole blood of healthy human volunteers. J. Neurosurg. Anesthesiol. 2011, 23, 45–49. [Google Scholar] [CrossRef]
- Lee, J.M.; Grabb, M.C.; Zipfel, G.J.; Choi, D.W. Brain tissue responses to ischemia. J. Clin. Investig. 2000, 106, 723–731. [Google Scholar] [CrossRef] [PubMed]
- Stefani, M.A.; Modkovski, R.; Hansel, G.; Zimmer, E.R.; Kopczynski, A.; Muller, A.P.; Strogulski, N.R.; Rodolphi, M.S.; Carteri, R.K.; Schmidt, A.P.; et al. Elevated glutamate and lactate predict brain death after severe head trauma. Ann. Clin. Transl. Neurol. 2017, 4, 392–402. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Timofeev, I.; Carpenter, K.L.; Nortje, J.; Al-Rawi, P.G.; O’Connell, M.T.; Czosnyka, M.; Smielewski, P.; Pickard, J.D.; Menon, D.K.; Kirkpatrick, P.J.; et al. Cerebral extracellular chemistry and outcome following traumatic brain injury: A microdialysis study of 223 patients. Brain J. Neurol. 2011, 134 Pt 2, 484–494. [Google Scholar] [CrossRef]
- Galeffi, F.; Sinnar, S.; Schwartz-Bloom, R.D. Diazepam promotes ATP recovery and prevents cytochrome c release in hippocampal slice after in vitro ischemia. J. Neurochem. 2000, 75, 1242–1249. [Google Scholar] [CrossRef]
- Green, A.R.; Hainsworth, A.H.; Jackson, D.M. GABA potentiation: A logical pharmacological approach for the treatment of acute ischaemic stroke. Neuropharmacology 2000, 39, 1483–1494. [Google Scholar] [CrossRef]
- Hutchinson, P.J.; O’Connell, M.T.; Al-Rawi, P.G.; Kett-White, C.R.; Gupta, A.K.; Maskell, L.B.; Pickard, J.D.; Kirkpatrick, P.J. Increases in GABA concentrations during cerebral ischaemia: A microdialysis study of extracellular amino acids. J. Neurol. Neurosurg. Psychiatry 2002, 72, 99–105. [Google Scholar] [CrossRef]
- Zhong, C.; Zhao, X.; Van, K.C.; Bzdega, T.; Smyth, A.; Zhou, J.; Kozikowski, A.; Jiang, J.; O’Connor, W.; Berman, R.; et al. NAAG peptidase inhibitor increases dialysate NAAG and reduces glutamate, aspartate and GABA levels in the dorsal hippocampus following fluid percussion injury in the rat. J. Neurochem. 2006, 97, 1015–1025. [Google Scholar] [CrossRef]
- Suzuki, M.; Kudo, A.; Sugawara, A.; Yoshida, K.; Kubo, Y.; Suzuki, T.; Ogasawara, K.; Doi, M.; Ogawa, A. Amino acid concentrations in the blood of the jugular vein and peripheral artery after traumatic brain injury: Decreased release of glutamate into the jugular vein in the early phase. J. Neurotrauma 2002, 19, 285–292. [Google Scholar] [CrossRef]
- Gupta, S.; Gupta, A.K.; Mehan, S.; Khan, Z.; Gupta, G.D.; Narula, A.S. Disruptions in cellular communication: Molecular interplay between glutamate/NMDA signalling and MAPK pathways in neurological disorders. Neuroscience 2025, 569, 331–353. [Google Scholar] [CrossRef]
- Yi, J.H.; Hazell, A.S. Excitotoxic mechanisms and the role of astrocytic glutamate transporters in traumatic brain injury. Neurochem. Int. 2006, 48, 394–403. [Google Scholar] [CrossRef]
- Katayama, Y.; Becker, D.P.; Tamura, T.; Hovda, D.A. Massive increases in extracelular potassium and the indiscriminate release of glutamate following concussive brain injury. J. Neurosurg. 1990, 73, 889–900. [Google Scholar] [CrossRef]
- Vespa, P.; Bergsneider, M.; Hattori, N.; Wu, H.M.; Huang, S.C.; Martin, N.A.; Glenn, T.C.; McArthur, D.L.; Hovda, D.A. Metabolic crisis without brain ischemia is common after traumatic brain injury: A combined microdialysis and positron emission tomography study. J. Cereb. Blood Flow. Metab. 2005, 25, 763–774. [Google Scholar] [CrossRef] [PubMed]
- Hazell, A.S. Excitotoxic mechanisms in stroke: An update of concepts and treatment strategies. Neurochem. Int. 2007, 50, 941–953. [Google Scholar] [CrossRef]
- Chamoun, R.; Suki, D.; Gopinath, S.P.; Goodman, J.C.; Robertson, C. Role of extracelular glutamate measured by cerebral microdialysis in severe traumatic brain injury. J. Neurosurg. 2010, 113, 564–570. [Google Scholar] [CrossRef]
- Garcia, J.P.; Armbruster, M.; Sommer, M.; Nunez-Beringer, A.; Dulla, C.G. Glutamate uptake is transiently compromised in the perilesional cortex following controlled cortical impact. Cereb. Cortex 2025, 35, bhaf031. [Google Scholar] [CrossRef]
- Jayakumar, A.R.; Norenberg, M.D. Glutamine Synthetase: Role in Neurological Disorders. Adv. Neurobiol. 2016, 13, 327–350. [Google Scholar] [CrossRef]
- Hall, M.H.; Jensen, J.E.; Du, F.; Smoller, J.W.; O’Connor, L.; Spencer, K.M.; Öngür, D. Frontal P3 event-related potential is related to brain glutamine/glutamate ratio measured in vivo. Neuroimage 2015, 111, 186–191. [Google Scholar] [CrossRef]
- Hashimoto, K.; Engberg, G.; Shimizu, E.; Nordin, C.; Lindström, L.H.; Iyo, M. Elevated glutamine/glutamate ratio in cerebrospinal fluid of first episode and drug naive schizophrenic patients. BMC Psychiatry 2005, 5, 6. [Google Scholar] [CrossRef]
- Halford, J.; Shen, S.; Itamura, K.; Levine, J.; Chong, A.C.; Czerwieniec, G.; Glenn, T.C.; Hovda, D.A.; Vespa, P.; Bullock, R.; et al. New astroglial injury-defined biomarkers for neurotrauma assessment. J. Cereb. Blood Flow. Metab. 2017, 37, 3278–3299. [Google Scholar] [CrossRef]
- Shijo, K.; Sutton, R.L.; Ghavim, S.S.; Harris, N.G.; Bartnik-Olson, B.L. Metabolic fate of glucose in rats with traumatic brain injury and pyruvate or glucose treatments: A NMR spectroscopy study. Neurochem. Int. 2017, 102, 66–78. [Google Scholar] [CrossRef]
- Bartnik-Olson, B.L.; Oyoyo, U.; Hovda, D.A.; Sutton, R.L. Astrocyte oxidative metabolism and metabolite trafficking after fluid percussion brain injury in adult rats. J. Neurotrauma 2010, 27, 2191–2202. [Google Scholar] [CrossRef] [PubMed]
- Richards, D.A.; Tolias, C.M.; Sgouros, S.; Bowery, N.G. Extracellular glutamine to glutamate ratio may predict outcome in the injured brain: A clinical microdialysis study in children. Pharmacol. Res. 2003, 48, 101–109. [Google Scholar] [CrossRef] [PubMed]
- Cai, S.X. Glycine/NMDA receptor antagonists as potential CNS therapeutic agents: ACEA-1021 and related compounds. Curr. Top. Med. Chem. 2006, 6, 651–662. [Google Scholar] [CrossRef]
- Belin, S.; Maki, B.A.; Catlin, J.; Rein, B.A.; Popescu, G.K. Membrane Stretch Gates NMDA Receptors. J. Neurosci. 2022, 42, 5672–5680. [Google Scholar] [CrossRef]
- Zhang, X.L.; Shuttleworth, C.W.; Moskal, J.R.; Stanton, P.K. Suppression of spreading depolarization and stabilization of dendritic spines by GLYX-13, an NMDA receptor glycine-site functional partial agonist. Exp. Neurol. 2015, 273, 312–321. [Google Scholar] [CrossRef]
- Marklund, N.; Bakshi, A.; Castelbuono, D.J.; Conte, V.; McIntosh, T.K. Evaluation of pharmacological treatment strategies in traumatic brain injury. Curr. Pharm. Des. 2006, 12, 1645–1680. [Google Scholar] [CrossRef]
- Sahuquillo, J.; Vilalta, A. Cooling the injured brain: How does moderate hypothermia influence the pathophysiology of traumatic brain injury. Curr. Pharm. Des. 2007, 13, 2310–2322. [Google Scholar] [CrossRef] [PubMed]
- Cynober, L.A. Plasma amino acid levels with a note on membrane transport: Characteristics, regulation, and metabolic significance. Nutrition 2002, 18, 761–766. [Google Scholar] [CrossRef]
- Reeds, P.J.; Burrin, D.G.; Stoll, B.; Jahoor, F. Intestinal glutamate metabolism. J. Nutr. 2000, 130 (Suppl. 4), 978S–982S. [Google Scholar] [CrossRef]
Variable | Without TBI (n = 44) % | Mild TBI (n = 36) % |
---|---|---|
Gender | ||
Male/Female | 54.5/45.5 | 69.4/30.6 |
Age (years) | ||
0–2 (neonate and infant) | 6.8 | 33.3 |
3–5 (preschool) | 11.4 | 27.8 |
6–11 (school-age) | 45.4 | 27.8 |
12–18 (adolescent) | 36.4 | 11.1 |
Body Mass Index (kg/m2) | ||
Underweight | 13.6 | 20.7 |
Normal | 70.5 | 58.6 |
Overweight | 11.4 | 6.9 |
Obesity | 4.5 | 13.8 |
Clinical Variable | Frequency (%) |
---|---|
Abnormal CT scan | 28 (53.6%) |
Post-traumatic headache | 27 (75%) |
Subgaleal hematoma | 27 (75%) |
Vomiting | 20 (55.6%) |
Loss of alertness | 8 (22.2%) |
Mental alteration | 6 (16.7%) |
Seizures | 4 (11.1%) |
Post-traumatic amnesia | 2 (5.6%) |
Abnormal neurological examination | 2 (5.6%) |
Amino Acids | CONTROL (µM) ± SD (95% CI) | mTBI 3 h (µM) ± SD (95% CI) | mTBI 6 h (µM) ± SD (95% CI) | mTBI 12 h (µM) ± SD (95% CI) | mTBI 1 D (µM) ± SD (95% CI) | mTBI 7 D (µM) ± SD (95% CI) | mTBI 14 D (µM) ± SD (95% CI) | mTBI 28 D (µM) ± SD (95% CI) |
---|---|---|---|---|---|---|---|---|
Glutamate | 30.81 ± 9.57 (27.8–33.8) | 23.56 ± 9.6 (19.7–27.4) | 25.44 ± 10.91 (21.5–29.4) | 25.44 ± 11.89 (21.3–29.6) | 25.76 ± 12.52 (21.4–30.1) | 40.94 ± 28.63 (30.4–51.5) | 32.15 ± 16.8 (25.6–38.7) | 25.19 ± 12.28 (20.4–29.9) |
Aspartate | 4.52 ± 0.68 (4.3–4.7) | 3.76 ± 1.71 (3.1–4.5) | 4.13 ± 1.49 (3.6–4.7) | 4.27 ± 1.61 (3.7–4.8) | 4.71 ± 2.39 (3.9–5.5) | 4.97 ± 2.12 (4.1–5.8) | 5.96 ± 3.15 (4.7–7.2) | 4.40 ± 1.63 (3.8–5.0) |
Glutamine | 142.82 ± 34.49 (131.5–154.2) | 278.77 ± 87.42 (243.6–314.1) | 304.71 ± 84.11 (274.9–335.0) | 310.34 ± 99.97 (275.5–345.2) | 322.93 ± 102.04 (287.9–358.0) | 325.36 ± 89.83 (289.8–360.9) | 410.66 ± 135.02 (359.3–462.0) | 411.83 ± 118.36 (366.8–456.9) |
Glycine | 152.82 ± 57.9 (134.8–170.8) | 101.13 ± 20.57 (92.4–109.8) | 121.58 ± 34.26 (109.2–133.9) | 127.61 ± 30.62 (116.9–138.3) | 145.34 ± 33.18 (133.8–156.9) | 159.19 ± 42.85 (142.6–175.8) | 194.91 ± 76.26 (166.4–223.4) | 195.25 ± 85.88 (163.2–227.3) |
Study Indices | CONTROL (µM) ± SD (95% CI) | mTBI 3 h (µM) ± SD (95% CI) | mTBI 6 h (µM) ± SD (95% CI) | mTBI 12 h (µM) ± SD (95% CI) | mTBI 1 D 24 h (µM) ± SD (95% CI) | mTBI 7 D (µM) ± SD (95% CI) | mTBI 14 D (µM) ± SD (95% CI) | mTBI 28 D (µM) ± SD (95% CI) |
---|---|---|---|---|---|---|---|---|
Glutamine/Glutamate Ratio | 5.06 ± 1.68 (4.5–5.6) | 14.76 ± 8.95 (11.1–18.4) | 15.26 ± 8.69 (12.1–18.5) | 16.39 ± 12.86 (11.9–20.9) | 18.28 ± 15.41 (12.9–23.7) | 14.88 ± 14.96 (9.0–20.8) | 17.36 ± 15.16 (11.7–23.4) | 22.4 ± 18.77 (15.1–29.7) |
GLX Index (Glutamate + Glutamine) | 167.31 ± 35.25 (155.4–179.2) | 302.33 ± 88.20 (266.7–338) | 330.15 ± 83.59 (300–360.3) | 335.78 ± 99.81 (301–370.6) | 350.73 ± 104.19 (314.4–387.1) | 363.21 ± 102.4 (322.7–403.7) | 432.8 ± 143.63 (376–489.6) | 440.16 ± 122.49 (392.7–487.7) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pérez-Arredondo, A.; Cázares-Ramírez, E.; Tristán-López, L.; Jiménez-Gutiérrez, C.; Pérez-Lozano, D.L.; Martínez-Hernández, I.A.; Vega-Rangel, V.; Narváez-González, H.F.; Rios, C.; Martínez-Vargas, M.; et al. Biological Plausibility of Using Plasma Amino Acid Profile Determination as a Potential Biomarker for Pediatric Patients with Mild Traumatic Brain Injuries. Neurol. Int. 2025, 17, 145. https://doi.org/10.3390/neurolint17090145
Pérez-Arredondo A, Cázares-Ramírez E, Tristán-López L, Jiménez-Gutiérrez C, Pérez-Lozano DL, Martínez-Hernández IA, Vega-Rangel V, Narváez-González HF, Rios C, Martínez-Vargas M, et al. Biological Plausibility of Using Plasma Amino Acid Profile Determination as a Potential Biomarker for Pediatric Patients with Mild Traumatic Brain Injuries. Neurology International. 2025; 17(9):145. https://doi.org/10.3390/neurolint17090145
Chicago/Turabian StylePérez-Arredondo, Adán, Eduardo Cázares-Ramírez, Luis Tristán-López, Carlos Jiménez-Gutiérrez, Diana L. Pérez-Lozano, Ivette A. Martínez-Hernández, Valentina Vega-Rangel, Hugo F. Narváez-González, Camilo Rios, Marina Martínez-Vargas, and et al. 2025. "Biological Plausibility of Using Plasma Amino Acid Profile Determination as a Potential Biomarker for Pediatric Patients with Mild Traumatic Brain Injuries" Neurology International 17, no. 9: 145. https://doi.org/10.3390/neurolint17090145
APA StylePérez-Arredondo, A., Cázares-Ramírez, E., Tristán-López, L., Jiménez-Gutiérrez, C., Pérez-Lozano, D. L., Martínez-Hernández, I. A., Vega-Rangel, V., Narváez-González, H. F., Rios, C., Martínez-Vargas, M., Navarro, L., & Carmona-Aparicio, L. (2025). Biological Plausibility of Using Plasma Amino Acid Profile Determination as a Potential Biomarker for Pediatric Patients with Mild Traumatic Brain Injuries. Neurology International, 17(9), 145. https://doi.org/10.3390/neurolint17090145