Effect of Cilostazol in the Expression of Biomarkers and Neurological Outcome Following Experimentally Induced Cerebrovascular Accident—Experimental Protocol
Abstract
1. Introduction
2. Materials and Methods
2.1. Surgical Procedure
2.2. Neurologic Examination
- 0: No observable neurological deficit
- 1: Incomplete extension of the contralateral forelimb (mild deficit)
- 2: Consistent circling toward the contralateral side (moderate impairment)
- 3: Spontaneous circling even at rest (severe motor impairment)
- 4: Absence of spontaneous movement or loss of consciousness (profound deficit)
2.3. Blood Collection—ELISA Measurements
2.4. Statistical Analysis
3. Results
4. Discussion
5. Limitations of the Study
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kleindorfer, D.O.; Towfighi, A.; Chaturvedi, S.; Cockroft, K.M.; Gutierrez, J.; Lombardi-Hill, D.; Kamel, H.; Kernan, W.N.; Kittner, S.J.; Leira, E.C.; et al. 2021 Guideline for the Prevention of Stroke in Patients With Stroke and Transient Ischemic Attack: A Guideline From the American Heart Association/American Stroke Association. Stroke 2021, 52, e364–e467. [Google Scholar] [CrossRef]
- De Havenon, A.; Sheth, K.N.; Madsen, T.E.; Johnston, K.C.; Turan, T.N.; Toyoda, K.; Elm, J.J.; Wardlaw, J.M.; Johnston, S.C.; Williams, O.A.; et al. Cilostazol for Secondary Stroke Prevention: History, Evidence, Limitations, and Possibilities. Stroke 2021, 52, e635–e645. [Google Scholar] [CrossRef] [PubMed]
- Barba, L.; Vollmuth, C.; Abu-Rumeileh, S.; Halbgebauer, S.; Oeckl, P.; Steinacker, P.; Kollikowski, A.M.; Schultz, C.; Wolf, J.; Pham, M.; et al. Serum β-synuclein, neurofilament light chain and glial fibrillary acidic protein as prognostic biomarkers in moderate-to-severe acute ischemic stroke. Sci. Rep. 2023, 13, 20941. [Google Scholar] [CrossRef] [PubMed]
- Ren, C.; Kobeissy, F.; Alawieh, A.; Li, N.; Li, N.; Zibara, K.; Zoltewicz, S.; Guingab-Cagmat, J.; Larner, S.F.; Ding, Y.; et al. Assessment of serum UCH-L1 and GFAP in acute stroke patients. Sci. Rep. 2016, 6, 24588. [Google Scholar] [CrossRef]
- Pujol-Calderón, F.; Zetterberg, H.; Portelius, E.; Löwhagen Hendén, P.; Rentzos, A.; Karlsson, J.E.; Höglund, K.; Blennow, K.; Rosengren, L.E. Prediction of Outcome After Endovascular Embolectomy in Anterior Circulation Stroke Using Biomarkers. Transl. Stroke Res. 2022, 13, 65–76. [Google Scholar] [CrossRef] [PubMed]
- Florijn, B.W.; Leontien van der Bent, M.; Nguyen, T.M.T.; Quax, P.H.A.; Wermer, M.J.H.; Yaël Nossent, A.; Kruyt, N.D. Non-coding RNAs versus protein biomarkers to diagnose and differentiate acute stroke: Systematic review and meta-analysis. J. Stroke Cerebrovasc. Dis. 2023, 32, 107388. [Google Scholar] [CrossRef] [PubMed]
- Branco, J.P.; Oliveira, S.; Sargento-Freitas, J.; Santos Costa, J.; Cordeiro, G.; Cunha, L.; Gonçalves, A.F.; Pinheiro, J. S100β Protein as a Predictor of Poststroke Functional Outcome: A Prospective Study. J. Stroke Cerebrovasc. Dis. 2018, 27, 1890–1896. [Google Scholar] [CrossRef]
- Choi, J.I.; Ha, S.K.; Lim, D.J.; Kim, S.D.; Kim, S.H. S100ß, matrix metalloproteinase-9, D-dimer, and heat shock protein 70 are serologic biomarkers of acute cerebral infarction in a mouse model of transient MCA occlusion. J. Korean Neurosurg. Soc. 2018, 61, 548–558. [Google Scholar] [CrossRef]
- di Biase, L.; Bonura, A.; Pecoraro, P.M.; Carbone, S.P.; Di Lazzaro, V. Unlocking the Potential of Stroke Blood Biomarkers: Early Diagnosis, Ischemic vs. Haemorrhagic Differentiation and Haemorrhagic Transformation Risk: A Comprehensive Review. Int. J. Mol. Sci. 2023, 24, 11545. [Google Scholar] [CrossRef]
- Sayed, A.; Munir, M.; Attia, M.S.; Alghamdi, B.S.; Ashraf, G.M.; Bahbah, E.I.; Elfil, M.; Tsuji, F. Galectin-3: A Novel Marker for the Prediction of Stroke Incidence and Clinical Prognosis. Mediat. Inflamm. 2022, 2022, 2924773. [Google Scholar] [CrossRef]
- Dong, H.; Wang, Z.H.; Zhang, N.; Liu, S.D.; Zhao, J.J.; Liu, S.Y. Serum Galectin-3 level, not Galectin-1, is associated with the clinical feature and outcome in patients with acute ischemic stroke. Oncotarget 2017, 8, 109752–109761. [Google Scholar] [CrossRef]
- Yan, X.J.; Yu, G.F.; Jie, Y.Q.; Fan, X.F.; Huang, Q.; Dai, W.M. Role of galectin-3 in plasma as a predictive biomarker of outcome after acute intracerebral hemorrhage. J. Neurol. Sci. 2016, 368, 121–127. [Google Scholar] [CrossRef]
- Deng, W.J.; Shen, R.L.; Li, M.; Teng, J.F. Relationship Between Procalcitonin Serum Levels and Functional Outcome in Stroke Patients. Cell Mol. Neurobiol. 2015, 35, 355–361. [Google Scholar] [CrossRef]
- Yan, L.; Wang, S.; Xu, L.; Zhang, Z.; Liao, P. Procalcitonin as a prognostic marker of patients with acute ischemic stroke. J. Clin. Lab. Anal. 2020, 34, e23301. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, G.; Wang, Y.; Su, Y.; Leak, R.K.; Cao, G. Procalcitonin as a biomarker for malignant cerebral edema in massive cerebral infarction. Sci. Rep. 2018, 8, 993. [Google Scholar] [CrossRef]
- Cho, J.; Jeong, S.; Lee, J.H. Procalcitonin to C-reactive protein ratio is associated with short-term mortality in ischemic stroke patients: Preliminary report. Arch. Med. Sci. 2022, 18, 344–352. [Google Scholar] [CrossRef]
- Li, Y.M.; Liu, X.Y. Serum levels of procalcitonin and high sensitivity C-reactive protein are associated with long-term mortality in acute ischemic stroke. J. Neurol. Sci. 2015, 352, 68–73. [Google Scholar] [CrossRef]
- Oyama, N.; Yagita, Y.; Kawamura, M.; Sugiyama, Y.; Terasaki, Y.; Omura-Matsuoka, E.; Sasaki, T.; Kitagawa, K. Basic Sciences Cilostazol, Not Aspirin, Reduces Ischemic Brain Injury Via Endothelial Protection in Spontaneously Hypertensive Rats. 2011. Available online: http://stroke.ahajournals.org/lookup/suppl/doi:10.1161/STROKEAHA.111.609834/-/DC1 (accessed on 5 August 2025).
- Takagi, T.; Imai, T.; Mishiro, K.; Ishisaka, M.; Tsujimoto, M.; Ito, H.; Nagashima, K.; Matsukawa, H.; Tsuruma, K.; Shimazawa, M.; et al. Cilostazol ameliorates collagenase-induced cerebral hemorrhage by protecting the blood-brain barrier. J. Cereb. Blood Flow Metab. 2017, 37, 123–139. [Google Scholar] [CrossRef] [PubMed]
- Kim, B.C.; Youn, Y.C.; Jeong, J.H.; Han, H.J.; Kim, J.H.; Lee, J.H.; Park, K.H.; Park, K.W.; Kim, E.J.; Oh, M.S.; et al. Cilostazol Versus Aspirin on White Matter Changes in Cerebral Small Vessel Disease: A Randomized Controlled Trial. Stroke 2022, 29, 698–709. [Google Scholar] [CrossRef] [PubMed]
- Cheng, K.I.; Wang, H.C.; Tseng, K.Y.; Wang, Y.H.; Chang, C.Y.; Chen, Y.J.; Lai, C.S.; Chen, D.R.; Chang, L.L. Cilostazol Ameliorates Peripheral Neuropathic Pain in Streptozotocin-Induced Type I Diabetic Rats. Front. Pharmacol. 2022, 12, 771271. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.; Liu, X.; Liu, X.; Wu, X.; Jose, P.A.; Liu, M.; Yang, Z. Low-Dose Aspirin Treatment Attenuates Male Rat Salt-Sensitive Hypertension via Platelet Cyclooxygenase 1 and Complement Cascade Pathway. J. Am. Heart Assoc. 2020, 9, e013470. [Google Scholar] [CrossRef] [PubMed]
- Sommer, C.J. Ischemic stroke: Experimental models and reality. Acta Neuropathol. 2017, 133, 245–261. [Google Scholar] [CrossRef]
- Sonderer, J.; Kahles, M.K. Aetiological blood biomarkers of ischaemic stroke. Swiss Med. Wkly. 2015, 145, w14138. [Google Scholar] [CrossRef]
- Onatsu, J.; Vanninen, R.; Jäkälä, P.; Mustonen, P.; Pulkki, K.; Korhonen, M.; Hedman, M.; Höglund, K.; Blennow, K.; Zetterberg, H.; et al. Tau, S100B and NSE as blood biomarkers in acute cerebrovascular events. In Vivo 2020, 34, 2577–2586. [Google Scholar] [CrossRef]
- Li, L.; Zheng, B.; Tassi, R.; Rossi, R.; Doyle, K.M. S100b in acute ischemic stroke clots is a biomarker for post-thrombectomy intracranial hemorrhages. Front. Neurol. 2023, 13, 1067215. [Google Scholar]
- Arora, P.; Agarwal, Z.; Venkatraman, A.; Callas, P.; Kissela, B.M.; Jenny, N.S.; Judd, S.E.; Zakai, N.A.; Cushman, M. Galectin-3 and risk of ischaemic stroke: Reasons for Geographic and Racial Differences in Stroke cohort. Eur. J. Neurol. 2017, 24, 1464–1470. [Google Scholar] [CrossRef] [PubMed]
- Tan, L.; Margaret, B.; Zhang, J.H.; Hu, R.; Yin, Y.; Cao, L.; Feng, H.; Zhang, Y. Efficacy and safety of cilostazol therapy in ischemic stroke: A meta-analysis. J. Stroke Cerebrovasc. Dis. 2015, 24, 930–938. [Google Scholar] [CrossRef]
- Nan, D.; Jin, H.; Deng, J.; Yu, W.; Liu, R.; Sun, W.; Huang, Y. Cilostazol ameliorates ischemia/reperfusion-induced tight junction disruption in brain endothelial cells by inhibiting endoplasmic reticulum stress. FASEB J. 2019, 33, 10152–10164. [Google Scholar] [CrossRef]
- Tsukamoto, Y.; Nagata, E.; Fukuyama, N.; Itoh, Y.; Yuzawa, H.; Kohara, S.; Shimizu, M.; Takahari, Y.; Takizawa, S. Cilostazol protects against microvascular brain injury in a rat model of type 2 diabetes. Neurosci. Res. 2017, 117, 48–53. [Google Scholar] [CrossRef]
- Hankey, G.J. CSPS.com Trial of Adding Cilostazol to Antiplatelet Therapy to Reduce Recurrent Stroke. Stroke 2020, 51, 696–698. [Google Scholar] [CrossRef]
- Kim, S.M.; Jung, J.M.; Kim, B.J.; Lee, J.S.; Kwon, S.U. Cilostazol mono and combination treatments in ischemic stroke an updated systematic review and meta-analysis. Stroke 2019, 50, 3503–3511. [Google Scholar] [CrossRef] [PubMed]
- Nishiyama, Y.; Kimura, K.; Otsuka, T.; Toyoda, K.; Uchiyama, S.; Hoshino, H.; Sakai, N.; Okada, Y.; Origasa, H.; Naritomi, H.; et al. Dual Antiplatelet Therapy with Cilostazol for Secondary Prevention in Lacunar Stroke: Subanalysis of the CSPS.com Trial. Stroke 2023, 54, 697–705. [Google Scholar] [CrossRef] [PubMed]
- Morris, G.P.; Wright, A.L.; Tan, R.P.; Gladbach, A.; Ittner, L.M.; Vissel, B. A comparative study of variables influencing ischemic injury in the longa and koizumi methods of intraluminal filament middle cerebral artery occlusion in mice. PLoS ONE 2016, 11, e0148503. [Google Scholar] [CrossRef] [PubMed]
Biomarker | Group | Mean (pg/mL) | SD | 95% CI | ANOVA p | Cohen’s d vs. CON | n |
---|---|---|---|---|---|---|---|
GFAP | CON | 1327 | 331.8 | 978.6–1675.4 | <0.0001 | – | 6 |
GFAP | C | 707 | 176.8 | 521.4–892.6 | −2.33 | 6 | |
GFAP | A | 583.5 | 145.9 | 430.3–736.7 | −2.9 | 6 | |
GFAP | AC | 81.5 | 20.4 | 60.1–102.9 | −5.3 | 6 | |
S100b | CON | 171.5 | 42.9 | 126.5–216.5 | <0.0001 | – | 6 |
S100b | C | 176 | 44.0 | 129.8–222.2 | 0.1 | 6 | |
S100b | A | 52 | 13.0 | 38.4–65.7 | −3.77 | 6 | |
S100b | AC | 6.3 | 1.6 | 4.6–8.0 | −5.44 | 6 | |
Galectin-3 | CON | 173.5 | 43.4 | 127.9–219.1 | <0.0001 | – | 6 |
Galectin-3 | C | 136.3 | 34.1 | 100.5–172.1 | −0.95 | 6 | |
Galectin-3 | A | 83.17 | 20.8 | 61.3–105.0 | −2.65 | 6 | |
Galectin-3 | AC | 22.83 | 5.7 | 16.8–28.8 | −4.87 | 6 | |
Procalcitonin | CON | 165 | 41.2 | 121.7–208.3 | <0.0001 | – | 6 |
Procalcitonin | C | 160 | 40.0 | 118.0–202.0 | −0.12 | 6 | |
Procalcitonin | A | 70 | 17.5 | 51.6–88.4 | −3.0 | 6 | |
Procalcitonin | AC | 19 | 4.8 | 14.0–24.0 | −4.98 | 6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Anastasiadou, C.; Kastora, S.; Kapelouzou, A.; Papapetrou, A.; Megalopoulos, A.; Kostomitsopoulos, N.; Paronis, E.; Lazaris, A.; Geroulakos, G.; Liapis, C.; et al. Effect of Cilostazol in the Expression of Biomarkers and Neurological Outcome Following Experimentally Induced Cerebrovascular Accident—Experimental Protocol. Neurol. Int. 2025, 17, 126. https://doi.org/10.3390/neurolint17080126
Anastasiadou C, Kastora S, Kapelouzou A, Papapetrou A, Megalopoulos A, Kostomitsopoulos N, Paronis E, Lazaris A, Geroulakos G, Liapis C, et al. Effect of Cilostazol in the Expression of Biomarkers and Neurological Outcome Following Experimentally Induced Cerebrovascular Accident—Experimental Protocol. Neurology International. 2025; 17(8):126. https://doi.org/10.3390/neurolint17080126
Chicago/Turabian StyleAnastasiadou, Christiana, Stavroula Kastora, Alkistis Kapelouzou, Anastasios Papapetrou, Angelos Megalopoulos, Nikolaos Kostomitsopoulos, Efthymios Paronis, Andreas Lazaris, George Geroulakos, Christos Liapis, and et al. 2025. "Effect of Cilostazol in the Expression of Biomarkers and Neurological Outcome Following Experimentally Induced Cerebrovascular Accident—Experimental Protocol" Neurology International 17, no. 8: 126. https://doi.org/10.3390/neurolint17080126
APA StyleAnastasiadou, C., Kastora, S., Kapelouzou, A., Papapetrou, A., Megalopoulos, A., Kostomitsopoulos, N., Paronis, E., Lazaris, A., Geroulakos, G., Liapis, C., Saratzis, N., & Kakisis, J. (2025). Effect of Cilostazol in the Expression of Biomarkers and Neurological Outcome Following Experimentally Induced Cerebrovascular Accident—Experimental Protocol. Neurology International, 17(8), 126. https://doi.org/10.3390/neurolint17080126