Gender Differences in Obstructive Sleep Apnea: A Preliminary Clinical and Polysomnographic Investigation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Sleep Apnea Assessment
2.3. Cognitive Measures
2.4. Statistical Analysis
3. Results
3.1. Demographic and Clinical Features
3.2. Neuropsychological Performances
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
OSA | Obstructive Sleep Apnea |
PSG | Polysomnography |
NREM | Non-Rapid Eye Movement |
REM | Rapid Eye Movement |
EDS | Excessive Daytime Sleepiness |
CPAP | Continuous Positive Airway Pressure |
RLS | Restless Legs Syndrome |
RBD | REM Behavior Disorder |
AHI | Apnea/Hypopnea Index |
ODI | Oxygen Desaturation Index |
SL | Sleep Latency |
PLM | Periodic Limb Movements |
ECG | Electrocardiogram |
EMG | Electromyography |
MMSE | Mini-Mental State Examination |
MCI | Mild Cognitive Impairment |
AD | Alzheimer’s Disease |
ROCF | Rey–Osterrieth Complex Figure |
Aβ | Amyloid-beta |
BMI | Body Mass Index |
References
- Rumble, M.E.; Okoyeh, P.; Benca, R.M. Sleep and Women’s Mental Health. Psychiatr. Clin. N. Am. 2023, 46, 527–537. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Kim, J.R.; Park, H.R.; Joo, E.Y. Sex-specific patterns of discomfort in patients with restless legs syndrome. J. Clin. Sleep Med. JCSM 2024, 20, 253–259. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Zong, Q.; Liu, L.; Liu, Y.; Shen, Y.; Tang, X.; Wing, Y.K.; Li, S.X.; Zhou, J. Sex differences in rapid eye movement sleep behavior disorder: A systematic review and meta-analysis. Sleep Med. Rev. 2023, 71, 101810. [Google Scholar] [CrossRef]
- Votteler, S.; Knaack, L.; Janicki, J.; Fink, G.R.; Burghaus, L. Sex differences in polysomnographic findings in patients with obstructive sleep apnea. Sleep Med. 2023, 101, 429–436. [Google Scholar] [CrossRef]
- American Academy of Sleep Medicine. International Classification of Sleep Disorders, 3rd ed.; American Academy of Sleep Medicine: Darien, IL, USA, 2014. [Google Scholar]
- Kumar, S.; Anton, A.; D’Ambrosio, C.M. Sex Differences in Obstructive Sleep Apnea. Clin. Chest Med. 2021, 42, 417–425. [Google Scholar] [CrossRef]
- Fietze, I.; Laharnar, N.; Obst, A.; Ewert, R.; Felix, S.B.; Garcia, C.; Gläser, S.; Glos, M.; Schmidt, C.O.; Stubbe, B.; et al. Prevalence and association analysis of obstructive sleep apnea with gender and age differences—Results of SHIP-Trend. J. Sleep Res. 2019, 28, e12770. [Google Scholar] [CrossRef]
- Wallace, A.; Bucks, R.S. Memory and obstructive sleep apnea: A meta-analysis. Sleep 2013, 36, 203–220. [Google Scholar] [CrossRef]
- Ghaderi, S.; Mohammadi, S.; Mohammadi, M. Obstructive sleep apnea and attention deficits: A systematic review of magnetic resonance imaging biomarkers and neuropsychological assessments. Brain Behav. 2023, 13, e3262. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Beaudin, A.E.; Younes, M.; Gerardy, B.; Raneri, J.K.; Hirsch Allen, A.J.M.; Gomes, T.; Gakwaya, S.; Sériès, F.; Kimoff, J.; Skomro, R.P.; et al. Association between sleep microarchitecture and cognition in obstructive sleep apnea. Sleep 2024, 47, zsae141. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Beebe, D.; Groesz, L.; Wells, C.; Nichols, A.; McGee, K. The neuropsychological effects of obstructive sleep apnea: A meta-analysis of norm-referenced and case-controlled data. Sleep 2003, 26, 298–307. [Google Scholar] [CrossRef]
- Bucks, R.S.; Olaithe, M.; Eastwood, P. Neurocognitive function in obstructive sleep apnoea: A meta-review. Respirology 2013, 18, 61–70. [Google Scholar] [CrossRef] [PubMed]
- Engleman, H.M.; Kingshott, R.N.; Martin, S.E.; Douglas, N.J. Cognitive function in the sleep apnea/hypopnea syndrome (SAHS). Sleep 2000, 23 (Suppl. 4), S102–S108. [Google Scholar] [PubMed]
- Cross, N.; Lampit, A.; Pye, J.; Grunstein, R.R.; Marshall, N.; Naismith, S.L. Is Obstructive Sleep Apnoea Related to Neuropsychological Function in Healthy Older Adults? A Systematic Review and Meta-Analysis. Neuropsychol. Rev. 2017, 27, 389–402. [Google Scholar] [CrossRef] [PubMed]
- Vaessen, T.J.; Overeem, S.; Sitskoorn, M.M. Cognitive complaints in obstructive sleep apnea. Sleep Med. Rev. 2015, 19, 51–58. [Google Scholar] [CrossRef]
- Vardanian, M.; Ravdin, L. Cognitive Complaints and Comorbidities in Obstructive Sleep Apnea. Sleep Med. Clin. 2022, 17, 647–656. [Google Scholar] [CrossRef]
- Mullins, A.E.; Kam, K.; Parekh, A.; Bubu, O.M.; Osorio, R.S.; Varga, A.W. Obstructive Sleep Apnea and Its Treatment in Aging: Effects on Alzheimer’s disease Biomarkers, Cognition, Brain Structure and Neurophysiology. Neurobiol. Dis. 2020, 145, 105054. [Google Scholar] [CrossRef]
- Yeghiazarians, Y.; Jneid, H.; Tietjens, J.R.; Redline, S.; Brown, D.L.; El-Sherif, N.; Mehra, R.; Bozkurt, B.; Ndumele, C.E.; Somers, V.K. Obstructive Sleep Apnea and Cardiovascular Disease: A Scientific Statement From the American Heart Association. Circulation 2021, 144, e56–e67. [Google Scholar] [CrossRef]
- Larsson, L.G.; Lindberg, A.; Franklin, K.A.; Lundbäck, B. Gender differences in symptoms related to sleep apnea in a general population and in relation to referral to sleep clinic. Chest 2003, 124, 204–211. [Google Scholar] [CrossRef]
- Lindberg, E.; Benediktsdottir, B.; Franklin, K.A.; Holm, M.; Johannessen, A.; Jögi, R.; Gislason, T.; Real, F.G.; Schlünssen, V.; Janson, C. Women with symptoms of sleep-disordered breathing are less likely to be diagnosed and treated for sleep apnea than men. Sleep Med. 2017, 35, 17–22. [Google Scholar] [CrossRef]
- Heinzer, R.; Vat, S.; Marques-Vidal, P.; Marti-Soler, H.; Andries, D.; Tobback, N.; Mooser, V.; Preisig, M.; Malhotra, A.; Waeber, G.; et al. Prevalence of sleep-disordered breathing in the general population: The HypnoLaus study. Lancet Respir. Med. 2015, 3, 310–318. [Google Scholar] [CrossRef]
- Christensen, A.; Pike, C.J. Menopause, obesity and inflammation: Interactive risk factors for Alzheimer’s disease. Front. Aging Neurosci. 2015, 7, 130. [Google Scholar] [CrossRef] [PubMed]
- Daulatzai, M.A. Evidence of neurodegeneration in obstructive sleep apnea: Relationship between obstructive sleep apnea and cognitive dysfunction in the elderly. J. Neurosci. Res. 2015, 93, 1778–1794. [Google Scholar] [CrossRef] [PubMed]
- Nigro, C.A.; Dibur, E.; Borsini, E.; Malnis, S.; Ernst, G.; Bledel, I.; González, S.; Arce, A.; Nogueira, F. The influence of gender on symptoms associated with obstructive sleep apnea. Sleep Breath. Schlaf Atm. 2018, 22, 683–693. [Google Scholar] [CrossRef] [PubMed]
- Quintana-Gallego, E.; Carmona-Bernal, C.; Capote, F.; Sánchez-Armengol, A.; Botebol-Benhamou, G.; Polo-Padillo, J.; Castillo-Gómez, J. Gender differences in obstructive sleep apnea syndrome: A clinical study of 1166 patients. Respir. Med. 2004, 98, 984–989. [Google Scholar] [CrossRef]
- Won, C.H.J.; Reid, M.; Sofer, T.; Azarbarzin, A.; Purcell, S.; White, D.; Wellman, A.; Sands, S.; Redline, S. Sex differences in obstructive sleep apnea phenotypes, the multi-ethnic study of atherosclerosis. Sleep 2020, 43, zsz274. [Google Scholar] [CrossRef]
- Bonsignore, M.R.; Saaresranta, T.; Riha, R.L. Sex differences in obstructive sleep apnoea. Eur. Respir. Rev. Off. J. Eur. Respir. Soc. 2019, 28, 190030. [Google Scholar] [CrossRef]
- Liguori, C.; Maestri, M.; Spanetta, M.; Placidi, F.; Bonanni, E.; Mercuri, N.B.; Guarnieri, B. Sleep-disordered breathing and the risk of Alzheimer’s disease. Sleep Med. Rev. 2021, 55, 101375. [Google Scholar] [CrossRef]
- Wellman, A.; Eckert, D.J.; Jordan, A.S.; Edwards, B.A.; Passaglia, C.L.; Jackson, A.C.; Gautam, S.; Owens, R.L.; Malhotra, A.; White, D.P. A method for measuring and modeling the physiological traits causing obstructive sleep apnea. J. Appl. Physiol. 2011, 110, 1627–1637. [Google Scholar] [CrossRef]
- Berry, R.; Quan, S.; Abreu, A. The AASM Manual for the Scoring of Sleep and Associated Events: Rules, Terminology and Technical Specifications, Version 2.6; American Academy of Sleep Medicine: Darien, IL, USA, 2020. [Google Scholar]
- Measso, G.; Cavarzeran, F.; Zappalà, G.; Lebowitz, B.D.; Crook, T.H.; Pirozzolo, F.J.; Amaducci, L.A.; Massari, D.; Grigoletto, F. The Mini-Mental state examination. Normative study of an Italian random sample. Dev. Neuropsychol. 1991, 9, 77–85. [Google Scholar] [CrossRef]
- Orsini, A.; Grossi, D.; Capitani, E.; Laiacona, M.; Papagno, C.; Vallar, G. Verbal and spatial immediate memory span: Normative data from 1355 adults and 1112 children. Ital. J. Neurol. Sci. 1987, 8, 539–548. [Google Scholar] [CrossRef]
- Spinnler, H.; Tognoni, G. Standardizzazione e taratura italiana di test neuropsicologici. Ital. J. Neurol. Sci. 1987, 8, 21–120. [Google Scholar]
- Kessels, R.P.; van den Berg, E.; Ruis, C.; Brands, A.M. The backward span of the Corsi Block-Tapping Task and its association with the WAIS-III Digit Span. Assessment 2008, 15, 426–434. [Google Scholar] [CrossRef] [PubMed]
- Carlesimo, G.A.; Caltagirone, C.; Gainotti, G. The Mental Deterioration Battery: Normative data, diagnostic reliability and qualitative analyses of cognitive impairment. The Group for the Standardization of the Mental Deterioration Battery. Eur. Neurol. 1996, 36, 378–384. [Google Scholar] [CrossRef]
- Mondini, S.; Mapelli, D.; Vestri, A.; Bisiacchi, P.S. L’esame Neuropsicologico Breve; Raffaello Cortina: Milano, Italy, 2003. [Google Scholar]
- Caffarra, P.; Vezzadini, G.; Dieci, F.; Zonato, F.; Venneri, A. Rey-Osterrieth complex figure: Normative values in an Italian population sample. Neurol. Sci. Off. J. Ital. Neurol. Soc. Ital. Soc. Clin. Neurophysiol. 2002, 22, 443–447. [Google Scholar] [CrossRef]
- Novelli, G.; Papagno, C.; Capitani, E.; Laiacona, M.; Vallar, G.; Cappa, S.F. Tre test clinici di ricerca e produzione lessicale. Taratura su soggetti normali. Arch. Psicol. Neurol. Psichiatr. 1986, 47, 477–506. [Google Scholar]
- Catricalà, E.; Della Rosa, P.A.; Ginex, V.; Mussetti, Z.; Plebani, V.; Cappa, S.F. An Italian battery for the assessment of semantic memory disorders. Neurol. Sci. 2013, 34, 985–993. [Google Scholar] [CrossRef]
- De Renzi, E.; Faglioni, P. Normative data and screening power of a shortened version of the Token Test. Cortex J. Devoted Study Nerv. Syst. Behav. 1978, 14, 41–49. [Google Scholar] [CrossRef]
- Lövdén, M.; Fratiglioni, L.; Glymour, M.M.; Lindenberger, U.; Tucker-Drob, E.M. Education and Cognitive Functioning Across the Life Span. Psychol. Sci. Public Interest 2020, 21, 6–41. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hlaing, E.E.; Dollinger, S.M.C.; Brown, T.M. The role of education in cognitive functions among middle-age and older patients with untreated obstructive sleep apnea. Sleep Sci. 2021, 14, 319–329. [Google Scholar] [CrossRef]
- Verstraeten, E.; Cluydts, R.; Pevernagie, D.; Hoffmann, G. Executive function in sleep apnea: Controlling for attentional capacity in assessing executive attention. Sleep 2004, 27, 685–693. [Google Scholar]
- El-Ad, B.; Lavie, P. Effect of sleep apnea on cognition and mood. Int. Rev. Psychiatry 2005, 17, 277–282. [Google Scholar] [CrossRef] [PubMed]
- Naëgelé, B.; Launois, S.H.; Mazza, S.; Feuerstein, C.; Pépin, J.-L.; Lévy, P. Which Memory Processes are Affected in Patients With Obstructive Sleep Apnea? An Evaluation of 3 Types of Memory. Sleep 2006, 29, 533–544. [Google Scholar] [CrossRef] [PubMed]
- Jennum, P.; Sjøl, A. Self-Assessed Cognitive Function in Snorers and Sleep Apneics. Eur. Neurol. 1994, 34, 204–208. [Google Scholar] [CrossRef]
- Ward Flemons, W.; Reimer, M.A. Development of a Disease-specific Health-related Quality of Life Questionnaire for Sleep Apnea. Am. J. Respir. Crit. Care Med. 1998, 158, 494–503. [Google Scholar] [CrossRef]
- Chen, C.-W.; Yang, C.-M.; Chen, N.-H. Objective versus Subjective Cognitive Functioning in Patients with Obstructive Sleep Apnea. Open Sleep J. 2012, 5, 33–42. [Google Scholar] [CrossRef]
- Ulfberg, J.; Carter, N.; Talbäck, M.; Edling, C. Excessive Daytime Sleepiness at Work and Subjective Work Performance in the General Population and Among Heavy Snorers and Patients With Obstructive Sleep Apnea. Chest 1996, 110, 659–663. [Google Scholar] [CrossRef]
- Qiu, K.; Mao, M.; Hu, Y.; Yi, X.; Zheng, Y.; Ying, Z.; Cheng, D.; Rao, Y.; Zhang, J.; Mu, X.; et al. Gender-specific association between obstructive sleep apnea and cognitive impairment among adults. Sleep Med. 2022, 98, 158–166. [Google Scholar] [CrossRef]
- Barel, E.; Tzischinsky, O. Age and Sex Differences in Verbal and Visuospatial Abilities. Adv. Cogn. Psychol. 2018, 2, 51–61. [Google Scholar] [CrossRef]
- Sokołowski, A.; Tyburski, E.; Sołtys, A.; Karabanowicz, E. Sex Differences in Verbal Fluency Among Young Adults. Adv. Cogn. Psychol. 2020, 16, 92–102. [Google Scholar] [CrossRef]
- Voyer, D.; Saint Aubin, J.; Altman, K.; Gallant, G. Sex differences in verbal working memory: A systematic review and meta-analysis. Psychol. Bull. 2021, 147, 352–398. [Google Scholar] [CrossRef]
- Boone, A.P.; Hegarty, M. Sex differences in mental rotation tasks: Not just in the mental rotation process! J. Exp. Psychol. Learn. Mem. Cogn. 2017, 43, 1005–1019. [Google Scholar] [CrossRef] [PubMed]
- Archer, J. The reality and evolutionary significance of human psychological sex differences. Biol. Rev. Camb. Philos. Soc. 2019, 94, 1381–1415. [Google Scholar] [CrossRef] [PubMed]
- Bartlett, K.A.; Camba, J.D. Gender Differences in Spatial Ability: A Critical Review. Educ. Psychol. Rev. 2023, 35, 8. [Google Scholar] [CrossRef]
- Podcasy, J.L.; Epperson, C.N. Considering sex and gender in Alzheimer disease and other dementias. Dialogues Clin. Neurosci. 2016, 18, 437–446. [Google Scholar] [CrossRef]
- Ishunina, T.A.; Fischer, D.F.; Swaab, D.F. Estrogen receptor alpha and its splice variants in the hippocampus in aging and Alzheimer’s disease. Neurobiol. Aging 2007, 28, 1670–1681. [Google Scholar] [CrossRef]
- Harrington, Y.A.; Parisi, J.M.; Duan, D.; Rojo-Wissar, D.M.; Holingue, C.; Spira, A.P. Sex Hormones, Sleep, and Memory: Interrelationships Across the Adult Female Lifespan. Front. Aging Neurosci. 2022, 14, 800278. [Google Scholar] [CrossRef]
- Brinton, R.D. The healthy cell bias of estrogen action: Mitochondrial bioenergetics and neurological implications. Trends Neurosci. 2008, 31, 529–537. [Google Scholar] [CrossRef]
- Park, S.Y.; Byun, B.H.; Kim, B.I.; Lim, S.M.; Ko, I.O.; Lee, K.C.; Kim, K.M.; Kim, Y.K.; Lee, J.-Y.; Bu, S.H.; et al. The correlation of neuropsychological evaluation with 11C-PiB and 18F-FC119S amyloid PET in mild cognitive impairment and Alzheimer disease. Medicine 2020, 99, e19620. [Google Scholar] [CrossRef]
- Fernandes, M.; Placidi, F.; Mercuri, N.B.; Liguori, C. The Importance of Diagnosing and the Clinical Potential of Treating Obstructive Sleep Apnea to Delay Mild Cognitive Impairment and Alzheimer’s Disease: A Special Focus on Cognitive Performance. J. Alzheimer’s Dis. Rep. 2021, 5, 515–533. [Google Scholar] [CrossRef]
- Chang, W.P.; Liu, M.E.; Chang, W.C.; Yang, A.C.; Ku, Y.C.; Pai, J.T.; Huang, H.L.; Tsai, S.J. Sleep apnea and the risk of dementia: A population-based 5-year follow-up study in Taiwan. PLoS ONE 2015, 8, 6–13. [Google Scholar] [CrossRef]
- Osorio, R.S.; Gumb, T.; Pirraglia, E.; Varga, A.W.; Lu, S.E.; Lim, J.; Wohlleber, M.E.; Ducca, E.L.; Koushyk, V.; Glodzik, L.; et al. Sleep-disordered breathing advances cognitive decline in the elderly. Neurology 2015, 84, 1964–1971. [Google Scholar] [CrossRef] [PubMed]
- Emamian, F.; Khazaie, H.; Tahmasian, M.; Leschziner, G.D.; Morrell, M.J.; Hsiung, G.Y.R.; Rosenzweig, I.; Sepehry, A.A. The association between obstructive sleep apnea and Alzheimer’s disease: A meta-analysis perspective. Front. Aging Neurosci. 2016, 8, 78. [Google Scholar] [CrossRef] [PubMed]
- Andrade, A.G.; Bubu, O.M.; Varga, A.W.; Osorio, R.S. The Relationship between Obstructive Sleep Apnea and Alzheimer’s Disease. J. Alzheimer’s Dis. JAD 2018, 64 (Suppl. 1), S255–S270. [Google Scholar] [CrossRef]
- Ferini-Strambi, L.; Hensley, M.; Salsone, M. Decoding Causal Links Between Sleep Apnea and Alzheimer’s Disease. J. Alzheimer’s Dis. JAD 2021, 80, 29–40. [Google Scholar] [CrossRef]
- Senaratna, C.V.; Perret, J.L.; Lodge, C.J.; Lowe, A.J.; Campbell, B.E.; Matheson, M.C.; Hamilton, G.S.; Dharmage, S.C. Prevalence of obstructive sleep apnea in the general population: A systematic review. Sleep Med. Rev. 2017, 34, 70–81. [Google Scholar] [CrossRef]
Variables | Total Group (n = 28) | Female (n = 14) | Male (n = 14) | p-Value |
---|---|---|---|---|
Demographics | ||||
Age (years) | 64.82 ± 11.20 | 64.50 ± 10.83 | 65.14 ± 11.95 | 0.765 a |
Education (years) | 12.03 ± 4.29 | 12.00 ± 4.94 | 12.07 ± 3.71 | 0.925 a |
Weight (kg) | 91.53 ± 16.27 | 82.00 ± 15.67 | 96.30 ± 15.06 | 0.086 a |
Height (m) | 1.67 ± 0.12 | 1.54 ± 0.07 | 1.74 ± 0.07 | 0.005 a |
BMI (kg/m2) | 32.32 ± 4.16 | 33.25 ± 4.57 | 31.67 ± 3.97 | 0.626 a |
Duration of disease (years) | 5.08 ± 3.18 | 5.00 ± 3.79 | 5.14 ± 2.71 | 0.677 a |
Familiarity for dementia (%) | 7.4 | 7.1 | 7.7 | 0.957 b |
Concomitant Pathologies | ||||
Hypertension (%) | 48.1 | 64.3 | 30.8 | 0.082 b |
Heart disease (%) | 25.9 | 35.7 | 15.4 | 0.228 b |
COPD/asthma (%) | 7.4 | 14.3 | 0 | 0.157 b |
Diabetes (%) | 11.1 | 14.3 | 7.7 | 0.586 b |
Hypercholesterolemia (%) | 37.0 | 42.9 | 30.8 | 0.516 b |
Gastroesophageal reflux (%) | 14.8 | 0 | 30.8 | 0.025 b |
Psychiatric disorders (%) | 29.6 | 28.6 | 30.8 | 0.901 b |
Others (%) | 25.9 | 28.6 | 23.1 | 0.745 b |
Variables | Total Group (n = 28) | Female (n = 14) | Male (n = 14) | p-Value |
---|---|---|---|---|
Respiratory profile | ||||
Apnea Hypopnea Index (AHI) | 34.07 ± 23.62 | 34.42 ± 28.47 | 33.75 ± 19.32 | 0.550 a |
Oxygen Desaturation Index (ODI) | 30.85 ± 14.85 | 22.47 ± 11.78 | 35.88 ± 14.69 | 0.065 a |
Apnea Hypopnea Index Supine (AHI supine) | 37.68 ± 27.91 | 37.34 ± 31.06 | 38.24 ± 23.91 | 0.612 a |
Sleep Macrostructure | ||||
Total Sleep Time (TST—min) | 402.82 ± 60.28 | 412.17 ± 68.73 | 391.60 ± 53.77 | 0.361 a |
Sleep Latency (SL—min) | 11.73 ± 5.59 | 9.50 ± 5.09 | 14.40 ± 5.41 | 0.079 a |
Wake After Sleep Onset (WASO—min) | 58.82 ± 30.40 | 61.83 ± 35.80 | 55.20 ± 26.04 | 1 a |
Sleep Efficiency (%SE) | 83.84 ± 8.17 | 84.75 ± 8.48 | 82.76 ± 8.63 | 0.584 a |
Number of Awakenings | 15.27 ± 10.62 | 16.33 ± 11.16 | 14.00 ± 11.07 | 0.647 a |
% N1 | 11.25 ± 8.30 | 11.37 ± 7.29 | 11.12 ± 10.28 | 0.715 a |
% N2 | 51.13 ± 11.99 | 48.72 ± 2.75 | 54.02 ± 18.20 | 0.201 a |
% N3 | 21.09 ± 13.01 | 22.93 ± 12.43 | 18.88 ± 14.80 | 0.584 a |
% REM | 16.53 ± 8.64 | 16.98 ± 8.09 | 15.98 ± 10.22 | 0.855 a |
REM Latency (min) | 126.68 ± 55.72 | 115.58 ± 44.28 | 140.00 ± 70.02 | 0.583 a |
Periodic Leg Movement Index (PLM Index) | 14.09 ± 22.23 | 19.15 ± 27.95 | 8.02 ± 13.20 | 0.0848 a |
Variables | Total Group (n= 28) | Female (n = 14) | Male (n = 14) | p-Value |
---|---|---|---|---|
Mini-Mental State Evaluation (MMSE) | 28.11 ± 2.11 | 28.00 ± 2.74 | 28.21 ± 1.31 | 0.391 a |
Token Test | 32.61 ± 3.99 | 32.00 ± 5.03 | 33.23 ± 2.65 | 0.835 a |
Semantic Fluency | 42.18 ± 10.33 | 41.43 ± 8.09 | 42.93 ± 12.45 | 0.927 a |
Phonemic Fluency | 31.53 ± 12.07 | 33.36 ± 12.41 | 29.71 ± 11.89 | 0.395 a |
Digit Span Forward | 5.43 ± 1.29 | 5.07 ± 1.07 | 5.78 ± 1.42 | 0.195 a |
Digit Span Backward | 4.14 ± 1.38 | 3.86 ± 1.03 | 4.43 ± 1.65 | 0.475 a |
Corsi Test | 4.86 ± 1.11 | 4.43 ± 1.02 | 5.28 ± 1.07 | 0.074 a |
Rey’s List (learning) | 42.18 ± 10.44 | 43.57 ± 9.32 | 40.78 ± 11.64 | 0.382 a |
Rey’s List (recall) | 8.46 ± 2.97 | 8.78 ± 2.72 | 8.14 ± 3.28 | 0.488 a |
Rey’s List (recognition) | 13.61 ± 1.40 | 13.93 ± 1.21 | 13.28 ± 1.54 | 0.233 a |
False Positive at Rey’s List | 1.03 ± 1.37 | 0.78 ± 0.97 | 1.28 ± 1.68 | 0.621 a |
Rey’s Figure (recall) | 16.11 ± 6.55 | 13.57 ± 6.22 | 18.64 ± 6.06 | 0.027 a |
Raven Matrices | 28.07 ± 5.66 | 27.38 ± 6.56 | 28.71 ± 4.84 | 0.752 a |
Attentive Matrices | 48.25 ± 10.71 | 46.86 ± 12.54 | 49.64 ± 8.75 | 0.908 a |
Rey’s Figure (copy) | 32.00 ± 4.08 | 31.11 ± 4.67 | 32.89 ± 3.32 | 0.138 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Castelnuovo, A.; Marelli, S.; Mazzeo, S.; Casoni, F.; Proserpio, P.; Oldani, A.; Bombaci, A.; Bortolin, E.; Bruschi, G.; Agosta, F.; et al. Gender Differences in Obstructive Sleep Apnea: A Preliminary Clinical and Polysomnographic Investigation. Neurol. Int. 2025, 17, 85. https://doi.org/10.3390/neurolint17060085
Castelnuovo A, Marelli S, Mazzeo S, Casoni F, Proserpio P, Oldani A, Bombaci A, Bortolin E, Bruschi G, Agosta F, et al. Gender Differences in Obstructive Sleep Apnea: A Preliminary Clinical and Polysomnographic Investigation. Neurology International. 2025; 17(6):85. https://doi.org/10.3390/neurolint17060085
Chicago/Turabian StyleCastelnuovo, Alessandra, Sara Marelli, Salvatore Mazzeo, Francesca Casoni, Paola Proserpio, Alessandro Oldani, Alessandro Bombaci, Elisa Bortolin, Giulia Bruschi, Federica Agosta, and et al. 2025. "Gender Differences in Obstructive Sleep Apnea: A Preliminary Clinical and Polysomnographic Investigation" Neurology International 17, no. 6: 85. https://doi.org/10.3390/neurolint17060085
APA StyleCastelnuovo, A., Marelli, S., Mazzeo, S., Casoni, F., Proserpio, P., Oldani, A., Bombaci, A., Bortolin, E., Bruschi, G., Agosta, F., Filippi, M., Ferini-Strambi, L., & Salsone, M. (2025). Gender Differences in Obstructive Sleep Apnea: A Preliminary Clinical and Polysomnographic Investigation. Neurology International, 17(6), 85. https://doi.org/10.3390/neurolint17060085