An Overview of Therapy Guidelines for Cardiac Arrest and the Potential Benefits of Hemoglobin-Based Oxygen Carriers
Abstract
:1. Introduction
2. Cardiac Arrest and Predictors of Survival
3. The Three Phases of Cardiac Arrest
3.1. First (Electrical) Phase
3.2. Second (Circulatory) Phase
3.3. Third (Metabolic) Phase
4. Ischemia and Supplemental Oxygen
5. Reactive Oxygen Species and Reperfusion Injury
6. Therapeutic Hypothermia and Preconditioning
7. Clinical Complications of Cardiac Ischemia
8. Perfusion of Vital Organs
9. Limitations of Blood Transfusion Therapy in Cardiac Arrest
10. Hemoglobin-Based Oxygen Carriers as a Potential Therapeutic Option for Cardiac Arrest
11. Characteristics of Novel-Generation HBOCs (NG-HBOCs)
12. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jabbour, R.J.; Sen, S.; Mikhail, G.W.; Malik, I.S. Out-of-hospital cardiac arrest: Concise review of strategies to improve outcome. Cardiovasc. Revasc. Med. 2017, 18, 450–455. [Google Scholar] [CrossRef] [PubMed]
- Schluep, M.; Gravesteijn, B.Y.; Stolker, R.J.; Endeman, H.; Hoeks, S.E. One-year survival after in-hospital cardiac arrest: A systematic review and meta-analysis. Resuscitation 2018, 132, 90–100. [Google Scholar] [CrossRef] [Green Version]
- Sandroni, C.; Nolan, J.; Cavallaro, F.; Antonelli, M. In-hospital cardiac arrest: Incidence, prognosis and possible measures to improve survival. Intensiv. Care Med. 2007, 33, 237–245. [Google Scholar] [CrossRef] [PubMed]
- Kalarus, Z.; Svendsen, J.H.; Capodanno, D.; Dan, G.-A.; De Maria, E.; Gorenek, B.; Jędrzejczyk-Patel, E.; Mazurek, M.; Podolecki, T.; Sticherling, C.; et al. Cardiac arrhythmias in the emergency settings of acute coronary syndrome and revascularization: An European Heart Rhythm Association (EHRA) consensus document, endorsed by the European Association of Percutaneous Cardiovascular Interventions (EAPCI), and European Acute Cardiovascular Care Association (ACCA). Europace 2019, 21, 1603–1604. [Google Scholar] [CrossRef] [PubMed]
- Morgan, R.W.; Fitzgerald, J.C.; Weiss, S.L.; Nadkarni, V.M.; Sutton, R.M.; Berg, R.A. Sepsis-associated in-hospital cardiac arrest: Ep-idemiology, pathophysiology, and potential therapies. J. Crit. Care 2017, 40, 128–135. [Google Scholar] [CrossRef] [PubMed]
- Smith, J.E.; Rickard, A.; Wise, D. Traumatic cardiac arrest. J. R. Soc. Med. 2015, 108, 11–16. [Google Scholar] [CrossRef] [Green Version]
- Nichol, G.; Sayre, M.R.; Guerra, F.; Poole, J. Defibrillation for ventricular fibrillation: A shocking update. J. Am. Coll. Cardiol. 2017, 70, 1496–1509. [Google Scholar] [CrossRef]
- Neumar, R.W.; Otto, C.W.; Link, M.S.; Kronick, S.L.; Shuster, M.; Callaway, C.W.; Kudenchuk, P.J.; Ornato, J.P.; McNally, B.; Silvers, S.M.; et al. Part 8: Adult Advanced Cardiovascular Life Support: 2010 american heart association guidelines for cardiopulmonary resuscitation and emergency cardiovascular care. Circulation 2010, 122 (Suppl. S3), S729–S767. [Google Scholar] [CrossRef] [Green Version]
- Søreide, E.; Bjørshol, C.A. Improving Survival after Cardiac Arrest. Semin. Neurol. 2017, 37, 025–032. [Google Scholar] [CrossRef]
- Sasson, C.; Rogers, M.A.; Dahl, J.; Kellermann, A.L. Predictors of Survival From Out-of-Hospital Cardiac Arrest: A systematic review and meta-analysis. Circ. Cardiovasc. Qual. Outcomes 2010, 3, 63–81. [Google Scholar] [CrossRef] [Green Version]
- Lipe, D.; Giwa, A.; Caputo, N.D.; Gupta, N.; Addison, J.; Cournoyer, A. Do Out-of-Hospital Cardiac Arrest Patients Have Increased Chances of Survival When Transported to a Cardiac Resuscitation Center? J. Am. Heart Assoc. 2018, 7, e011079. [Google Scholar] [CrossRef] [Green Version]
- Welbourn, C.; Efstathiou, N. How does the length of cardiopulmonary resuscitation affect brain damage in patients surviving cardiac arrest? A systematic review. Scand. J. Trauma Resusc. Emerg. Med. 2018, 26, 26–77. [Google Scholar] [CrossRef]
- Gurewich, V. Thrombolysis: A Critical First-Line Therapy with an Unfulfilled Potential. Am. J. Med. 2016, 129, 573–575. [Google Scholar] [CrossRef] [Green Version]
- Schultz, C.H.; Rivers, E.P.; Feldkamp, C.S.; Goad, E.G.; Smithline, H.A.; Martin, G.B.; Fath, J.J.; Wortsman, J.; Nowak, R.M. A characterization of hypothalamic-pituitary-adrenal axis function during and after human cardiac arrest. Crit. Care Med. 1993, 21, 1339–1347. [Google Scholar] [CrossRef]
- Arrich, J.; Holzer, M.; Havel, C.; Müllner, M.; Herkner, H. Hypothermia for neuroprotection in adults after cardiopulmonary resuscitation. Cochrane Database Syst. Rev. 2016, 2, CD004128. [Google Scholar] [CrossRef]
- Patil, K.D.; Halperin, H.R.; Becker, L.B. Cardiac Arrest: Resuscitation and reperfusion. Circ. Res. 2015, 116, 2041–2049. [Google Scholar] [CrossRef] [Green Version]
- Kuschner, C.E.; Becker, L.B. Recent advances in personalizing cardiac arrest resuscitation. F1000Research 2019, 8, 915. [Google Scholar] [CrossRef]
- Hong, M.F.; Dorian, P. Update on advanced life support and resuscitation techniques. Curr. Opin. Cardiol. 2005, 20, 1–6. [Google Scholar]
- Jentzer, J.; Chonde, M.; Dezfulian, C. Myocardial Dysfunction and Shock after Cardiac Arrest. BioMed Res. Int. 2015, 2015, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Ilicki, J.; Bruchfeld, S.; Djärv, T. Can epinephrine therapy be detrimental to patients with hypertrophic cardiomyopathy with hypotension or cardiac arrest? A systematic review. Eur. J. Emerg. Med. 2019, 26, 150–157. [Google Scholar] [CrossRef]
- Andersen, L.W.; Mackenhauer, J.; Roberts, J.C.; Berg, K.M.; Cocchi, M.N.; Donnino, M.W. Etiology and Therapeutic Approach to Elevated Lactate Levels. Mayo Clin. Proc. 2013, 88, 1127–1140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Llitjos, J.-F.; Mira, J.-P.; Duranteau, J.; Cariou, A. Hyperoxia toxicity after cardiac arrest: What is the evidence? Ann. Intensiv. Care 2016, 6, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ottolenghi, S.; Sabbatini, G.; Brizzolari, A.; Samaja, M.; Chiumello, D. Hyperoxia and oxidative stress in anesthesia and critical care medicine. Minerva Anestesiol. 2020, 86, 64–75. [Google Scholar] [CrossRef] [PubMed]
- Yang, K.-C.; Kyle, J.W.; Makielski, J.C.; Dudley, S.C., Jr. Mechanisms of Sudden Cardiac Death: Oxidants and metabolism. Circ. Res. 2015, 116, 1937–1955. [Google Scholar] [CrossRef] [Green Version]
- Man, A.M.E.; Elbers, P.W.G.; Straaten, H.M. Making sense of early high-dose intravenous vitamin C in ischemia/reperfusion injury. Crit. Care 2018, 22, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Kern, K.B. Usefulness of Cardiac Arrest Centers—Extending Lifesaving Post-Resuscitation Therapies: The Arizona Experience. Circ. J. 2015, 79, 1156–1163. [Google Scholar] [CrossRef] [Green Version]
- Kleinman, M.E.; Srinivasan, V. Postresuscitation Care. Pediatr. Clin. North Am. 2008, 55, 943–967. [Google Scholar] [CrossRef]
- Mody, P.; Kulkarni, N.; Khera, R.; Link, M.S. Targeted temperature management for cardiac arrest. Prog. Cardiovasc. Dis. 2019, 62, 272–278. [Google Scholar] [CrossRef]
- Schenone, A.L.; Cohen, A.; Patarroyo, G.; Harper, L.; Wang, X.; Shishehbor, M.H.; Menon, V.; Duggal, A. Therapeutic hypothermia after cardiac arrest: A systematic review/meta-analysis exploring the impact of expanded criteria and targeted temperature. Resuscitation 2016, 108, 102–110. [Google Scholar] [CrossRef]
- Knot, J.; Motovska, Z. Therapeutic hypothermia after cardiac arrest—Part 1: Mechanism of action, techniques of cooling, and adverse events. Cor Vasa 2012, 54, e237–e242. [Google Scholar] [CrossRef] [Green Version]
- Janata, A.; Holzer, M. Hypothermia After Cardiac Arrest. Prog. Cardiovasc. Dis. 2009, 52, 168–179. [Google Scholar] [CrossRef]
- Adler, C.; Schregel, F.; Heller, T.; Hellmich, M.; Adler, J.; Reuter, H. Malignant Arrhythmias During Induction of Target Temperature Management After Cardiac Arrest. Ther. Hypothermia Temp. Manag. 2020, 10, 229–236. [Google Scholar] [CrossRef] [Green Version]
- Dietrichs, E.S.; McGlynn, K.; Allan, A.; Connolly, A.; Bishop, M.; Burton, F.; Kettlewell, S.; Myles, R.; Tveita, T.; Smith, G.L. Moderate but not severe hypothermia causes pro-arrhythmic changes in cardiac electrophysiology. Cardiovasc. Res. 2020, 116, 2081–2090. [Google Scholar] [CrossRef]
- Suleiman, M.-S.; Chapman, R.A. Effect of temperature on the rise in intracellular sodium caused by calcium depletion in ferret ventricular muscle and the mechanism of the alleviation of the calcium paradox by hypothermia. Circ. Res. 1990, 67, 1238–1246. [Google Scholar] [CrossRef] [Green Version]
- Gocoł, R.; Hudziak, D.; Bis, J.; Mendrala, K.; Morkisz, Ł.; Podsiadło, P.; Kosiński, S.; Piątek, J.; Darocha, T. The Role of Deep Hypothermia in Cardiac Surgery. Int. J. Environ. Res. Public Health 2021, 18, 7061. [Google Scholar] [CrossRef]
- Krukenkamp, I.B.; Burns, P.; Caldarone, C.; Levitsky, S. Perfusion and cardioplegia. Curr. Opin. Cardiol. 1994, 9, 247–253. [Google Scholar] [CrossRef]
- Hoek, T.L.V. Preconditioning and postresuscitation injury. Crit. Care Med. 2002, 30 (Suppl. 4), S172–S175. [Google Scholar] [CrossRef]
- Chitwood, W.R., Jr.; Wixon, C.L.; Elbeery, J.R.; Francalancia, N.A.; Lust, R.M. Minimally invasive cardiac operation: Adapting cardioprotective strategies. Ann. Thorac. Surg. 1999, 68, 1974–1977. [Google Scholar] [CrossRef]
- Boateng, S.; Sanborn, T. Acute myocardial infarction. Dis. Mon. 2013, 59, 83–96. [Google Scholar] [CrossRef]
- Nolan, J.P.; Neumar, R.W.; Adrie, C.; Aibiki, M.; Berg, R.A.; Böttiger, B.W.; Callaway, C.; Clark, R.S.; Geocadin, R.G.; Jauch, E.C.; et al. Post-cardiac arrest syndrome: Epidemiology, pathophysiology, treatment, and prognostication: A Scientific Statement from the International Liaison Committee on Resuscitation; the American Heart Association Emergency Cardiovascular Care Committee; the Council on Cardiovascular Surgery and Anesthesia; the Council on Cardiopulmonary, Perioperative, and Critical Care; the Council on Clinical Cardiology; the Council on Stroke. Resuscitation 2008, 79, 350–379. [Google Scholar] [CrossRef]
- Girotra, S.; Chan, P.S.; Bradley, S.M. Post-resuscitation care following out-of-hospital and in-hospital cardiac arrest. Heart 2015, 101, 1943–1949. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tuseth, V. Percutaneous Assist Device for Cardiopulmonary Resuscitation. Interv. Cardiol. Clin. 2013, 2, 429–443. [Google Scholar] [CrossRef] [PubMed]
- Randhawa, V.K.; Grunau, B.E.; Debicki, D.B.; Zhou, J.; Hegazy, A.F.; McPherson, T.; Nagpal, A.D. Cardiac Intensive Care Unit Management of Patients After Cardiac Arrest: Now the Real Work Begins. Can. J. Cardiol. 2018, 34, 156–167. [Google Scholar] [CrossRef]
- Manning, J.E.; Katz, L.M. Cardiopulmonary and Cerebral Resuscitation. Crit. Care Clin. 2000, 16, 659–679. [Google Scholar] [CrossRef]
- Paradis, N.A.; Wenzel, V.; Southall, J. Pressor drugs in the treatment of cardiac arrest. Cardiol. Clin. 2002, 20, 61–78. [Google Scholar] [CrossRef]
- Nongchang, P.; Wong, W.L.; Pitaksanurat, S.; Amchai, P.B. Intravenous Fluid Administration and the Survival of Pre hospital Resuscitated out of Hospital Cardiac Arrest Patients in Thailand. J. Clin. Diagn. Res. 2017, 11, OC29–OC32. [Google Scholar] [CrossRef]
- Moriwaki, Y.; Sugiyama, M.; Tahara, Y.; Iwashita, M.; Kosuge, T.; Toyoda, H.; Arata, S.; Suzuki, N. Blood transfusion therapy for traumatic cardiopulmonary arrest. J. Emergencies Trauma Shock. 2013, 6, 37–41. [Google Scholar] [CrossRef] [PubMed]
- Smith, H.M.; Farrow, S.J.; Ackerman, J.D.; Stubbs, J.R.; Sprung, J. Cardiac Arrests Associated with Hyperkalemia During Red Blood Cell Transfusion: A Case Series. Anesth. Analg. 2008, 106, 1062–1069. [Google Scholar] [CrossRef] [Green Version]
- Brown, K.A.; Bissonnette, B.; McIntyre, B. Hyperkalaemia during rapid blood transfusion and hypovolaemic cardiac arrest in children. Can. J. Anaesth. 1990, 37, 747–754. [Google Scholar] [CrossRef] [Green Version]
- Meng, F.; Kassa, T.; Jana, S.; Wood, F.; Zhang, X.; Jia, Y.; D’Agnillo, F.; Alayash, A.I. Comprehensive Biochemical and Biophysical Characterization of Hemoglobin-Based Oxygen Carrier Therapeutics: All HBOCs Are Not Created Equally. Bioconjug. Chem. 2018, 29, 1560–1575. [Google Scholar] [CrossRef]
- Natanson, C.; Kern, S.J.; Lurie, P.; Banks, S.M.; Wolfe, S.M. Cell-Free Hemoglobin-Based Blood Substitutes and Risk of Myocardial Infarction and Death. JAMA 2008, 299, 2304–2312. [Google Scholar] [CrossRef]
- Hughes, J.; Antal, E.J.; Locker, P.K.; Francom, S.F.; Adams, W.J.; Jacobs, J. Physiology and pharmacokinetics of a novel hemoglo-bin-based oxygen carrier in humans. Crit Care Med. 1996, 24, 756–764. [Google Scholar] [CrossRef]
- Winslow, R.M. Cell-free oxygen carriers: Scientific foundations, clinical development, and new directions. Biochim. Biophys. Acta 2008, 1784, 1382–1386. [Google Scholar] [CrossRef]
- Jahr, J.S.; Weeks, D.L.; Desai, P.; Lim, J.C.; Butch, A.W.; Gunther, R.; Driessen, B. Does OxyVita, a New-Generation Hemoglobin-Based Oxygen Carrier, or Oxyglobin Acutely Interfere With Coagulation Compared With Normal Saline or 6% Hetastarch? An Ex Vivo Thromboelastography Study. J. Cardiothorac. Vasc. Anesthesia 2008, 22, 34–39. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, L.; Yu, W.; Gao, D.; You, G.; Li, P.; Zhang, S.; Zhang, J.; Hu, T.; Zhao, L.; et al. A PEGylated bovine hemoglobin as a potent hemoglobin-based oxygen carrier. Biotechnol. Prog. 2017, 33, 252–260. [Google Scholar] [CrossRef]
- Harrington, J.P.; Wollocko, J.; Kostecki, E.; Wollocko, H. Physicochemical Characteristics of OxyVita Hemoglobin, a Zero-Linked Polymer: Liquid and Powder Preparations. Artif. Cells Blood Substit. Biotechnol. 2011, 39, 12–18. [Google Scholar] [CrossRef]
- Manning, J.E.; Katz, L.M.; Pearce, L.B.; Batson, D.N.; McCurdy, S.L.; Gawryl, M.S.; Baker, C.C. Selective aortic arch perfusion with hemoglobin-based oxygen carrier-201 for resuscitation from exsanguinating cardiac arrest in swine. Crit. Care Med. 2001, 29, 2067–2074. [Google Scholar] [CrossRef]
- Harrington, J.P.; Wollocko, H. Molecular Design Properties of OxyVita Hemoglobin, a New Generation Therapeutic Oxygen Carrier: A Review. J. Funct. Biomater. 2011, 2, 414–424. [Google Scholar] [CrossRef] [Green Version]
- Wollocko, H.; Wollocko, B.M.; Wollocko, J.; Grzegorzewski, W.; Smyk, L. OxyVita®C, a next-generation haemoglobin-based oxygen carrier, with coagulation capacity (OVCCC). Modified lyophilization/spray-drying process: Proteins protection. Artif. Cells Nanomed. Biotechnol. 2017, 45, 1350–1355. [Google Scholar] [CrossRef]
- Bjorkholm, M.; Fagrell, B.; Przybelski, R.; Winslow, N.; Young, M.; Winslow, R.M. A phase I single blind clinical trial of a new oxygen transport agent (MP4), human he-moglobin modified with maleimide-activated polyethylene glycol. Haematologica 2005, 90, 505–515. [Google Scholar]
- Reynolds, P.S.; Barbee, R.W.; Skaflen, M.D.; Ward, K.R. Low-Volume Resuscitation Cocktail Extends Survival After Severe Hemorrhagic Shock. Shock 2007, 28, 45–52. [Google Scholar] [CrossRef] [PubMed]
- Greenburg, A.G. The Ideal Blood Substitute. Crit. Care Clin. 2009, 25, 415–424. [Google Scholar] [CrossRef]
- Jia, Y.; Alayash, A.I. Effects of cross-linking and zero-link polymerization on oxygen transport and redox chemistry of bovine hemoglobin. Biochim. Biophys. Acta 2009, 1794, 1234–1242. [Google Scholar] [CrossRef]
- Mito, T.; Nemoto, M.; Kwansa, H.; Sampei, K.; Habeeb, M.; Murphy, S.J.; Bucci, E.; Koehler, R.C. Decreased Damage From Transient Focal Cerebral Ischemia by Transfusion of Zero-Link Hemoglobin Polymers in Mouse. Stroke 2009, 40, 278–284. [Google Scholar] [CrossRef] [Green Version]
- Ning, J.; Chang, T.M. Effects of Homologous and Heterologous Stroma-Free Hemoglobin and Polyhemoglobin on Complement Activation, Leucocytes and Platelets. Biomater. Artif. Cells Artif. Organs 1990, 18, 219–232. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wollocko, B.M.; Papian-Gorji, B.; Yen, W.; Zahid, U.; Shah, N.; Steier, K.; Wollocko, H. An Overview of Therapy Guidelines for Cardiac Arrest and the Potential Benefits of Hemoglobin-Based Oxygen Carriers. Cardiogenetics 2022, 12, 37-48. https://doi.org/10.3390/cardiogenetics12010004
Wollocko BM, Papian-Gorji B, Yen W, Zahid U, Shah N, Steier K, Wollocko H. An Overview of Therapy Guidelines for Cardiac Arrest and the Potential Benefits of Hemoglobin-Based Oxygen Carriers. Cardiogenetics. 2022; 12(1):37-48. https://doi.org/10.3390/cardiogenetics12010004
Chicago/Turabian StyleWollocko, Brian M., Bardia Papian-Gorji, Winston Yen, Urooj Zahid, Nilank Shah, Kenneth Steier, and Hanna Wollocko. 2022. "An Overview of Therapy Guidelines for Cardiac Arrest and the Potential Benefits of Hemoglobin-Based Oxygen Carriers" Cardiogenetics 12, no. 1: 37-48. https://doi.org/10.3390/cardiogenetics12010004
APA StyleWollocko, B. M., Papian-Gorji, B., Yen, W., Zahid, U., Shah, N., Steier, K., & Wollocko, H. (2022). An Overview of Therapy Guidelines for Cardiac Arrest and the Potential Benefits of Hemoglobin-Based Oxygen Carriers. Cardiogenetics, 12(1), 37-48. https://doi.org/10.3390/cardiogenetics12010004