Lane Boundary Detection for Intelligent Vehicles Using Deep Convolutional Neural Network Architecture
Abstract
:1. Introduction
2. Inverse Perspective Transformation Model (IPM)
2.1. Three-Dimensional Lane Geometry Modeling
2.2. Inverse Perspective Transformation
3. Three-Dimensional Lane Boundary Detection Network Construction
3.1. Coordinate Attention Mechanism Introduction
3.2. Improved Feature Fusion Network
3.3. Three-Dimensional Lane Detection Head Design
3.4. Evaluation Index of Three-Dimensional Lane Boundary Detection
4. Experimental Verification
5. Closing Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mitiku, M.A.; Shao, Y.M.; Zhang, L.; Wang, R.; Peng, J.S. Test and Evaluation of Lane Departure Warning System for Passenger Cars. J. Chongqing Jiaotong Univ. (Nat. Sci.) 2020, 39, 141–146. [Google Scholar]
- Peng, P.; Geng, K.K.; Wang, Z.W.; Liu, Z.C.; Yin, G.D. Review on Environmental Perception Methods of Autonomous Vehicles. J. Mech. Eng. 2023, 59, 281–303. [Google Scholar]
- Huang, J.; Choudhury, P.K.; Yin, S.; Zhu, L. Real-Time Road Curb and Lane Detection for Autonomous Driving Using LiDAR Point Clouds. IEEE Access 2021, 9, 144940–144951. [Google Scholar] [CrossRef]
- Wang, B.K. Lane Detection Method Based on Deep Learning. Master’s Thesis, University of Science and Technology of China, Hefei, China, 2021. [Google Scholar]
- Li, C.; Wang, S.F.; Liu, M.C.; Peng, Z.B.; Ne, S.Q. Research on the Trajectory Tracking Control of Autonomous Vehicle Based on the Multi-Objective Optimization. Automob. Technol. 2022, 559, 8–15. [Google Scholar]
- Gao, Z.H.; Bao, M.X.; Gao, F.; Tang, M.H.; Lu, Y. A Uni-Modal Network Prediction Method for Surrounding Vehicle Expected Trajectory in Intelligent Driving System. Automob. Technol. 2022, 1–9. [Google Scholar]
- Garnett, N.; Cohen, R.; Pe’er, T.; Lahav, R.; Levi, D. 3d-lanenet: End-to-end 3d multiple lane detection. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Republic of Korea, 27 October–2 November 2019; pp. 2921–2930. [Google Scholar]
- Guo, Y.; Chen, G.; Zhao, P.; Zhang, W.; Miao, J.; Wang, J.; Choe, T.E. Gen-lanenet: A generalized and scalable approach for 3d lane detection. In Computer Vision-ECCV 2020, Proceedings of the 16th European Conference, Glasgow, UK, 23–28 August 2020, Proceedings, Part XXI 16; Springer International Publishing: Cham, Switzerland, 2020; pp. 666–681. [Google Scholar]
- Chen, L.; Sima, C.; Li, Y.; Zheng, Z.; Xu, J.; Geng, X.; Li, H.; He, C.; Shi, J.; Qiao, Y. Persformer: 3D lane detection via perspective transformer and the openlane benchmark. In Proceedings of the European Conference on Computer Vision, Tel Aviv, Israel, 23–27 October 2022; Springer Nature: Cham, Switzerland, 2022; pp. 550–567. [Google Scholar]
- Wang, R.; Qin, J.; Li, K.; Li, Y.; Cao, D.; Xu, J. BEV-LaneDet: A Simple and Effective 3D Lane Detection Baseline. arXiv 2022, arXiv:2210.06006. [Google Scholar]
- Li, Z.; Wang, W.; Li, H.; Xie, E.; Sima, C.; Lu, T.; Qiao, Y.; Dai, J. Bevformer: Learning bird’s-eye-view representation from multi-camera images via spatiotemporal transformers. IEEE Trans. Pattern Anal. Mach. Intell. 2025, 47, 2020–2036. [Google Scholar] [CrossRef] [PubMed]
- Liang, T.; Xie, H.; Yu, K.; Xia, Z.; Lin, Z.; Wang, Y.; Tang, T.; Wang, B.; Tang, Z. Bevfusion: A simple and robust lidar-camera fusion framework. Adv. Neural Inf. Process. Syst. 2022, 35, 10421–10434. [Google Scholar]
- Wang, Y.; Guo, Q.; Lin, P.; Cheng, G.; Wu, J. Spatio-temporal fusion-based monocular 3d lane detection. In Proceedings of the British Machine Vision Conference (BMVC), London, UK, 21–24 November 2022. [Google Scholar]
- Bai, Y.; Chen, Z.; Fu, Z.; Peng, L.; Liang, P.; Cheng, E. Curveformer: 3D lane detection by curve propagation with curve queries and attention. In Proceedings of the 2023 IEEE International Conference on Robotics and Automation (ICRA), London, UK, 29 May–2 June 2023; pp. 7062–7068. [Google Scholar]
- Luo, Y.; Zheng, C.; Yan, X.; Kun, T.; Zheng, C.; Cui, S.; Li, Z. Latr: 3D lane detection from monocular images with transformer. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Paris, France, 1–6 October 2023; pp. 7941–7952. [Google Scholar]
- Bai, Y.F.; Chen, Z.R.; Liang, P.P.; Cheng, E.K. CurveFormer++: 3D Lane Detection by Curve Propagation with Temporal Curve Queries and Attention. arXiv 2024, arXiv:2402.06423v1. [Google Scholar]
- Wang, R.; Qin, J.; Li, K.; Li, Y.; Cao, D.; Xu, J. Bev-lanedet: An efficient 3d lane detection based on virtual camera via key-points. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, BC, Canada, 17–24 June 2023; pp. 1002–1011. [Google Scholar]
- Li, Z.; Han, C.; Ge, Z.; Yang, J.; Yu, E.; Wang, H.; Zhao, H.; Zhang, X. Grouplane: End-to-end 3d lane detection with channel-wise grouping. arXiv 2023, arXiv:2307.09472. [Google Scholar] [CrossRef]
Layer | Type | Out-Channels | Out-Size |
---|---|---|---|
1 | conv2d, s = 2, k = 7 | 64 | 288 × 512 |
maxpool, s = 2, k = 3 | 64 | 144 × 256 | |
2–10 | bottleneck, s = (1, 1, 1), k = (1, 3, 1) | 256 | 144 × 256 |
bottleneck, s = (1, 1, 1), k = (1, 3, 1) | 256 | 144 × 256 | |
bottleneck, s = (1, 1, 1), k = (1, 3, 1) | 256 | 144 × 256 | |
11–22 | bottleneck, s = (1, 2, 1), k = (1, 3, 1) | 512 | 72 × 128 |
bottleneck, s = (1, 1, 1), k = (1, 3, 1) | 512 | 72 × 128 | |
bottleneck, s = (1, 1, 1), k = (1, 3, 1) | 512 | 72 × 128 | |
bottleneck, s = (1, 1, 1), k = (1, 3, 1) | 512 | 72 × 128 | |
23–40 | bottleneck s = (1, 2, 1), k = (1, 3, 1) | 1024 | 36 × 64 |
bottleneck, s = (1, 1, 1), k = (1, 3, 1) | 1024 | 36 × 64 | |
bottleneck, s = (1, 1, 1), k = (1, 3, 1) | 1024 | 36 × 64 | |
bottleneck, s = (1, 1, 1), k = (1, 3, 1) | 1024 | 36 × 64 | |
bottleneck, s = (1, 1, 1), k = (1, 3, 1) | 1024 | 36 × 64 | |
bottleneck, s = (1, 1, 1), k = (1, 3, 1) | 1024 | 36 × 64 | |
41–49 | bottleneck, s = (1, 2, 1), k = (1, 3, 1) | 2048 | 18 × 32 |
bottleneck, s = (1, 1, 1), k = (1, 3, 1) | 2048 | 18 × 32 | |
bottleneck s = (1, 1, 1), k = (1, 3, 1) | 2048 | 18 × 32 | |
50 | conv2d, s = 1, k = 1 | 512 | 18 × 32 |
Method | F1 Score↑ | ↓ | ↓ | ↓ | ↓ |
---|---|---|---|---|---|
3D-LaneNet | 41.5 | 0.269 | 0.815 | 0.142 | 0.685 |
Gen-LaneNet | 30.6 | 0.298 | 0.865 | 0.160 | 0.738 |
PersFormer | 50.5 | 0.311 | 0.553 | 0.149 | 0.541 |
Our method | 55.7 | 0.247 | 0.416 | 0.135 | 0.411 |
Method | Uphill and Downhill | Curve | Severeweather | Night | Intersection | Bifurcation |
---|---|---|---|---|---|---|
3D-LaneNet | 38.5 | 44.2 | 43.9 | 40.5 | 30.6 | 37.4 |
Gen-LaneNet | 25.7 | 32.3 | 28.5 | 19.8 | 22.6 | 29.1 |
PersFormer | 43.6 | 53.8 | 50.1 | 48.4 | 39.2 | 46.4 |
Our method | 45.8 | 58.4 | 54.1 | 49.5 | 45.5 | 49.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the World Electric Vehicle Association. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, X.; Xia, C.; Chen, X. Lane Boundary Detection for Intelligent Vehicles Using Deep Convolutional Neural Network Architecture. World Electr. Veh. J. 2025, 16, 198. https://doi.org/10.3390/wevj16040198
Chen X, Xia C, Chen X. Lane Boundary Detection for Intelligent Vehicles Using Deep Convolutional Neural Network Architecture. World Electric Vehicle Journal. 2025; 16(4):198. https://doi.org/10.3390/wevj16040198
Chicago/Turabian StyleChen, Xuewen, Chenxi Xia, and Xiaohai Chen. 2025. "Lane Boundary Detection for Intelligent Vehicles Using Deep Convolutional Neural Network Architecture" World Electric Vehicle Journal 16, no. 4: 198. https://doi.org/10.3390/wevj16040198
APA StyleChen, X., Xia, C., & Chen, X. (2025). Lane Boundary Detection for Intelligent Vehicles Using Deep Convolutional Neural Network Architecture. World Electric Vehicle Journal, 16(4), 198. https://doi.org/10.3390/wevj16040198