1. Introduction
The transportation sector is a fairly high contributor to CO
2 [
1,
2,
3]. Indonesia is one of the developing countries in the ASEAN region with more motorcycle users than cars [
4]. The number of motorcycles in Indonesia is shown in
Table 1, reaching 84% of the total vehicle population and increasing every year [
5,
6,
7,
8]. This fact shows that conventional vehicles contribute to increasing carbon emissions [
9]. Therefore, switching from conventional vehicles to electric vehicles (EVs) can help reduce carbon emissions and air pollution, as well as improve air quality [
10]. The government issued Presidential Regulation Number 55 of 2019 concerning the acceleration of the battery-based electric motorcycle (EM) program [
11].
Electric vehicle innovation is a solution for transportation that is environmentally friendly, energy-efficient, and has low operational and maintenance costs [
12]. In this case, two-wheeled electric vehicles are the object of study. EMs consist of two types: new-design electric motorcycles and converted electric motorcycles (CEMs) [
4,
13]. Newly designed electric motorcycle is assembled by factories into electric vehicles, while CEM is a conventional motorcycle that has engine components replaced with conversion kits [
14]. CEMs as a solution to carbon emissions are a new technology in Indonesia. People do not need to purchase a new electric motorcycle, but they can change their conventional motorcycle to a CEM. CEMs have been through a process of commercialization, adoption, and use by the public even though the numbers are still minimal [
15].
In order to increase the adoption of EVs, the government provides incentives for the purchase of CEM amounting to IDR 7 million per unit, as regulated in the Minister of Energy and Mineral Resources Regulation Number 3 of 2023. As time goes by, the incentive for CEM increases to IDR 10 million per unit to increase the uptake of CEM adhering to the aforementioned regulation. However, in its implementation, there are obstacles from the customer side. The obstacle from the technical perspective was low mileage [
16,
17,
18], from the perspective of facilities was rare charging stations [
19,
20,
21,
22], and from an economic perspective was the high cost compared to conventional vehicles [
23].
Viewed from the perspective of CEM manufacturing, the obstacles encountered include the testing mechanism for each vehicle, which can only be carried out at the testing center, causing it to take a long time and be expensive. CEM will gain legal status once it passes the CEM-type test for component and vehicle physical suitability. According to the Minister of Transportation Regulation Number 39 of 2023, testing can be conducted at the Land Transportation Management Center, accredited private testing units, accredited public service testing agencies, and type A conversion workshops. As previously mentioned, to become a type A conversion workshop, certain requirements must be fulfilled, one of which is the availability of CEM-type testing or roadworthiness testing tools. Therefore, this study presents an investment decision-making model for selecting CEM-type test tools for conversion motorcycles.
Of the seven types of tests for conversion motorcycles, five require special tools: brake testers, headlight testers, sound level testers, weight testers, and speedometer accuracy testers. In Indonesia, these testing tools must be imported from abroad, such as from Europe and China, which requires significant time and investment costs.
Multi-criteria decision-making (MCDM) is the most widely used method for addressing decision-making problems. The purpose of MCDM is to determine the best alternative among several mutually beneficial options based on the performance of various criteria set by the decision-makers [
24]. There are several MCDM methods, including the Analytic Hierarchy Process (AHP) [
25,
26], Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) [
27], Simple Additive Weighting Method (SAW) [
28], Analytic Network Process (ANP) [
29], and Preference Ranking Organization Method for Enrichment Evaluations (PROMETHEE) [
30].
The purpose of selecting CEM-type test tools is to convince owners, investors, partners, and other stakeholders to maintain a certain point of view regarding productivity, efficiency, income generation, and total investment costs. This research integrates the Analysis Hierarchy Process (AHP) and Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) methods. AHP is one of the most widely applied methods to solve decision-making problems such as electronic vehicle selection [
31], welding process selection [
32], and strategy selection [
33] because of its ease of use and strong mathematical foundation. Meanwhile, TOPSIS is a method that refers to the premise of the best solution, which has the smallest distance from the positive ideal solution and the furthest distance from the negative ideal solution. TOPSIS is also widely used because it is easy and is not limited to the many criteria and alternatives. Some examples of using TOPSIS for decision-making problems are assessing renovation solutions [
34], material selection [
35,
36], implementation strategy selection [
37], and financial performance analysis [
38,
39,
40].
The research aimed to select a CEM-type test tool by considering several criteria. In selecting the CEM-type test, the decision-maker needs to determine meaningful criteria and have special knowledge regarding vehicle inspection tests. The selected criteria must consider the benefits obtained by the company. The selection was carried out using the AHP method to determine the weight of each criterion based on the opinion of the decision-maker. TOPSIS is an MCDM method to overcome brightness in decision selection and to select alternatives based on weight criteria, where the alternative is selected.
This paper is presented in five sections. The first section, the introduction to the study, contains the research background. A literature review and basic theory of AHP and TOPSIS are provided in
Section 2. In
Section 3, we provide the material and methods used in this paper.
Section 4 proposes a hybrid MCDM method based on AHP and TOPSIS, financial analysis, and comprehensive assessment. Conclusions and future research directions are provided in
Section 5.
4. Result and Discussion
4.1. Data Collection and Scenarios Setting
This section presents a case study of CEM-type test investment decision-making. The name of the company where the study took place is not disclosed due to confidentiality. This company is a workshop that provides the process of converting conventional motorbikes into electric motorbikes. Researchers communicated with several experts to find out what problems and challenges were encountered by conversion workshops in the CEM testing process; thus, they had to choose an alternative investment in CEM-type test tools.
In general, individuals involved in the investment selection process for electric motorcycle-type test tools work in the vehicle testing and converted electric motorcycle sectors. Five experts were selected as respondents, whose backgrounds and years of experience are depicted in
Table 3.
4.2. Criteria Definition
Based on the literature studies and discussions with several experts, decision-making criteria are determined: costs, operations and specifications. Each criterion is further explained into sub-criteria as shown in
Table 4.
4.3. Weight of Criteria Calculation
The weights of the main criteria and the sub-criteria that consider the experts’ subjective judgments are estimated using AHP. A pairwise comparison matrix of the main criteria and sub-criteria is shown in
Table 5,
Table 6,
Table 7 and
Table 8, and the calculation of the weights is depicted.
Table 5 shows the result of the main criteria pairwise comparison matrix.
Table 6 shows an evaluation of sub-criteria related to cost.
Table 7 shows an evaluation of sub-criteria related to operational.
Table 8 shows an evaluation of sub-criteria related to specification.
Table 9 shows the recapitulation weights of criteria and sub-criteria, and
Figure 2 shows the results of the hierarchy model.
4.4. Assessment of Alternatives and Determination Final Result
After calculating the weights of the criteria and sub-criteria, the next stage is to choose the best investment among the three alternatives (cf.
Table 9 and
Table 10). TOPSIS is used to select alternatives and the same expert was asked to assess the three alternatives based on the importance of each sub-criteria. The weights given to each alternative are then carried out by matrix calculations.
Table 11 lists all of the assessments from the five experts.
Table 12 displays the normalized decision matrix. Next is determining the positive and negative ideal solutions, as illustrated in
Table 13. The final step is ranking the alternatives shown in
Table 14; Investment 2 was selected as the best alternative to be implemented. The real performance data for all criteria of the three alternatives are presented in
Table 10.
4.5. Financial Analysis
This step aimed to validate the outcomes of data processing using a hybrid MCDM approach that included TOPSIS and AHP in an MCDM model. These three options calculate vehicle inspection test depreciation, cost of production, BEP, and EAC using the data collected in this study. The result is shown in
Table 15.
It is evident from the economic feasibility analysis of the three investment options that option 1 has the lowest EAC and BEP. Accordingly, the economic feasibility study determines the order to choose investment alternatives: Investment 1 > Investment 2 > Investment 3.
4.6. Comprehensive Assessment
Based on the MCDM and calculation explained earlier, Investment 2 is chosen as the best investment in converted electric motorcycle-type test tools consisting of brake testers, headlight testers, sound level testers, weight testers, and speedometer accuracy testers. Based on the total processing time, this option can complete a vehicle test in 40 min. The total electrical power required to activate the test equipment is 380 V at 50 Hz. The area required to place the test tool is 6170 mm × 820 mm × 385 mm. The estimated annual operational costs and maintenance costs for the electric motorcycle type test are IDR 837,519,448 (USD 51,000) and IDR 14,000,000 (USD 860). The investment or purchase cost of this tool is IDR 685,039,000 (USD 42,000). The selected weight test equipment has a maximum test load limit of 2000 kg, making it effective for weighing vehicles, especially two-wheeled vehicles that have been converted. The light intensity range that can be measured by the lamp test equipment is 0–120,000 cd, while the noise range is 30–130 dB. The chosen weight test apparatus is useful for weighing vehicles, particularly modified two-wheeled vehicles, due to its maximum test load limit of 2000 kg. The lamp test apparatus has a measurement range of 0–120,000 cd for light intensity and 30–130 dB for noise.
Meanwhile, Investment 1 was determined to be the best option to be adopted by the conversion workshop based on the economic feasibility analysis. Investment 1 was selected due to its lowest EAC and BEP numbers compared to the other options. However, all other factors are not taken into account, and the assessment of each option is only dependent on financial estimates. As a result, the outcomes of the two computations differ.
Subsequent investigation revealed that variations in the standards applied to assess investment options were the cause of the discrepancies in the decision outcomes. The MCDM methodology weighs a number of factors while assessing potential options. In order to determine the weight of each criterion, the decision-maker offers an evaluation of the criteria that were utilized as evaluation parameters. Processing time is widely recognized as the primary factor taken into account by decision-makers when evaluating investment options for vehicle testing equipment. Meanwhile, acquisition, maintenance, and operating costs rank sixth, fifth, and fourth, respectively, according to the cost criterion. This demonstrates that it is impossible to consider only one aspect when analyzing investing options. Nevertheless, the decision-maker’s validation is required in order to validate the assessment criteria and make it official.
In discussing the environmental and economic benefits of implementing Alternative 2 at the conversion workshop, some points focus on improving the adoption of converted electric motorcycles. Environmental benefits include reduced carbon emissions, improved air quality, and reduced noise pollution. By converting the conventional motorcycle that runs on gasoline, a fossil fuel that releases significant carbon dioxide (CO2) when burned, the reliance on gas is reduced, leading to lower CO2 emissions. Converted electric motorcycles can be powered by renewable sources such as solar, wind, or hydroelectric power. As a result, this transition helps reduce the carbon footprint further. Even when considering the entire lifecycle of converted electric motorcycles, including the battery and disposal, the total emissions are typically lower than those of conventional motorcycles. If a conventional motorcycle emits harmful pollutants such as nitrogen oxides (NOx), particulate matter (PM), and volatile organic compounds (VOC), converted electric motorcycles produce no tailpipe emissions, thereby significantly improving air quality. Improved air quality leads to better public health outcomes, reducing respiratory and cardiovascular diseases caused by air pollution. In urban environments, converted electric motorcycles are incredibly beneficial, where vehicle emissions contribute significantly to air pollution and smog. Converted electric motorcycles operate more quietly compared to conventional motorcycles. Reduced noise pollution contributes to a more pleasant and less stressful urban environment.
Economically, improving the widespread adoption of converted electric motorcycles and investing in converted electric motorcycle tests provides significant cost savings, enhances operational efficiency in conversion workshops, and contributes to job creation and local economic growth. Converted electric motorcycles have lower operating costs due to the cheaper price of electricity than gasoline. Maintenance costs are also reduced because electric vehicles have fewer moving parts and do not require oil changes. Thus, users can save significantly on fuel costs over the lifespan of the battery of a converted electric motorcycle. Many governments offer incentives such as tax credits, rebates, and grants for purchasing and converting electric vehicles, further reducing the financial burden on consumers and businesses. For conversion workshops, improving the tools for converted electric motorcycle tests can standardize and streamline the conversion process, leading to increased workshop efficiency and productivity. Workshops can handle a higher conversion volume with efficient processes and skilled staff, leading to increased revenue. It also creates new job opportunities in manufacturing, conversion, maintenance, and infrastructure development. Conversion workshops can stimulate local economies by providing jobs and supporting ancillary businesses, such as electric components and charging infrastructure suppliers. The move towards converted electric motorcycles encourages investment in green technologies, thereby fostering innovation and sustainable economic growth.
4.7. Implementation Recommendation
The conversion workshop can implement this recommendation based on their needs, including performance goals, budget constraints, and operational requirements. It includes thorough preparation, practical training, and continuous monitoring. The preparation step includes timeline planning and vendor selection based on predefined criteria, including cost-effectiveness, quality, and after-sales support. Installation and setup include site preparation, adequate space, electrical outlets, and necessary infrastructure. Delivering and installing the tools, as well as ensuring all components are correctly installed and configured, are administered by coordinating with the selected vendor. Moreover, conducting initial testing aims to verify that all the tools operate as expected and meet performance standards. The critical steps are training and capacity building. In this stage, training is carried out by developing a comprehensive training program for workshop staff focusing on operation, maintenance, and troubleshooting. A continuous learning and skill development system should also be implemented, including refresher courses and access to updated manuals and resources. After the installation and training step, adjusting existing workflows and processes to incorporate the CEM-type test tools is carried out to ensure minimal disruption to ongoing operations. In the end, monitoring and evaluation should be conducted. Regular performance reviews should be made to assess the impact of CEM-type test tools on operations and identify areas for improvement. After implementing this alternative, potential challenges arise, e.g., high initial costs, technical difficulties, and downtime during installation. However, it can be solved by negotiating favorable payment terms with the vendor or exploring financing options or grants to offset initial costs. Thus, it ensures that the vendor provides robust technical support and maintenance service and plans the installation during off-peak hours or scheduled maintenance periods to minimize disruption.
To ensure that the selected converted electric motorcycle type test remains up-to-date and well maintained in the face of evolving standards and technological advancements, conversion workshops can establish the following. These are the following: (1) a dedicated maintenance team; (2) vendor partnerships and support agreements with the vendor to ensure timely assistance with troubleshooting, repairs, and updates; (3) continuous training programs to keep the technicians and staff updated on the latest advancements and proper maintenance procedures; (4) monitoring technological trends; (5) implementing a feedback loop for technicians and operators to report issues, suggest improvements, and highlight areas requiring updates; (6) documentation and knowledge management by keeping detailed logs of all updates, maintenance activities, and issues resolved to ensure a comprehensive record of tool performance and modifications.
A comprehensive training and support plan was implemented in conversion workshops. This plan will encompass various training modules, support mechanisms, and continuous learning opportunities. Specific training programs include initial comprehensive training, advanced technical training, and certification programs. Support mechanisms include technical support (24/7 helpline and email), on-site support, online resources, and continuous learning opportunities. By enhancing the competence and confidence of technicians, improving operational efficiency, and encouraging wider adoption, these training and support initiatives will significantly contribute to the overall success and sustainability of the recommended investment.
4.8. Comparative Discussion
In comparing research findings on the use of Alternative 2 as an investment in converted electric motorcycle test tools with the existing scientific literature, we highlight several contributions. Pal [
60] focuses on the performance metrics and environmental benefits of electric motorcycles compared to conventional motorcycles, and key metrics include energy efficiency, carbon emissions reduction, and overall environmental impact. We build on these findings by providing specific converted electric motorcycle test tools for conversion workshops to ensure that performance metrics are consistently achieved. The tools are designed to standardize the testing process, ensuring that converted electric motorcycles meet the performance metrics highlighted in the study. So, while those studies emphasize the theoretical benefits, our research offers a tangible solution to achieve these benefits through standardized type testing and conversion processes.
Meanwhile, Mandys [
61] examines the barriers to the adoption of electric vehicles, including cost, lack of infrastructure, and technological limitations. It suggests that widespread adoption requires addressing these barriers through policy changes, incentives, and technological advancements. We align with these findings by addressing the technological limitations through the introduction of converted electric motorcycle test tools. By improving the reliability and performance of converted electric motorcycles, we help mitigate one of the key adoption barriers. Additionally, our research supports the idea of policy changes and incentives by demonstrating the effectiveness and necessity of standardized testing tools for achieving reliable performance metrics.
Unlike many studies that focus on theoretical benefits or barriers, our research provides a concrete solution to standardize the testing process for converted electric motorcycles. This standardization ensures reliability and consistency in performance metrics. Practical implementation includes training, maintenance, and support mechanisms, ensuring that the tools are effectively integrated into workshop operations. We not only highly value the environmental benefits but also address the economic impact and operational efficiency of conversion workshops. The introduction of Investment 2 as the selected converted electric motorcycle test tool is scalable and can be adapted to various conversion workshop sizes and capacities. This scalability ensures that the benefits of our research can be widely adopted across different regions and workshop setups.
5. Conclusions
This paper addresses the investment selection problem of choosing an electric motorcycle test for a conversion workshop to improve its competitiveness. This investment selection problem is discussed considering all the relevant risks associated with the investment decision. The investment selection criteria for the vehicle inspection test consist of two levels: main criteria and sub-criteria. The main criteria consist of costs, operations, and specifications. There are nine sub-criteria: purchase costs, maintenance costs, operational costs, processing time, electrical power requirements, dimensions, test load, light intensity, and sound noise.
Based on the results of calculating the weights of each criterion and sub-criteria using the AHP method, the following are the weights of the nine criteria used in making decisions on investment selection for vehicle test equipment. The nine criteria are as follows: purchase costs (0.088), maintenance costs (0.099), operational costs (0.125), processing time (0.182), electrical power requirements (0.150), dimensions (0.163), test load (0.078), light intensity (0.058), and sound noise (0.057).
The evaluation and selection of investment alternatives for vehicle testing equipment using the TOPSIS method produces a ranking and relative closeness value for each alternative. The relative closeness value for each alternative is Investment 1 (0.3319), Investment 2 (0.6279), and Investment 3 (0.3177). The alternative with the highest relative closeness value is Investment 2, while the alternative with the lowest relative closeness value is INV 3. Based on the relative closeness value, it can be concluded that the ranking order of vehicle test equipment investment alternatives is Investment 2 > Investment 1 > Investment 3. This research aims to provide recommendations for the best investment alternatives that can be purchased through the conversion workshops.
Implementing Alternative 2 at the conversion workshop offers compelling environmental and economic benefits, driving the adoption of converted electric motorcycles. By transitioning from gasoline-powered to electric models, there is a notable reduction in carbon emissions, improving air quality, and minimizing noise pollution. Electric motorcycles can be powered by renewable energy sources, further lowering their carbon footprint throughout their lifecycle. This shift not only enhances public health by reducing harmful pollutants but also contributes to a quieter and more sustainable urban environment.
Investing in the widespread adoption of converted electric motorcycles and enhancing the efficiency of conversion workshops not only delivers substantial economic benefits but also contributes significantly to environmental sustainability. The cost savings associated with lower operating and maintenance expenses for electric vehicles, coupled with government incentives, make them financially attractive for consumers and businesses alike. Improving conversion processes through advanced testing tools not only boosts workshop productivity but also generates employment opportunities across various sectors, thereby fostering local economic growth. Moreover, this transition promotes innovation in green technologies, supporting a sustainable future while mitigating environmental impact.
Implementing the recommendation for CEM-type test tools at the conversion workshop requires careful planning, comprehensive training, and ongoing monitoring to optimize operational efficiency and achieve performance goals. Despite potential challenges such as initial costs and technical adjustments, proactive management strategies can mitigate these obstacles, ensuring smooth integration and long-term benefits for the workshop and its stakeholders.
The implementation of a robust training and support plan in conversion workshops promises to elevate technician competence, streamline operations, and foster a broader acceptance of converted electric motorcycles. By providing comprehensive training modules and robust support mechanisms, this initiative not only enhances efficiency but also ensures long-term sustainability and success in adopting innovative green technologies.
This research has several limitations. Firstly, data collection only involved five experts, who possibly may not provide a comprehensive representation of broader industry perspectives. Additionally, the research focused exclusively on quantitative criteria, ignoring qualitative factors that could significantly influence investment decisions. The study employed AHP and TOPSIS for MCDM models; however, it did not analyze the relationships between the criteria, which could offer deeper insights into the decision-making process. These limitations suggest that future research should consider a larger and more diverse group of experts, incorporate qualitative criteria, and explore the interrelationships between different criteria to provide a more holistic understanding of the investment decision-making process. Similar research can be conducted by adopting a different combination of MCDM tools to augment the research findings. By addressing these issues, we provide more actionable and reliable recommendations for stakeholders considering investments in converted electric motorcycle tests.