A Review of Non-Destructive Techniques for Lithium-Ion Battery Performance Analysis
Abstract
:1. Introduction
2. Electromechanical Impedance Spectroscopy (EIS)
- -
- Rb corresponds to the internal resistance of the bulk materials. When a battery is cycled, the electrolyte is gradually depleted, and microcracks may form within the electrode materials. A decrease in SOH is typically associated with an increase in Rb;
- -
- RSEI and CPE are the resistance and capacitance of the solid electrolyte interphase layer;
- -
- W is the Warburg impedance and it is related to the diffusion of ions;
- -
- Rct is the transfer resistance, related to the electrochemical reaction kinetics, which change based on the surface coating, phase transition, band gap structure, and particle sizes. Rct is found to be correlated with SOC changes.
Related Works
3. Infrared Thermography (IRT)
Related Works
4. X-ray Computer Tomography (XCT)
Related Works
Refs. | Parameter | Error (%) | Battery Type | Instruments | Characteristics |
---|---|---|---|---|---|
[69] | Defects, inhomogeneity (cathode and anode). | <1 | Cylindrical (18650) and pouch | Micro-CT scanner at BAM Microfocus X-ray tube (X-ray WorX GmbH) Flat panel detector (PerkinElmer) | Lithium iron phosphate (LPF) and Lithium cobalt oxide (LCO). Operando experiment. Relationship between beam energy and sample-detector distance. Smaller cells are preferred, the loss of detail is due to the absorption of the thick metal casing. |
[70] | Capacity detection (Charge) | <1 | pouch | Electrochemical Subsystem (HT-V5C100D100-16) Tomographic-(Phoenix NDT|analyzer, GE, Inspection Technologies) | Electrochemical and tomographic measurement. Capacity of LB is a function of the structural parameters of active materials and working condition. Loss of strong active materials of a LB (negative cross-section) |
[72] | Degradation, heating and gas generation | <1 | Pouch | slip ring (P4 + Compact Slip Ring). FLIR SC5000MB PCO Dimax CMOS camera. Xradia Versa 520 X-ray CT system (Zeiss Xradia Ultra 810) Software-FEI- Avizo Fire 9 | LiCoO2 positive electrode. Combine high-speed X-ray CT with thermal and electrochemical measurements. Particle microstructures influence the extent and rate of exothermic degradation reactions during thermal runaway. |
[74] | Defects and Structural deformation | 1 | Cylindrical (18650) and pouch | X-ray tube X-ray detector Rotation stage | Anode and cathode: LiCoO2, LiMn2O4, LiNiMnCoO2. Detecting manufacturing-induced defects and structural deformations. |
[77] | Material parameter analysis | 1.747 | Prismatic LPF | Vacuum glove box -ZKX X-ray CT-Phoenix NDT|analyzer, GE Inspection. DXR flat type Phoenix datos|x 3D and VGStudio max 3.1 software. | Sine function model to identify the 2D tomographic images of electrodes. New insight of battery design and optimization. |
[78] | Inhomogeneity | <1 | Coin LIR2032 | Neware CT-3008-5 V 10Ma Nano-XCT (UltraXRM-L200, Xradia Inc.) | Cathode:LiFePO4, electrolyte: LiPF6 Multiscale model. Microstructure is reconstructed. Inhomogeneity causes wider distribution. Model is applicable to any LB. |
[79] | Optimization of electrode design | 1 | Cylindrical | Zeiss Xradia Ultra 810 X-ray microscope Software: Carl Zeiss, Avizo and Thermo Fisher Scientific. | Microstructure-resolved 3D model. Guide manufacturing of electrode. Reveal the porosity and tortuosity changes |
[80] | Structural changes | 1 | Cylindrical (18650) | GE Sensing VG Studio MAX | Identification of three main deformation mechanisms: lithiation, thickening, volumetric expansion |
[81] | Structural changes | 1 | Pouch | LiPF6 and Li-Tec (HEA40) ZEISS Xradia 520 Versa 3D ZEISS Xradia 810 Ultra 3D Sotware: ZEN 2.5 blue Editions, Carl Zeiss GmbH | Cathode particle cracking. Aluminum current collector corrosion. Cathode swelling. |
[82] | Defects, SOH | <1 | Cylindrical 18650 | Werth TomoScope XS Software: IR ACTIS 5 | Work with retired batteries. Computational image recognition algorithm. Structural Similarity Index Measure (SSIM) algorithm. |
[83] | Defects | <1 | Cylindrical 18650 | Basytec XCTS system Climate chambers(Vötsch). NTC sensors GE Phoenix v|tome|x Volume GraphicsVGStudio MAX 2.0. | Capacity loss was investigated by postmortem. Jelly roll deformation conducted in operando temperature measurements. |
[84] | Defects | 2 | Pouch LiPo | EIS-Autolab potentiostat/galvanostat (PGSTAT100) FRA module (1MHz-0.01MHz) Phoenix V tome X system Perkin Elmer DDD | Postmortem analysis of a failed LB EIS measurements for performance degradation and Xray µCT for postmortem analysis. |
5. Ultrasonic Testing (UT)
Related Works
6. Discussion
- Versatility and Effectiveness: the explored NDT methods provide researchers and engineers with a wide range of tools to evaluate LIBs, each offering unique advantages in terms of the information they can provide.
- Cost: it is essential to note that the implementation of an NDT can involve a significant initial investment in equipment and training. Methods such as XCT and IR have relatively high initial costs.
- In Operando Evaluation: the capability to evaluate batteries during their operation is a crucial advantage of NDT technologies. This allows real-time measurements and monitoring of battery performance to be used under real-world conditions.
- Measurement Accuracy: some methods provide more accurate measurements in specific aspects, such as leak detection or structural integrity assessment, while others may be better suited for assessing the state of charge or overall battery health. This aspect has been discussed in detail in the manuscript.
7. Conclusions and Future Directions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhang, H.; Sun, C.; Ge, M. Review of the Research Status of Cost-Effective Zinc–Iron Redox Flow Batteries. Batteries 2022, 8, 202. [Google Scholar] [CrossRef]
- Elibama. European Li-Ion Battery Advanced Manufacturing for Electric Vehicles Non-Destructive-Testing; University of Newcastle: Newcastle upon Tyne, UK, 2014; p. 14. [Google Scholar]
- Tomaszewska, A.; Chu, Z.; Feng, X.; O’Kane, S.; Liu, X.; Chen, J.; Ji, C.; Endler, E.; Li, R.; Liu, L.; et al. Lithium-ion battery fast charging: A review. eTransportation 2019, 1, 100011. [Google Scholar] [CrossRef]
- Rangarajan, S.S.; Sunddararaj, S.P.; Sudhakar, A.V.V.; Shiva, C.K.; Subramaniam, U.; Collins, E.R.; Senjyu, T. Lithium-Ion Batteries—The Crux of Electric Vehicles with Opportunities and Challenges. Clean Technol. 2022, 4, 908–930. [Google Scholar] [CrossRef]
- Bai, Y.; Muralidharan, N.; Sun, Y.-K.; Passerini, S.; Stanley Whittingham, M.; Belharouak, I. Energy and environmental aspects in recycling lithium-ion batteries: Concept of Battery Identity Global Passport. Mater. Today 2020, 41, 304–315. [Google Scholar] [CrossRef]
- Liang, Y.; Zhao, C.Z.; Yuan, H.; Chen, Y.; Zhang, W.; Huang, J.Q.; Yu, D.; Liu, Y.; Titirici, M.M.; Chueh, Y.L.; et al. A review of rechargeable batteries for portable electronic devices. InfoMat 2019, 1, 6–32. [Google Scholar] [CrossRef]
- Etiemble, A.; Besnard, N.; Adrien, J.; Tran-Van, P.; Gautier, L.; Lestriez, B.; Maire, E. Quality control tool of electrode coating for lithium-ion batteries based on X-ray radiography. J. Power Sources 2015, 298, 285–291. [Google Scholar] [CrossRef]
- Wang, Q.; Ping, P.; Zhao, X.; Chu, G.; Sun, J.; Chen, C. Thermal runaway caused fire and explosion of lithium ion battery. J. Power Sources 2012, 208, 210–224. [Google Scholar] [CrossRef]
- Feng, X.; Pan, Y.; He, X.; Wang, L.; Ouyang, M. Detecting the internal short circuit in large-format lithium-ion battery using model-based fault-diagnosis algorithm. J. Energy Storage 2018, 18, 26–39. [Google Scholar] [CrossRef]
- Olabi, A.G.; Maghrabie, H.M.; Adhari, O.H.K.; Sayed, E.T.; Yousef, B.A.A.; Salameh, T.; Kamil, M.; Abdelkareem, M.A. Battery thermal management systems: Recent progress and challenges. Int. J. Thermofluids 2022, 15, 100171. [Google Scholar] [CrossRef]
- Barbosa, J.C.; Gonçalves, R.; Costa, C.M.; Lanceros-Mendez, S. Recent Advances on Materials for Lithium-Ion Batteries. Energies 2021, 14, 3145. [Google Scholar] [CrossRef]
- Lamb, J.; Orendorff, C.J. Evaluation of mechanical abuse techniques in lithium ion batteries. J. Power Sources 2014, 247, 189–196. [Google Scholar] [CrossRef]
- Wang, H.; Lara-Curzio, E.; Rule, E.T.; Winchester, C.S. Mechanical abuse simulation and thermal runaway risks of large-format Li-ion batteries. J. Power Sources 2017, 342, 913–920. [Google Scholar] [CrossRef]
- Duan, J.; Tang, X.; Dai, H.; Yang, Y.; Wu, W.; Wei, X.; Huang, Y. Building Safe Lithium-Ion Batteries for Electric Vehicles: A Review. Electrochem. Energy Rev. 2020, 3, 1–42. [Google Scholar] [CrossRef]
- Lambert, S.M.; Armstrong, M.; Attidekou, P.S.; Christensen, P.A.; Widmer, J.D.; Wang, C.; Scott, K. Rapid nondestructive-testing technique for in-line quality control of li-ion batteries. IEEE Trans. Ind. Electron. 2017, 64, 4017–4026. [Google Scholar] [CrossRef]
- Büyüköztürk, O.; Taşdemir, M.A. Nondestructive Testing of Materials and Structures; Springer: Dordrecht, The Netherlands, 2013; Volume 6. [Google Scholar]
- Aryan, P.; Sampath, S.; Sohn, H. An overview of non-destructive testing methods for integrated circuit packaging inspection. Sensors 2018, 18, 1981. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Guo, J.; Pedersen, K.; Gurevich, L.; Stroe, D.-I. Recent Health Diagnosis Methods for Lithium-Ion Batteries. Batteries 2022, 8, 72. [Google Scholar] [CrossRef]
- McGovern, M.E.; Bruder, D.D.; Huemiller, E.D.; Rinker, T.J.; Bracey, J.T.; Sekol, R.C.; Abell, J.A. A review of research needs in nondestructive evaluation for quality verification in electric vehicle lithium-ion battery cell manufacturing. J. Power Sources 2023, 561, 232742. [Google Scholar] [CrossRef]
- Xu, J.; Sun, C.; Ni, Y.; Lyu, C.; Wu, C.; Zhang, H.; Yang, Q.; Feng, F. Fast Identification of Micro-Health Parameters for Retired Batteries Based on a Simplified P2D Model by Using Padé Approximation. Batteries 2023, 9, 64. [Google Scholar] [CrossRef]
- Meddings, N.; Heinrich, M.; Overney, F.; Lee, J.-S.; Ruiz, V.; Napolitano, E.; Seitz, S.; Hinds, G.; Raccichini, R.; Gaberscek, M. Application of electrochemical impedance spectroscopy to commercial Li-ion cells: A review. J. Power Sources 2020, 480, 228742. [Google Scholar] [CrossRef]
- Padha, B.; Verma, S.; Mahajan, P.; Arya, S. Electrochemical Impedance Spectroscopy (EIS) Performance Analysis and Challenges in Fuel Cell Applications. J. Electrochem. Sci. Technol. 2022, 13, 167–176. [Google Scholar] [CrossRef]
- Lazanas, A.C.; Prodromidis, M.I. Electrochemical Impedance Spectroscopy—A Tutorial. ACS Meas. Sci. Au 2023, 3, 162–193. [Google Scholar] [CrossRef] [PubMed]
- Hogg, B.-I.; Waldmann, T.; Wohlfahrt-Mehrens, M. 4-Electrode Full Cells for Operando Li+ Activity Measurements and Prevention of Li Deposition in Li-Ion Cells. J. Electrochem. Soc. 2020, 167, 090525. [Google Scholar] [CrossRef]
- Carthy, K.; Gullapalli, H.; Kennedy, T. Real-time internal temperature estimation of commercial Li-ion batteries using online impedance measurements. J. Power Sources 2022, 519, 230786. [Google Scholar]
- Zheng, Y.; Shi, Z.; Guo, D.; Dai, H.; Han, X. A simplification of the time-domain equivalent circuit model for lithium-ion batteries based on low-frequency electrochemical impedance spectra. J. Power Sources 2021, 489, 229505. [Google Scholar] [CrossRef]
- Fernández Pulido, Y.; Blanco, C.; Anseán, D.; García, V.M.; Ferrero, F.; Valledor, M. Determination of suitable parameters for battery analysis by Electrochemical Impedance Spectroscopy. Measurement 2017, 106, 1–11. [Google Scholar] [CrossRef]
- Choi, W.; Shin, H.C.; Kim, J.M.; Choi, J.Y.; Yoon, W.S. Modeling and applications of electrochemical impedance spectroscopy (Eis) for lithium-ion batteries. J. Electrochem. Sci. Technol. 2020, 11, 1–13. [Google Scholar] [CrossRef]
- Andre, D.; Meiler, M.; Steiner, K.; Walz, H.; Soczka-Guth, T.; Sauer, D.U. Characterization of high-power lithium-ion batteries by electrochemical impedance spectroscopy. II: Modelling. J. Power Sources 2011, 196, 5349–5356. [Google Scholar] [CrossRef]
- Habte, B.T.; Jiang, F. Effect of microstructure morphology on Li-ion battery graphite anode performance: Electrochemical impedance spectroscopy modeling and analysis. Solid State Ionics 2018, 314, 81–91. [Google Scholar] [CrossRef]
- Westerhoff, U.; Kurbach, K.; Lienesch, F.; Kurrat, M. Analysis of Lithium-Ion Battery Models Based on Electrochemical Impedance Spectroscopy. Energy Technol. 2016, 4, 1620–1630. [Google Scholar] [CrossRef]
- Li, D.; Wang, L.; Duan, C.; Li, Q.; Wang, K. Temperature prediction of lithium-ion batteries based on electrochemical impedance spectrum: A review. Int. J. Energy Res. 2022, 46, 10372–10388. [Google Scholar] [CrossRef]
- Lyu, C.; Zhang, T.; Luo, W.; Wei, G.; Ma, B.; Wang, L. SOH Estimation of Lithium-ion Batteries Based on Fast Time Domain Impedance Spectroscopy. In Proceedings of the 2019 14th IEEE Conference on Industrial Electronics and Applications (ICIEA), Xi’an, China, 19–21 June 2019; pp. 2142–2147. [Google Scholar]
- Eddahech, A.; Briat, O.; Bertrand, N.; Delétage, J.-Y.; Vinassa, J.-M. Behavior and state-of-health monitoring of Li-ion batteries using impedance spectroscopy and recurrent neural networks. Int. J. Electr. Power Energy Syst. 2012, 42, 487–494. [Google Scholar] [CrossRef]
- Li, D.; Yang, D.; Li, L.; Wang, L.; Wang, K. Electrochemical Impedance Spectroscopy Based on the State of Health Estimation for Lithium-Ion Batteries. Energies 2022, 15, 6665. [Google Scholar] [CrossRef]
- Zhang, Y.; Tang, Q.; Zhang, Y.; Wang, J.; Stimming, U.; Lee, A.A. Identifying degradation patterns of lithium ion batteries from impedance spectroscopy using machine learning. Nat. Commun. 2020, 11, 1706. [Google Scholar] [CrossRef] [PubMed]
- Galeotti, M.; Ciná, L.; Giammanco, C.; Cordiner, S. Performance analysis and SOH (state of health) evaluation of lithium polymer batteries through electrochemic. Energy 2015, 89, 678–686. [Google Scholar] [CrossRef]
- Ezpeleta, I.; Freire, L.; Mateo-Mateo, C.; Nóvoa, X.R.; Pintos, A.; Valverde-Pérez, S. Characterisation of Commercial Li-Ion Batteries Using Electrochemical Impedance Spectroscopy. ChemistrySelect 2022, 7, e202104464. [Google Scholar] [CrossRef]
- Zhang, Q.; Huang, C.G.; Li, H.; Feng, G.; Peng, W. Electrochemical Impedance Spectroscopy Based State-of-Health Estimation for Lithium-Ion Battery Considering Temperature and State-of-Charge Effect. IEEE Trans. Transp. Electrif. 2022, 8, 4633–4645. [Google Scholar] [CrossRef]
- Chang, C.; Wang, S.; Jiang, J.; Gao, Y.; Jiang, Y.; Liao, L. Lithium-Ion Battery State of Health Estimation Based on Electrochemical Impedance Spectroscopy and Cuckoo Search Algorithm Optimized Elman Neural Network. J. Electrochem. Energy Convers. Storage 2022, 19, 030912. [Google Scholar] [CrossRef]
- Alfredo Osornio-Rios, R.; Antonino-Daviu, J.A.; De Jesus Romero-Troncoso, R. Recent industrial applications of infrared thermography: A review. IEEE Trans. Ind. Inf. 2019, 15, 615–625. [Google Scholar] [CrossRef]
- Hou, F.; Zhang, Y.; Zhou, Y.; Zhang, M.; Lv, B.; Wu, J. Review on Infrared Imaging Technology. Sustainability 2022, 14, 11161. [Google Scholar] [CrossRef]
- Balakrishnan, G.K.; Yaw, C.T.; Koh, S.P.; Abedin, T.; Raj, A.A.; Tiong, S.K.; Chen, C.P. A Review of Infrared Thermography for Condition-Based Monitoring in Electrical Energy: Applications and Recommendations. Energies 2022, 15, 6000. [Google Scholar] [CrossRef]
- Usamentiaga, R.; Venegas, P.; Guerediaga, J.; Vega, L.; Molleda, J.; Bulnes, F. Infrared Thermography for Temperature Measurement and Non-Destructive Testing. Sensors 2014, 14, 12305–12348. [Google Scholar] [CrossRef] [PubMed]
- Pesaran, A.A.; Burch, S.D. Thermal Performance of EV and HEV Battery Modules and Packs Prepared under FWP HV71; National Renewable Energy Laboratory: Golden, CO, USA, 1997; p. 997. [Google Scholar]
- Giammichele, L.; D’Alessandro, V.; Falone, M.; Ricci, R. Thermal behaviour assessment and electrical characterisation of a cylindrical Lithium-ion battery using infrared thermography. Appl. Thermal Eng. 2022, 205, 117974. [Google Scholar] [CrossRef]
- Wang, Z.-j.; Li, Z.-q.; Liu, Q. Infrared thermography non-destructive evaluation of lithium-ion battery. In International Symposium on Photoelectronic Detection and Imaging 2011: Advances in Infrared Imaging and Applications; SPIE: Beijing, China, 2011; pp. 1237–1244. [Google Scholar]
- Bazinsky, S.J.; Wang, X. Predicting heat generation in a lithium-ion pouch cell through thermography and the lumped capacitance model. J. Power Sorces 2016, 305, 97–105. [Google Scholar] [CrossRef]
- Rani, M.F.H.; Razlan, Z.M.; Shahriman, A.B.; Ibrahim, Z.; Wan, W.K. Comparative study of surface temperature of lithium-ion polymer cells at different discharging rates by infrared thermography and thermocouple. Int. J. Heat Mass Transf. 2020, 153, 119595. [Google Scholar] [CrossRef]
- Goutam, S.; Timmermans, J.M.; Omar, N.; Van den Bossche, P.; Van Mierlo, J. Comparative study of surface temperature behavior of commercial li-ion pouch cells of different chemistries and capacities by infrared thermography. Energies 2015, 8, 8175–8192. [Google Scholar] [CrossRef]
- Liu, Y.; Xu, S.; Wang, Y.; Dong, H. Non-contact Steady-State Thermal Characterization of Lithium-Ion Battery Plates Using Infrared Thermography. Int. J. Thermophys. 2022, 43, 131. [Google Scholar] [CrossRef]
- Mohanty, D.; Hockaday, E.; Hensley, D.K.; Daniel, C.; Wood, I.D. Effect of electrode manufacturing defects on electrochemical performance of lithium-ion batteries. J. Power Sources 2016, 312, 70–79. [Google Scholar] [CrossRef]
- Mohanty, D.; Li, J.; Born, R.; Maxey, L.C.; Dinwiddie, R.B.; Daniel, C.; Wood, D.L. Non-destructive evaluation of slot-die-coated lithium secondary battery electrodes by in-line laser caliper and IR thermography methods. Anal. Methods 2014, 6, 674–683. [Google Scholar] [CrossRef]
- Robinson, J.B.; Engebretsen, E.; Finegan, D.P.; Darr, J.; Hinds, G.; Shearing, P.R.; Brett, D.J.L. Detection of internal defects in lithium-ion batteries using lock-in thermography. ECS Electrochem. Lett. 2015, 4, A106–A109. [Google Scholar] [CrossRef]
- Stoynova, A.; Bonev, B.; Rizanov, S. Thermographic Study of Thermal Processes during Battery Charging and Discharging. In Proceedings of the 2021 44th International Spring Seminar on Electronics Technology (ISSE), Bautzen, Germany, 5–9 May 2021. [Google Scholar]
- Zhang, G.; Tian, H.; Ge, S.; Marple, D.; Sun, F.; Wang, C.-Y. Visualization of self-heating of an all climate battery by infrared thermography. J. Power Sources 2018, 376, 111–116. [Google Scholar] [CrossRef]
- Zhou, X.; Hsieh, S.-J.; Peng, B.; Hsieh, D. Cycle life estimation of lithium-ion polymer batteries using artificial neural network and support vector. Microelectron. Reabil. 2017, 79, 48–58. [Google Scholar] [CrossRef]
- Zhang, R.; Li, X.; Sun, C.; Yang, S.; Tian, Y.; Tian, J. State of Charge and Temperature Joint Estimation Based on Ultrasonic Reflection Waves for Lithium-Ion Battery Applications. Batteries 2023, 9, 335. [Google Scholar] [CrossRef]
- Wang, Y.; Miller, J.D. Current developments and applications of micro-CT for the 3D analysis of multiphase mineral systems in geometallurgy. Earth-Sci. Rev. 2020, 211, 103406. [Google Scholar] [CrossRef]
- De Chiffre, L.; Carmignato, S.; Kruth, J.P.; Schmitt, R.; Weckenmann, A. Industrial applications of computed tomography. CIRP Ann. 2014, 63, 655–677. [Google Scholar] [CrossRef]
- Deng, Z.; Lin, X.; Huang, Z.; Meng, J.; Zhong, Y.; Ma, G.; Zhou, Y.; Shen, Y.; Ding, H.; Huang, Y. Recent Progress on Advanced Imaging Techniques for Lithium-Ion Batteries. Adv. Energy Mater. 2021, 11, 2000806. [Google Scholar] [CrossRef]
- Chen, W.; Chen, X.; Chen, W.; Jiang, Z. In Situ Atomic Force Microscopy and X-ray Computed Tomography Characterization of All-Solid-State Lithium Batteries: Both Local and Overall. Energy Technol. 2023, 11, 2201372. [Google Scholar] [CrossRef]
- Ciliberti, G.A.; Janello, P.; Jahnke, P.; Keuthage, L. Potentials of Full-Vehicle CT Scans within the Automotive Industry. In Proceedings of the 19th World Conference on Non-Destructive Testing (WCNDT 2016), Munich, Germany, 13–17 June 2016; pp. 13–17. [Google Scholar]
- Kentaro, O.; Yugo, K.; Yutaka, H.; Toshiyuki, K. Analysis Technologies for Quality Improvement in Magnet Wires of Electrified Vehicles Featured Topic; SUMITOMO ELECTRIC: Osaka, Japan, 2020; pp. 1–5. [Google Scholar]
- Le Houux, J.; Kramer, D. X-ray tomography for lithium ion battery electrode characterisation—A review. Enegy Rep. 2021, 7, 9–14. [Google Scholar] [CrossRef]
- Lewis, J.A.; Cortes, F.J.Q.; Liu, Y.; Miers, J.C.; Verma, A.; Vishnugopi, B.S.; Tippens, J.; Prakash, D.; Marchese, T.S.; Han, S.Y.; et al. Linking void and interphase evolution to electrochemistry in solid-state batteries using operando X-ray tomography. Nat. Mater. 2021, 20, 503–510. [Google Scholar] [CrossRef]
- Liu, J.; Wang, T.; Yu, J.; Li, S.; Ma, H.; Liu, X. Review of the Developments and Difficulties in Inorganic Solid-State Electrolytes. Materials 2023, 16, 2510. [Google Scholar] [CrossRef]
- Guo, Y.; Wu, S.; He, Y.-B.; Kang, F.; Chen, L.; Li, H.; Yang, Q.-H. Solid-state lithium batteries: Safety and prospects. eScience 2022, 2, 138–163. [Google Scholar] [CrossRef]
- Dayani, S.; Markotter, H.; Schmidt, A.; Putra Widjaja, M. Multi-level X-ray computed tomography (XCT) investigations of commercial lithium-ion batteries from cell to parti. J. Eneergy Storage 2023, 66, 107453. [Google Scholar] [CrossRef]
- Li, L.; Hou, J. Capacity detection of electric vehicle lithium-ion batteries based on X-ray computed tomography. RSC Adv. 2018, 8, 25325–25333. [Google Scholar] [CrossRef] [PubMed]
- Ho, A.S.; Parkinson, D.Y.; Finegan, D.P.; Trask, S.E.; Jansen, A.N.; Tong, W.; Balsara, N.P. 3D Detection of Lithiation and Lithium Plating in Graphite Anodes during Fast Charging. ACS Nano 2021, 15, 10480–10487. [Google Scholar] [CrossRef]
- Finegan, D.P.; Scheel, M.; Robinson, J.B.; Tjaden, B.; Di Michiel, M.; Hinds, G.; Brett, D.J.L.; Shearing, P.R. Investigating lithium-ion battery materials during overcharge-induced thermal runaway: An operando and multi-scale X-ray CT study. Phys. Chem. Chem. Phys. 2016, 18, 30912–30919. [Google Scholar] [CrossRef] [PubMed]
- Yokoshima, T.; Mukoyama, D.; Maeda, F.; Osaka, T.; Takazawa, K.; Egusa, S. Operando Analysis of Thermal Runaway in Lithium Ion Battery during Nail-Penetration Test Using an X-ray Inspection System. J. Electrochem. Soc. 2019, 166, A1243–A1250. [Google Scholar] [CrossRef]
- Wu, Y.; Saxena, S.; Xing, Y.; Wang, Y.; Li, C.; Yung, W.; Pecht, M. Analysis of Manufacturing-Induced Defects and Structural Deformations in Lithium-Ion Batteries Using Computed Tomography. Energies 2018, 11, 925. [Google Scholar] [CrossRef]
- Chen, C.; Wei, Y.; Zhao, Z.; Zou, Y.; Luo, D. Investigation of the swelling failure of lithium-ion battery packs at low temperatures using 2D/3D X-ray computed tomography. Electrochim. Acta 2019, 305, 65–71. [Google Scholar] [CrossRef]
- Fahy, K.F.; Shafaque, H.W.; Shrestha, P.; Ouellette, D.; Ge, N.; Ikeda, N.; Kotaka, T.; Tabuchi, Y.; Bazylak, A. Tracking Battery Swelling in Uncompressed Li-Ion Cells via in-Operando X-ray Radiography and Micro-Tomography. ECS Meet. Abstr. 2019, MA2019-02, 338. [Google Scholar] [CrossRef]
- Hou, J.; Wang, H.; Qi, L.; Wu, W.; Li, L.; Lai, R.; Feng, X.; Gao, X.; Wu, W.; Cai, W. Material parameter analysis of lithium-ion battery based on laboratory X-ray computed tomography. J. Power Sources 2022, 549, 232131. [Google Scholar] [CrossRef]
- Kashkooli Ali, G.; Farhad, S.; Dong Un, L.; Kun, F.; Shawn, L.; Komini Babu, S.; Zhu, L.; Chen, Z. Multiscale modeling of lithium-ion battery electrodes based on nano-sca. J. Power Sources 2016, 307, 496–509. [Google Scholar] [CrossRef]
- Lu, X.; Bertei, A.; Finegan, D.P.; Tan, C.; Daemi, S.R.; Weaving, J.S.; O’Regan, K.B.; Heenan, T.M.M.; Hinds, G.; Kendrick, E.; et al. 3D microstructure design of lithium-ion battery electrodes assisted by X-ray nano-computed tomography and modelling. Nat. Commun. 2020, 11, 2079. [Google Scholar] [CrossRef]
- Pfrang, A.; Kersys, A.; Kriston, A.; Scurtu, R.-G.; Marinaro, M.; Wohlfahrt-Mehrens, M. Deformation from Formation Until End of Life: Micro X-ray Computed Tomography of Silicon Alloy Containing 18650 Li-Ion Cells. J. Electrochem. Soc. 2023, 170, 030548. [Google Scholar] [CrossRef]
- Rahe, C.; Kelly, S.T.; Rad, M.N.; Sauer, D.U.; Mayer, J.; Figgemeier, E. Nanoscale X-ray imaging of ageing in automotive lithium ion battery cells. J. Power Sources 2019, 433, 126631. [Google Scholar] [CrossRef]
- Ran, A.; Chen, S.; Zhang, S.; Liu, S.; Zhou, Z.; Nie, P.; Qian, K.; Fang, L.; Zhao, S.X.; Li, B.; et al. A gradient screening approach for retired lithium-ion batteries based on X-ray computed tomography images. RSC Adv. 2020, 10, 19117–19123. [Google Scholar] [CrossRef]
- Waldmann, T.; Gorse, S.; Samtleben, T.; Schneider, G.; Knoblauch, V.; Wohlfahrt-Mehrens, M. A Mechanical Aging Mechanism in Lithium-Ion Batteries. J. Electrochem. Soc. 2014, 161, A1742–A1747. [Google Scholar] [CrossRef]
- Yufit, V. Investigation of lithium-ion polymer battery cell failure using X-ray computed tomography. Electrochem. Commun. 2011, 13, 608–610. [Google Scholar] [CrossRef]
- Popp, H.; Koller, M.; Jahn, M.; Bergmann, A. Mechanical methods for state determination of Lithium-Ion secondary batteries: A review. J. Energy Storage 2020, 32, 101859. [Google Scholar] [CrossRef]
- Montoya-Bedoya, S.; Bernal, M.; Sabogal-Moncada, L.A.; Martinez-Tejada, H.V.; Garcia-Tamayo, E. Noninvasive ultrasound for Lithium-ion batteries state estimation. In Proceedings of the 2021 IEEE UFFC Latin America Ultrasonics Symposium (LAUS 2021), Virtual, 4–5 October 2021. [Google Scholar]
- Majasan, J.O.; Robinson, J.B.; Owen, R.E.; Maier, M.; Radhakrishnan, A.N.P.; Pham, M.; Tranter, T.G.; Zhang, Y.; Shearing, P.R.; Brett, D.J.L. Recent advances in acoustic diagnostics for electrochemical power systems. J. Phys. Energy 2021, 3, 032011. [Google Scholar] [CrossRef]
- Robinson, J.B.; Owen, R.E.; Kok, M.D.R.; Maier, M.; Majasan, J.; Braglia, M.; Stocker, R.; Amietszajew, T.; Roberts, A.J.; Bhagat, R.; et al. Identifying Defects in Li-Ion Cells Using Ultrasound Acoustic Measurements. J. Electrochem. Soc. 2020, 167, 120530. [Google Scholar] [CrossRef]
- Wu, Y.; Wang, Y.; Yung, W.K.C.; Pecht, M. Ultrasonic health monitoring of lithium-ion batteries. Electronics 2019, 8, 751. [Google Scholar] [CrossRef]
- Wang, Z.; Lu, K.; Chen, X.; Zhen, D.; Gu, F.; Ball, A.D. Rapid State of Health Estimation of Lithium-ion Batteries based on An Active Acoustic Emission Sensing Method. In Proceedings of the 2022 27th International Conference on Automation and Computing (ICAC), Bristol, UK, 1–3 September 2022; pp. 1–6. [Google Scholar]
- Zhao, G.; Liu, Y.; Liu, G.; Jiang, S.; Hao, W. State-of-charge and state-of-health estimation for lithium-ion battery using the direct wave signals of guided wave. J. Energy Storage 2021, 39, 102657. [Google Scholar] [CrossRef]
- Robinson, J.B.; Pham, M.; Kok, M.D.R.; Heenan, T.M.M.; Brett, D.J.L.; Shearing, P.R. Examining the Cycling Behaviour of Li-Ion Batteries Using Ultrasonic Time-of-Flight Measurements. J. Power Sources 2019, 444, 227318. [Google Scholar] [CrossRef]
- Popp, H.; Koller, M.; Keller, S.; Glanz, G.; Klambauer, R.; Bergmann, A. State Estimation Approach of Lithium-Ion Batteries by Simplified Ultrasonic Time-of-Flight Measurement. IEEE Access 2019, 7, 170992–171000. [Google Scholar] [CrossRef]
- Davies, G.; Knehr, K.W.; Van Tassell, B.; Hodson, T.; Biswas, S.; Hsieh, A.G.; Steingart, D.A. State of Charge and State of Health Estimation Using Electrochemical Acoustic Time of Flight Analysis. J. Electrochem. Soc. 2017, 164, A2746–A2755. [Google Scholar] [CrossRef]
- Ke, Q.; Jiang, S.; Li, W.; Lin, W.; Li, X.; Huang, H. Potential of ultrasonic time-of-flight and amplitude as the measurement for state of charge and physical changings of lithium-ion batteries. J. Power Sources 2022, 549, 232031. [Google Scholar] [CrossRef]
- Zhang, X.; Cheng, L.; Liu, Y.; Tao, B.; Wang, J.; Liao, R. A review of non-destructive methods for the detection tiny defects within organic insulating materials. Front. Mater. 2022, 9, 995516. [Google Scholar] [CrossRef]
- Cho, H.; Kil, E.; Jang, J.; Kang, J.; Song, I.; Yoo, Y. Air-Coupled Ultrasound Sealing Integrity Inspection Using Leaky Lamb Waves in a Simplified Model of a Lithium-Ion Pouch Battery: Feasibility Study. Sensors 2022, 22, 6718. [Google Scholar] [CrossRef]
- Seco, F.; Jiménez, A.R.; Castillo, M.D.d. Air coupled ultrasonic detection of surface defects in food cans. Meas. Sci. Technol. 2006, 17, 1409–1416. [Google Scholar] [CrossRef]
- Tiitta, M.; Tiitta, V.; Gaal, M.; Heikkinen, J.; Lappalainen, R.; Tomppo, L. Air-coupled ultrasound detection of natural defects in wood using ferroelectret and piezoelectric sensors. Wood Sci.Technol. 2020, 54, 1051–1064. [Google Scholar] [CrossRef]
- Li, H.; Zhou, Z. Numerical simulation and experimental study of fluid-solid coupling-based air-coupled ultrasonic detection of stomata defect of lithium-ion battery. Sensors 2019, 19, 2391. [Google Scholar] [CrossRef]
- Chang, J.J.; Zeng, X.F.; Wan, T.L. Real-time measurement of lithium-ion batteries’ state-of-charge based on air-coupled ultrasound. AIP Adv. 2019, 9, 085116. [Google Scholar] [CrossRef]
- Cui, Z.; Wang, L.; Li, Q.; Wang, K. A comprehensive review on the state of charge estimation for lithium-ion battery based on neural network. Int. J. Energy Res. 2022, 46, 5423–5440. [Google Scholar] [CrossRef]
- Cui, Z.; Dai, J.; Sun, J.; Li, D.; Wang, L.; Wang, K. Hybrid Methods Using Neural Network and Kalman Filter for the State of Charge Estimation of Lithium-Ion Battery. Math. Probl. Eng. 2022, 2022, 9616124. [Google Scholar] [CrossRef]
- Galiounas, E.; Tranter, T.G.; Owen, R.E.; Robinson, J.B.; Shearing, P.R.; Brett, D.J.L. Battery state-of-charge estimation using machine learning analysis of ultrasonic signatures. Energy AI 2022, 10, 100188. [Google Scholar] [CrossRef]
- Sun, H.; Muralidharan, N.; Amin, R.; Rathod, V.; Ramuhalli, P.; Belharouak, I. Ultrasonic nondestructive diagnosis of lithium-ion batteries with multiple frequencies. J. Power Sources 2022, 549, 232091. [Google Scholar] [CrossRef]
- Huang, M.; Kirkaldy, N.; Zhao, Y.; Patel, Y.; Cegla, F.; Lan, B. Quantitative characterisation of the layered structure within lithium-ion batteries using ultrasonic resonance. J. Energy Storage 2022, 50, 14. [Google Scholar] [CrossRef]
- Gold, L.; Bach, T.; Virsik, W.; Schmitt, A.; Müller, J.; Staab, T.E.M.; Sextl, G. Probing lithium-ion batteries’ state-of-charge using ultrasonic transmission—Concept and laboratory testing. J. Power Sources 2017, 343, 536–544. [Google Scholar] [CrossRef]
- Li, X.; Wu, C.; Fu, C.; Zheng, S.; Tian, J. State Characterization of Lithium-Ion Battery Based on Ultrasonic Guided Wave Scanning. Energies 2022, 15, 6027. [Google Scholar] [CrossRef]
- Hsieh, A.G.; Bhadra, S.; Hertzberg, B.J.; Gjeltema, P.J.; Goy, A.; Fleischer, J.W.; Steingart, D.A. Electrochemical-acoustic time of flight: In operando correlation of physical dynamics with battery charge and health. Energy Environ. Sci. 2015, 8, 1569–1577. [Google Scholar] [CrossRef]
- Ladpli, P.; Kopsaftopoulos, F.; Chang, F.-K. Estimating State of Charge and Health of Lithium-ion Batteries with Guided Waves Using Built-in Piezoelectric Sensors/Actuators. J. Power Sources 2018, 384, 342–354. [Google Scholar] [CrossRef]
- Robinson, J.B.; Maier, M.; Alster, G.; Compton, T.; Brett, D.J.L.; Shearing, P.R. Spatially resolved ultrasound diagnostics of Li-ion battery electrodes. Phys. Chem. Chem. Phys. 2019, 21, 6354–6361. [Google Scholar] [CrossRef] [PubMed]
- Akbar, K.; Zou, Y.; Awais, Q.; Baig, M.J.A.; Jamil, M. A Machine Learning-Based Robust State of Health (SOH) Prediction Model for Electric Vehicle Batteries. Electronics 2022, 11, 1216. [Google Scholar] [CrossRef]
- Zappen, H.; Fuchs, G.; Gitis, A.; Sauer, D.U. In-operando impedance spectroscopy and ultrasonic measurements during high-temperature abuse experiments on lithium-ion batteries. Batteries 2020, 6, 25. [Google Scholar] [CrossRef]
- Siegl, A.; Schweighofer, B.; Bergmann, A.; Wegleiter, H. An Electromagnetic Acoustic Transducer for Generating Acoustic Waves in Lithium-Ion Pouch Cells. In Proceedings of the 2022 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), Ottawa, ON, Canada, 16–19 May 2022. [Google Scholar]
Refs. | Parameter | Error (%) | Battery Type | Experimental Setup | Characteristics |
---|---|---|---|---|---|
[25] | T | <1 | Pouch | Abin Battery Cycler Potentiostat: Gamry Interface 5000P, Pennsylvania, USA MZTC Arbin climate-controlled | LCO Li-polymer. Real-time estimator. Online acquisition of impedance ECM was used to interpret and analyze the impedance data at each temperature. Sensitivity to temperature. Low sensitivity to SOC and SOH. ECM: Ro − (CPE1//(Rct − W)) |
[34] | SOH | <1 | Pouch | Electrochemical Workstation (unreported) | Electrode: LiMnNiCoO2 LiPF6 Recurrent neural networks (RNNs). Model for high energy density dedicated to EVs. ECM: R1 − (R2(SOC)//CPE1) − CPE2 − E(SOC) |
[35] | SOH | ~5 | Coin | Electrochemical Workstation(unreported) | Eunicell LR2032. Five different ECMs. Data-driven algorithm with CNN. ECM and IPSO-CNN-BiLSTM ECM: Rohm − Ls − (RSEI//CPE1) − (Rct//CPE2) |
[36] | RUL | <1 | Coin | Electrochemical Workstation (unreported) | Eunicell LR2032. LiCoO2/graphit Real-time battery forecasting system. Gaussian process model and ML. Over 20,000 EIS spectra of commercial Li-ion batteries, with different states of health. |
[37] | SOH | 3.73–8.66 | Pouch | Potentiostat: Gamry Series G300 Keithley 2420 Source Meter Opto-isolated relay board (Devantech RLY816) | LiPO Performance under load. Used parameters of ECM to reproduce the discharge curves. ECM: Rohm − L − (CPE1//Rct1) − (CPE2//Rct2) − W |
[38] | SOH | 2 | Cylindrical | Electrochemical Workstation(unreported) | Commercial Li-ion cells ECM 10 kHz–1 MHz at different SOCs, SOHs, and temperatures. ECM based on the physics of the system. A transmission line model: (L//Ro) − Rc − [Cg//(C1//(R1 + Zd1) − Re − C2//(R2 + Zd2))] |
[39] | SOH | 1.29–4 | Cylindrical | Boling BLC-300 (battery test incubator) Solartron analytical 1470E NEWARE BTS-5V6A | Battery model: 18650. Anode: Graphite. Cathode: LiNi0.5C0.2Mn0.3O2 Model-based method. ECM: RΩ − Ls − (CPE1//RSEI) − (CPE2//Rct) |
[40] | SOH | <1.36 | Coin | Electrochemical Workstation(unreported) | Eunicell LR2032. Elman NN and cuckoo search (CS-Elman). No building of a circuit model, no consideration of the complex electrochemical reaction. |
[33] | SOH | <10 before 240 cycles | Cylindrical | Signal generator V/I converter circuit module (DAQ of NI) | UR14500P Type: LiCoO2. TDIS (time-domain EIS) based on FFT SOH is established by using BPNN (back-propagation NN) algorithm. ECM: [(Cdln//ZFDn) − Rfilm]//Cfilm − Ro − (Cdlp//ZFDp) |
Refs. | Parameter | Error (%) | Battery Type | Experimental Setup | Characteristics |
---|---|---|---|---|---|
[46] | H-generation | <0.1 | Cylindrical | (RMX-4125) programmable power supply (RMX-4005)-DC electronic load NI 6289-data acquisition FLIR SC3000 IR camera thermocouple | Positive and negative electrodes LiFePO4 and LiC6. Electrolyte LiPF6. IT and thermocouple probe Increase in the thermal power when the battery is subjected to higher discharge currents. Efficiency decreased with higher C-rates. It describes a heat generation model. |
[47] | Thermal abuse | 1 | Pouch | Li-Polymer battery Infrared camera-FLUKE | LiFePO4 The security problem lies in thermal control, including the heat-generation and the internal and external heat transfer. |
[48] | H-generation | 2.6 | Pouch | polyimide film heater FLIR A320-calorimeter | LiFePO4 Mathematical model (Biot number, LCM) Lumped capacitance model (LCM) and thermography. Not to be applied where the C-rate is 2C or lower. |
[49] | Surface temperature | <10% | Pouch LCO | FLIR E6 thermal imaging camera, thermocouples, humidity sensor black cardboard Applent AT4808 Handheld Multi-channel Temperature Meter | It compares the surface temperature at different discharging rates by infrared thermography and thermocouple measurements. Temperature rises rapidly at higher discharge rates. |
[50] | Surface temperature | <1 | Pouch NMC, LCO, LPF | NMC-based, LFP, LTO ACT 0550 (80 channels) battery tester (PEC®). NTC 5K thermistor Ti25 thermal imager (FLUKE®) | Evolution of surface temperature. Non-uniformity of the surface temperature. |
[51] | Thermal conductivity | 12.2 | Cilindrical 18650 | Coating (XFNANO) laser (MDL-III-808-2W, CNI) Camera (MAG32MINI, Magnity). | Negative electrode: Li4Ti5O12 Non-contact steady-state method. Equivalent thermal circuit. |
[52,53] | Defects | 1 | Coin | FLIR SC-8200 Carl Zeiss Merlin SEM Bruker Nano GmbH using an XFlash 5030 detector Hitachi S3400 SEM | Positive electrode: LiNi0.5Mn0.3Co0.2O2 Different plausible defects (agglomeration, blisters, pinholes, metal particle contamination, and non-uniform coating). |
[54] | Detection of gas pockets | 1 | Pouch | PL-565068 infrared camera (FPA InSb FLIRSC5000MB) Potentiostat-IviumStat Current probe-Tektronix A622. Digital acquisition unit-USB 6363 Software-Altair | It demonstrates the effectiveness in the detection of gas pockets formed during cell aging. |
[55] | Thermal | 1 | pouch | ThermaCam-SC640 Fluke 867B multimeter TENMA 72-10505 power supply block TENMA 72-13200 electronic load. | Thermal behavior at different charging and discharging modes. |
[56] | H-generation | 1 | Pouch | Environmental chamber-(Tenney T10c) IR-camera (T650sc, FLIR) T-type thermocoupleSA1-T infrared (IRW-4C, FLIR) Battery tester-BT2000, Arbin Instruments. | Cathode: LiNi0.6Co0.2Mn0.2O2, anode: graphite. Suggesting uniform heating. Hotspot is detected at the activation terminal for improvement of SHLB design. SHLB (self-heating of LIB). |
[57] | Cycle Life (RUL) | <10% | pouch | MLX90621-infrared sensor array SUNKEE module ACS712 current sensor. N103-voltage sensors | Combination of infrared thermography and supervised learning techniques. Surface temperature profiles as the input nodes for ANN and SVM models. ANN could estimate the current cycle under 10 min of testing time. |
Refs. | Parameter | Error (%) | Battery Type | Experimental Setup | Characteristics |
---|---|---|---|---|---|
[93] | SOC | 1.29–16.85 | Pouch | Piezo disc type: AB1290B-LW100-R Microcontroller Transmitter circuit Receiver circuit. K-type thermocouple | Correlation between SOC and TOF. It can be directly implemented into a BMS. Two surface-mounted sensors. |
[105] | SOC | ~1 | Pouch | LiNi0.6-Mn0.2Co0.2O2 Four types of transducers: longitudinal (Olympus V103 and C106) and shear (Olympus V153 and V154). | Monitoring charge/discharge LBs. Longitudinal wave velocity is linearly related to SOC. Temperature effect is related to SOC. Signal processing algorithms for amplitude, wave velocity, and attenuation. |
[95] | SOC | ~1 | Pouch | Phascan PA32/64 UT 2:4 NEWARE-CT-4008T-5V12A ST8450 Visual Thermal Imager | Amplitude is correlated with volume changes. It is affected by the physical properties of battery layers, charge–discharge parameters, and temperature. |
[101] | SOC | <2 | Pouch | CEA-LM36 (NiMnCoO2), Air-coupled Ultrasonic system-NAUT-21 Pulser/receiver (JPR600C) NI-PXI-5114 signal acquisition card. | Real-time measurement SOC. Fast amplitude has an approximately linear relationship with SOC. Air-coupled ultrasound is extremely sensitive to the gas bubbles. |
[106] | layer properties and SOC | ~1 | Pouch | Harisonic I3-0504-S; V109-RM, V121-RM, Olympus | Inner structure of LIBs: number of layers, average thicknesses of electrodes, image of internal layers, and SOC. Pulse-echo configuration. |
[94] | SOC-SOH | ∼1 | Pouch | Pouch cells (LiCoO2, LiFePO4) Neware BTS-3000 cycler Epoch 600 ultrasonic pulser-receiver. Olympus-2.25 MHz transducers. SONO 600 ultrasonic gel. | Ultrasonic measurements (SOC) and machine learning model (SOH). Electrochemical-mechanical relationships using higher frequency ultrasonic. |
[107] | SOC | 3.5 | Pouch | Piezokeramisches EPZ-Serie–6400 Hz MASMesssystem Software: CANWARE08_ISC | SoC can be determined without a reference electrode. Method does not rely on electric measurements. It offers due to rapid measurement sequential screening of batteries within battery packs. |
[108] | SOC | ~1 | Pouch | RIGOL: DG1022Z Aigtek: ATA-2021H Piezoelectric transducer 125 kHz LDV SOPOP: LV-S01 | State characterization of LB based on (UGW) scanning is carried out. Characteristic parameters extracted from a single point. Line scanning multi-point UGW signals are listed. |
[109] | SOC | ~3 | Pouch, Cylindrical and Alkaline AA | EPOCH-600 Neware BTS-3000 cycler Ultrasonic pulser-receiver 2.25 MHz transducers. | Non-invasive, in operando method. 1D acoustic conservational law model. Two transducers: one in pulse-echo (reflection) mode and the other in transmission mode. The model does not include many of the non-linear physical processes. |
[110] | SOC, SOH | <1 | Pouch | Piezoelectric disc transducers ZT-5A Hysol E20HP NEWARE BST-9000 | Experimental and analytical studies. Acoustic-ultrasonic guided waves SoC/SoH can be accurately predicted using guided wave data on demand. |
[111] | SOH, electrode or RUL | ~1 | Pouch | Commercial-2800mAh battery. Epoch 650 ultrasonic Piezoelectric transducer 5 MHz-M110-RM. Nikon XT-225; Nikon CT Agent–visualization Avizo Fire | Real-time data, diagnostic tool. Measurements on a commercial mobile phone battery. X-ray CT to ascertain the internal architecture and features. |
[112] | SOH | 0.02 | Pouch | Data acquisition card Power amplifier Osilloscope Machine Learning(Classification and Regression Trees) | Machine prediction model for batteries. Complex data-driven model- SOH, big-data, AI. IoT. |
[101] | SOC | ~1–2 | Pouch | Ultrasonic pulser/receiver (JPR600C), NI-PXI-5114-signal acquisition card Air-coupled dedicated transducer. | Air-coupled ultrasound. Biot’s fluid-saturated porous media model. Real-time monitoring. |
[113] | degradation effects | ~1 | Pouch | (Kokam SLPB526495) EIS, Train gauge, strip (Hottinger Baldwin Messtechnik 6/120A LY11) Ultrasound measurement system (Safion US100, prototype) Adiabatic HEL BTC500 calorimeter K type thermocouples | In operando measurement techniques (fast impedance spectroscopy and ultrasonic waves)–in real time. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chacón, X.C.A.; Laureti, S.; Ricci, M.; Cappuccino, G. A Review of Non-Destructive Techniques for Lithium-Ion Battery Performance Analysis. World Electr. Veh. J. 2023, 14, 305. https://doi.org/10.3390/wevj14110305
Chacón XCA, Laureti S, Ricci M, Cappuccino G. A Review of Non-Destructive Techniques for Lithium-Ion Battery Performance Analysis. World Electric Vehicle Journal. 2023; 14(11):305. https://doi.org/10.3390/wevj14110305
Chicago/Turabian StyleChacón, Ximena Carolina Acaro, Stefano Laureti, Marco Ricci, and Gregorio Cappuccino. 2023. "A Review of Non-Destructive Techniques for Lithium-Ion Battery Performance Analysis" World Electric Vehicle Journal 14, no. 11: 305. https://doi.org/10.3390/wevj14110305