Experimental Investigation on Affecting Air Flow against the Maximum Temperature Difference of a Lithium-Ion Battery with Heat Pipe Cooling
Abstract
:1. Introduction
2. Materials and Methods
2.1. Schematic of the Battery Thermal Management System
2.2. Experimental Setup
2.3. Testing Procedure
3. Results and Discussion
3.1. Air Velocity Measurement
3.2. Cooling Test at 1C Discharge Rate
3.3. Cooling Test at 2C Discharge Rate
3.4. Cooling Test at 3C Discharge Rate
3.5. Cooling Test at 4C Discharge Rate
3.6. Comparison of the Air Velocity with Discharge Rate
4. Conclusions and Future Work
4.1. Conclusions
- By increasing the discharge rate while the air velocity remains constant, the ΔTmax increases significantly. This is due to the increased heat generated by higher levels of discharging, resulting in a more uniform temperature between batteries.
- The ΔTmax under natural convection is lower than under forced convection. Due to the turbulence that forced cooling created, each battery cell temperature distribution was not uniform.
- In forced convection, increasing the air velocity has the effect of decreasing the ΔTmax.
4.2. Future Work
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- United Nation Climate Change. Available online: https://unfccc.int/event/cop-26?item=1#agenda_documents (accessed on 17 September 2023).
- Ministry of Foreign Affairs, Kingdom of Thailand. Available online: https://www.mfa.go.th/en/content/cop26-glasgow?page=5d5bd3cb15e39c306002a9ac&menu=5d5bd3cb15e39c306002a9ad (accessed on 17 September 2023).
- Electric Vehicle Association of Thailand. Available online: http://www.evat.or.th/16803970/evat-directory (accessed on 17 September 2023).
- Wei-Di, L.; Liang-Cao, Y.; Lei, L.; Qishuo, Y.; De-Zhuang, W.; Meng, L.; Xiao-Lei, S.; Qingfeng, L.; Yang, B.; Ian, G.; et al. Grain boundary re-crystallization and sub-nano regions leading to high plateau figure of merit for Bi2Te3 nanoflakes. Energy Environ. Sci. 2023. [Google Scholar] [CrossRef]
- Khaleghi, S.; Karimi, D.; Beheshti, S.H.; Hosen, S.; Behi, H.; Berecibar, M.; Van Mierlo, J. Online health diagnosis of lithium-ion batteries based on nonlinear autoregressive neural network. Appl. Energy 2021, 282, 116159. [Google Scholar] [CrossRef]
- Shaofeng, W.; Yanping, Z.; Xiaomin, X.; Jaka, S.; Zongping, S. Adsorption-based synthesis of Co3O4/C composite anode for high performance lithium-ion batteries. Energy 2017, 125, 569–575. [Google Scholar]
- Fuqiang, X.; Junling, X.; Qizhong, L.; Qingqing, Z.; Binyun, L.; Lianyi, S.; Junjie, C.; Xiaoyan, S.; Zhipeng, S.; Ching-Ping, W. Progress in niobium-based oxides as anode for fast-charging Li-ion batteries. Energ. Rev. 2023, 2, 100027. [Google Scholar]
- Ianniciello, L.; Biwolé, P.H.; Achard, P. Electric vehicles batteries thermal management systems employing phase change materials. J. Power Sources 2018, 378, 383–403. [Google Scholar] [CrossRef]
- Li, A.; Weng, J.; Yuen, A.C.Y.; Wang, W.; Liu, H.; Lee, E.W.M.; Wang, J.; Kook, S.; Yeoh, G.H. Machine learning assisted advanced battery thermal management system: A state-of-the-art review. J. Energy Storages 2023, 60, 106688. [Google Scholar] [CrossRef]
- Huang, Q.; Li, X.; Zhang, G.; Zhang, J.; He, F.; Li, Y. Experimental investigation of the thermal performance of heat pipe assisted phase change material for battery thermal management system. Appl. Therm. Eng. 2018, 141, 1092–1100. [Google Scholar] [CrossRef]
- Jianing, X.; Chuanyu, S.; Yulong, N.; Chao, L.; Chao, W.; He, Z.; Qingjun, Y.; Fei, F. Fast identification of micro-health parameters for retired batteries based on a simplified P2D model by using Padé approximation. Batteries 2023, 9, 64. [Google Scholar]
- Behi, H.; Karimi, D.; Jaguemont, J.; Gandoman, F.H.; Khaleghi, S.; Van Mierlo, J.; Berecibar, M. Aluminum heat sink assisted air-cooling thermal management system for high current applications in electric vehicles. In Proceedings of the 2020 AEIT International Conference of Electrical and Electronic Technologies for Automotive (AEIT AUTOMOTIVE), Turin, Italy, 18–20 November 2020. [Google Scholar]
- Jaewan, K.; Jinwoo, O.; Hoseong, L. Review on battery thermal management system for electric vehicles. Appl. Therm. Eng. 2019, 149, 192–212. [Google Scholar]
- Tao, D.; Guodong, Z.; Yan, R.; Ping, L. Thermal performance of lithium ion battery pack by using cold plate. Appl. Therm. Eng. 2019, 160, 114088. [Google Scholar]
- Mengyao, L.; Xuelai, Z.; Jun, J.; Xiaofeng, X.; Yongyichuan, Z. Research progress on power battery cooling technology for electric vehicles. J. Energy Storages 2020, 27, 101155. [Google Scholar]
- Weixiong, W.; Shuangfeng, W.; Wei, W.; Kai, C.; Sihui, H.; Yongxin, L. A critical review of battery thermal performance and liquid based battery thermal management. Energy Convers. Manag. 2019, 182, 262–281. [Google Scholar]
- Yuanwang, D.; Changling, F.; Jiaqiang, E.; Hao, Z.; Jingwei, C.; Ming, W.; Huichun, Y. Effects of different coolants and cooling strategies on the cooling performance of the power lithium ion battery system: A review. Appl. Therm. Eng. 2018, 142, 10–29. [Google Scholar]
- Yuqian, F.; Yun, B.; Chen, L.; Yanyan, C.; Xiaojun, T.; Shuting, Y. Experimental study on the thermal management performance of air cooling for high energy density cylindrical lithium-ion batteries. Appl. Therm. Eng. 2019, 155, 96–109. [Google Scholar]
- Kai, C.; Weixiong, W.; Fang, Y.; Lin, C.; Shuangfeng, W. Cooling efficiency improvement of air-cooled battery thermal management system through designing the flow pattern. Energy 2019, 167, 781–790. [Google Scholar]
- Liwu, F.; Khodadadi, J.M.; Pesaran, A.A. A parametric study on thermal management of an air-cooled lithium-ion battery module for plug-in hybrid electric vehicles. J. Power Sources 2013, 238, 301–312. [Google Scholar]
- Shixue, W.; Kaixiang, L.; Yuan, T.; Junyao, W.; Yukang, W.; Shan, J. Improved thermal performance of a large laminated lithium-ion power battery by reciprocating air flow. Appl. Therm. Eng. 2019, 152, 445–454. [Google Scholar]
- Shahabeddin, K.M.; Yuwen, Z. Cumulative effects of using pin fin heat sink and porous metal foam on thermal management of lithium-ion batteries. Appl. Therm. Eng. 2017, 118, 375–384. [Google Scholar]
- Pranjali, R.T.; Mahendra, M.G.; Sandeep, S.J. Developments in battery thermal management systems for electric vehicles: A technical review. J. Energy Storages 2021, 35, 102255. [Google Scholar]
- Kai, C.; Junsheng, H.; Mengxuan, S.; Shuangfeng, W.; Wei, W.; Yanlai, Z. Design of battery thermal management system based on phase change material and heat pipe. Appl. Therm. Eng. 2021, 188, 116665. [Google Scholar]
- Zhipeng, Y.; Jiakai, Z.; Weiguo, P. A review of battery thermal management systems about heat pipe and phase change materials. J. Energy Storages 2023, 62, 106827. [Google Scholar]
- Mohammad, A.A.; Hussein, M.M.; Ahmed, G.A.; Ohood, H.K.A.; Enas, T.S.; Ali, R.; Hegazy, R.; Hussam, J.; Olabi, A.G. Thermal management systems based on heat pipes for batteries in EVs/HEVs. J. Energy Storages 2022, 51, 104384. [Google Scholar]
- Wu, M.-S.; Liu, K.; Wang, Y.Y.; Wan, C.C. Heat dissipation design for lithium-ion batteries. J. Power Sources 2002, 109, 160–166. [Google Scholar] [CrossRef]
- Lei, S.; Shi, Y.; Chen, G. Heat-pipe based spray-cooling thermal management system for lithium-ion battery: Experimental study and optimization. Int. J. Heat Mass Transf. 2020, 163, 120494. [Google Scholar] [CrossRef]
- Behi, H.; Ghanbarpour, M.; Behi, M. Investigation of PCM-assisted heat pipe for electronic cooling. Appl. Therm. Eng. 2017, 127, 1132–1142. [Google Scholar] [CrossRef]
- Jiaqiang, E.; Feng, Y.; Wenjie, L.; Bin, Z.; Hongyan, Z.; Kexiang, W.; Jingwei, C.; Hong, Z.; Hao, Z.; Yuanwang, D. Effect analysis on heat dissipation performance enhancement of a lithium-ion-battery pack with heat pipe for central and southern regions in China. Energy 2021, 226, 120336. [Google Scholar]
- Xiaoming, X.; Wei, T.; Jiaqi, F.; Renzheng, L.; Xudong, S. Plate flat heat pipe and liquid-cooled coupled multistage heat dissipation system of Li-ion battery. Int. J. Energy Res. 2018, 43, 1133–1141. [Google Scholar]
- Yueqi, W.; Dan, D.; Yi, X.; Weifeng, L.; Hongqiang, G.; Yangjun, Z. Study on the influence of flat heat pipe structural parameters in battery thermal management system. Front. Energy Res. 2022, 9, 797664. [Google Scholar]
- Wang, Y.; Dan, D.; Zhang, Y.; Qian, Y.; Panchal, S.; Fowler, M.; Li, W.; Tran, M.; Xie, Y. A novel heat dissipation based on flat heat pipe for battery thermal management system. Int. J. Energy Res. 2022, 46, 15961–15980. [Google Scholar] [CrossRef]
- Behi, H.; Behi, M.; Karimi, D.; Jaguemont, J.; Ghanbarpour, M.; Behnia, M.; Berecibar, M.; Mierlo, J.V. Heat pipe air-cooled thermal management system for lithium-ion batteries: High power applications. Appl. Therm. Eng. 2021, 183, 116240. [Google Scholar] [CrossRef]
- Boonma, K.; Patimaporntap, N.; Mbulu, H.; Trinuruk, P.; Ruangjirakit, K.; Laoonual, Y.; Wongwises, S. A review of the parameters affecting a heat pipe thermal management system for lithium-ion batteries. Energies 2022, 15, 8534. [Google Scholar] [CrossRef]
- Chokchai, A.; Soontorn, O.; Chaiyut, S. Experiment Investigation on Cooling Performance of Lithium-ion Battery Thermal Management System using Flat Heat Pipe. In Proceedings of the forth Research, Invention and Innovation Congress (RI2C 2023), Bangkok, Thailand, 24–25 August 2023. [Google Scholar]
- Xiaohang, L.; Quangui, G.; Xiangfen, L.; Zechao, T.; Shiwen, L.; Junqing, L.; Libin, K.; Dongfang, Z.; Zhanjun, L. Experimental investigation on a novel phase change material composites coupled with graphite film used for thermal management of lithium-ion batteries. Renew. Energy 2020, 145, 2046–2055. [Google Scholar]
Detail | Value |
---|---|
Type | Flat heat pipe |
Material | Copper |
Working fluid | Distilled water |
Wick | Sintered |
Length (mm) | 150 |
Width (mm) × Thickness (mm) | 8.0 × 3.0 |
Operating temperature (°C) | 30–120 |
Detail | Value |
---|---|
Cathode | NMC |
Package | pouch |
Capacity (Ah) | 20 |
Nominal voltage (V) | 3.7 |
Maximum voltage (V) | 4.2 |
Minimum voltage (V) | 2.5 |
Internal resistance (mΩ) | 1.5 |
Operating temperature (°C) | −40 to 50 |
Dimensions H × W × T (mm) | 128 × 210 × 7 |
Weight (kg) | 0.345 |
Point Number | SCR Voltage | ||
---|---|---|---|
220 V | 145 V | 120 V | |
1 | 13.2 | 8.9 | 5.6 |
2 | 11.3 | 8.0 | 5.5 |
3 | 11.7 | 8.4 | 5.4 |
4 | 14.0 | 10.9 | 7.1 |
5 | 10.9 | 8.3 | 5.5 |
6 | 10.7 | 6.6 | 4.3 |
7 | 14.3 | 11.3 | 7.9 |
8 | 14.4 | 11.1 | 7.5 |
9 | 13.8 | 11.7 | 8.2 |
Average | 12.7 | 9.5 | 6.3 |
Discharge Rate | Parameter | Air Velocity | Natural Convection | ||
---|---|---|---|---|---|
12.7 m/s | 9.5 m/s | 6.3 m/s | |||
1C | Tmax (°C) | 27.8 | 27.5 | 28.4 | 41.4 |
ΔTmax (°C) | 2.3 | 2.4 | 2.4 | 2.4 | |
2C | Tmax (°C) | 34.6 | 36.9 | 39.3 | 50.1 * |
ΔTmax (°C) | 6.8 | 7.4 | 8.0 | 5.1 * | |
3C | Tmax (°C) | 39.2 | 44.5 | 48.5 | 50.0 * |
ΔTmax (°C) | 7.8 | 11.2 | 11.4 | 7.6 * | |
4C | Tmax (°C) | 43.8 | 44.3 | 49.4 | 50.2 * |
ΔTmax (°C) | 10.3 | 11.1 | 11.5 | 8.4 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Anamtawach, C.; Odngam, S.; Sumpavakup, C. Experimental Investigation on Affecting Air Flow against the Maximum Temperature Difference of a Lithium-Ion Battery with Heat Pipe Cooling. World Electr. Veh. J. 2023, 14, 306. https://doi.org/10.3390/wevj14110306
Anamtawach C, Odngam S, Sumpavakup C. Experimental Investigation on Affecting Air Flow against the Maximum Temperature Difference of a Lithium-Ion Battery with Heat Pipe Cooling. World Electric Vehicle Journal. 2023; 14(11):306. https://doi.org/10.3390/wevj14110306
Chicago/Turabian StyleAnamtawach, Chokchai, Soontorn Odngam, and Chaiyut Sumpavakup. 2023. "Experimental Investigation on Affecting Air Flow against the Maximum Temperature Difference of a Lithium-Ion Battery with Heat Pipe Cooling" World Electric Vehicle Journal 14, no. 11: 306. https://doi.org/10.3390/wevj14110306