# Top-Down Validation Framework for Efficient and Low Noise Electric-Driven Vehicles with Multi-Speed Gearbox

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Top-Down Framework and Model Implementation

## 3. Virtual Model Implementation

^{2}. This approach has been established and is described in former publications [9,22,23].

## 4. Physical Validation Environment and Methods

## 5. Extended Validation Approach

## 6. Conclusions

## Author Contributions

## Funding

## Data Availability Statement

## Acknowledgments

## Conflicts of Interest

## References

- Eghtessad, M.; Meier, T.; Rinderknecht, S.; Küçükay, F. Antriebsstrangoptimierung von Elektrofahrzeugen. ATZ Automob. Z.
**2015**, 117, 78–85. [Google Scholar] [CrossRef] - Kwon, K.; Jo, J.; Min, S. Multi-objective gear ratio and shifting pattern optimization of multi-speed transmissions for electric vehicles considering variable transmission efficiency. Energy
**2021**, 236, 121–419. [Google Scholar] [CrossRef] - Allendorf, D. Getriebekonzeption auf Basis von Wirkungsgradsimulationen. Ph.D. Thesis, Rheinisch-Westfälische Technische Hochschule, Aachen, Germany, 2018. [Google Scholar]
- Albers, A.; Reichert, U.; Ott, S.; Radimersky, A. Software supported development of a Battery Electric Vehicle powertrain considering the efficiency. In Proceedings of the 16th International VDI Congress Drivetrain for Vehicles 2016, Transmissions in Mobile Machine, Friedrichshafen, Germany, 21–22 June 2016; VDI Verlag: Düsseldorf, Germany, 2016. ISBN 978-3-18-092276-8. [Google Scholar]
- Esser, A.; Eichenlaub, T.; Schleiffer, J.-E.; Jardin, P.; Rinderknecht, S. Comparative evaluation of powertrain concepts through an eco-impact optimization framework with real driving data. Optim. Eng.
**2021**, 22, 1001–1029. [Google Scholar] [CrossRef] - Garambois, P.; Perret-Liaudet, J.; Rigaud, E. NVH robust optimization of gear macro and microgeometries using an efficient tooth contact model. Mech. Mach. Theory
**2017**, 117, 78–95. [Google Scholar] [CrossRef] [Green Version] - Geradts, P.; Brecher, C.; Löpenhaus, C.; Kasten, M. Reduction of the tonality of gear noise by application of topography scattering. Appl. Acoust.
**2019**, 148, 344–359. [Google Scholar] [CrossRef] - Wang, J.; Yang, J.; Lin, Y.; He, Y. Analytical investigation of profile shifts on the mesh stiffness and dynamic characteristics of spur gears. Mech. Mach. Theory
**2022**, 167, 104–529. [Google Scholar] [CrossRef] - Zhang, T.; Shi, D.; Zhuang, Z. Research on vibration and acoustic radiation of planetary gearbox housing. In Proceedings of the Internoise 2014, Melbourne, Australia, 16–19 November 2014. [Google Scholar]
- Schweigert, D.; Gwinner, P.; Otto, M.; Stahl, K. Noise and Efficiency Characteristics of High-Rev Transmissions in Electric Vehicles. In Proceedings of the E-Motive—Electric Vehicles Drives, Stuttgart, Germany, 12–13 September 2018. [Google Scholar]
- Albers, A. Five Hypotheses about Engineering Processes and their Consequences. In Proceedings of the TMCE 2010, Ancona, Italy, 12–16 April 2010. [Google Scholar]
- Jäger, S.; Vogel, S. Validation of a squeeze-film-damper test rig by using multibody cosimulation. Multibody Syst. Dyn.
**2015**, 34, 243–257. [Google Scholar] [CrossRef] - Albers, A.; Behrendt, M.; Schroeter, J.; Ott, S.; Klingler, S. X-in-the-Loop: A Framework for Supporting Central Engineering Activities and Contracting Complexity in Product Engineering Processes. In Proceedings of the 19th International Conference on Engineering Design (ICED13), Design for Harmonies, Vol.6: Design Information and Knowledge, Seoul, Republic of Korea, 19–22 August 2013; The Design Society: Glasgow, UK, 2013; pp. 391–400, ISBN 978-1-904670-49-0. [Google Scholar]
- Jäger, S. Eine Studie zur Validierung in der Produktentstehung am Beispiel der Entwicklung einer neuartigen Untersuchungsmethode für Quetschöldämpfer = A Study to Validation Activities in Product Development based on the Development of a new Research Method for Squeeze Film Damper. Ph.D. Thesis, Karlsruher Institut für Technologie, Karlsruhe, Germany, 2014. [Google Scholar]
- Matros, K. Entwicklung von Hybridantriebssystemen auf Basis des Pull-Prinzips der Validierung und des IPEK-X-in-the-Loop-Ansatzes = Development of Hybrid Powertrain Systems based on the Validation Pull-Principle and the IPEK-X-in-the-Loop-Approach. Ph.D. Thesis, Karlsruher Institut für Technologie, Karlsruhe, Germany, 2016. [Google Scholar]
- Utakapan, T.; Kohn, B.; Fromberger, M.; Otto, M.; Stahl, K. Evaluation of gear noise behaviour with application force level. Forsch. Ing.
**2017**, 81, 59–64. [Google Scholar] [CrossRef] - Fischer, J.; Behrendt, M.; Lieske, D.; Albers, A. Measurement and analysis of the interior noise and the transfer path of acoustic phenomena into the driver cabin of a battery electric vehicle. In Proceedings of the Internoise 2014, Melbourne, Australia, 16–19 November 2014. [Google Scholar]
- Verein Deutscher Ingenieure. Entwicklungsmethodik für Mechatronische Systeme (VDI 2206): Design Methodology for Mechatronic systems; VDI: Düsseldorf, Germany, 2004. [Google Scholar]
- Albers, A.; Reiss, N.; Bursac, N.; Richter, T. IPeM-Integrated Product Engineering Model in Context of Product Generation Engineering. Procedia CIRP
**2016**, 50, 100–105. [Google Scholar] [CrossRef] [Green Version] - Lindemann, U. Models of Design. In An Anthology of Theories and Models of Design; Chakrabarti, A., Blessing, L.T.M., Eds.; Springer: London, UK, 2014; ISBN 978-1-4471-6337-4. [Google Scholar]
- Geier, M.; Jäger, S.; Stier, C.; Albers, A. Combined real and virtual domain product validation using top-down strategies. In Proceedings of the Vehicle Property Validation, Bad Nauheim, Germany, 19–20 June 2012. [Google Scholar]
- Han, J.; Liu, Y.; Yu, S.; Zhao, S.; Ma, H. Acoustic-vibration analysis of the gear-bearing-housing coupled system. Appl. Acoust.
**2021**, 178, 108024. [Google Scholar] [CrossRef] - Tang, Z.; Wang, M.; Zhao, M.; Sun, J. Modification and Noise Reduction Design of Gear Transmission System of EMU Based on Generalized Regression Neural Network. Machines
**2022**, 10, 157. [Google Scholar] [CrossRef]

**Figure 6.**Translational systems for calculating bearing forces in z- and y-direction (

**left**), and x-direction (

**right**).

**Figure 8.**(

**a**) FEA deformation result of the harmonic response analysis; (

**b**) velocity amplitude spectrum.

Parameter | Symbol | Value |
---|---|---|

No. of teeth (-) | ${z}_{1},{z}_{2}$ | 38, 57 |

Normal module (mm) | $\mathrm{m}$ | 1.75 |

Face width (mm) | $\mathrm{b}$ | 20 |

Helix angle (°) | $\mathsf{\beta}$ | 15 |

Normal pressure angle (°) | $\mathsf{\alpha}$ | 20 |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Jäger, S.; Schätzle, J.; Linde, T.
Top-Down Validation Framework for Efficient and Low Noise Electric-Driven Vehicles with Multi-Speed Gearbox. *World Electr. Veh. J.* **2022**, *13*, 228.
https://doi.org/10.3390/wevj13120228

**AMA Style**

Jäger S, Schätzle J, Linde T.
Top-Down Validation Framework for Efficient and Low Noise Electric-Driven Vehicles with Multi-Speed Gearbox. *World Electric Vehicle Journal*. 2022; 13(12):228.
https://doi.org/10.3390/wevj13120228

**Chicago/Turabian Style**

Jäger, Steffen, Jonas Schätzle, and Tilmann Linde.
2022. "Top-Down Validation Framework for Efficient and Low Noise Electric-Driven Vehicles with Multi-Speed Gearbox" *World Electric Vehicle Journal* 13, no. 12: 228.
https://doi.org/10.3390/wevj13120228