# A Driving Cycle for a Fuel Cell Logistics Vehicle on a Fixed Route: Case of the Guangdong Province

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Data Acquisition and Preprocessing

#### 2.1. Introduction of the DAQ Paltform

#### 2.2. Determination of Driving Route

#### 2.3. Data Preprocessing

## 3. Clustering of Vehicle Working Conditions Based on K-Means

#### 3.1. Division of Working Conditions

#### 3.2. Selection of Characteristic Parameters

#### 3.3. Principal Component Analysis

#### 3.4. Clustering of Working Conditions

## 4. Construction of Typical Driving Cycle

## 5. Effectiveness Analysis of Driving Cycle

## 6. Discussion

## Supplementary Materials

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Conflicts of Interest

## References

- Bassam, A.M.; Phillips, A.B.; Turnock, S.R.; Wilson, P.A. An improved energy management strategy for a hybrid fuel cell/battery passenger vessel. Int. J. Hydrog. Energy
**2016**, 41, 22453–22464. [Google Scholar] [CrossRef] [Green Version] - Wee, J.H. Applications of proton exchange membrane fuel cell systems. Renew. Sustain. Energy Rev.
**2007**, 11, 1720–1738. [Google Scholar] [CrossRef] - Nistor, S.; Dave, S.; Fan, Z.; Sooriyabandara, M. Technical and economic analysis of hydrogen refuelling. Appl. Energy
**2016**, 167, 211–220. [Google Scholar] [CrossRef] - Liu, J.; Wang, X.; Khattak, A. Customizing driving cycles to support vehicle purchase and use decisions: Fuel economy estimation for alternative fuel vehicle users. Transp. Res. Part C Emerg. Technol.
**2016**, 67, 280–298. [Google Scholar] [CrossRef] - Lien, N.T.Y.; Dung, N.T. The determination of driving characteristics of Hanoi bus system and their impacts on the emission. Vietnam J. Sci. Technol.
**2017**, 55, 74. [Google Scholar] [CrossRef] [Green Version] - Nandjou, F.; Poirot-Crouvezier, J.P.; Chandesris, M.; Rosini, S.; Hussey, D.S.; Jacobson, D.L.; Lamanna, J.M.; Morin, A.; Bultel, Y. A pseudo-3D model to investigate heat and water transport in large area PEM fuel cells—Part 2: Application on an automotive driving cycle. Int. J. Hydrog. Energy
**2016**, 41, 15573–15584. [Google Scholar] [CrossRef] - Kang, S.; Min, K. Dynamic simulation of a fuel cell hybrid vehicle during the federal test procedure-75 driving cycle. Appl. Energy
**2016**, 161, 181–196. [Google Scholar] [CrossRef] - Li, B.; Lin, R.; Yang, D.; Ma, J. Effect of driving cycle on the performance of PEM fuel cell and microstructure of membrane electrode assembly. Int. J. Hydrog. Energy
**2010**, 35, 2814–28192008. [Google Scholar] [CrossRef] - Lin, R.; Li, B.; Hou, Y.P.; Ma, J.M. Investigation of dynamic driving cycle effect on performance degradation and micro-structure change of PEM fuel cell. Int. J. Hydrog. Energy
**2009**, 34, 2369–2376. [Google Scholar] [CrossRef] - Ho, S.H.; Wong, Y.D.; Chang, V.W.C. Developing Singapore Driving Cycle for passenger cars to estimate fuel consumption and vehicular emissions. Atmos. Environ.
**2014**, 97, 353–362. [Google Scholar] [CrossRef] - Shen, P.; Zhao, Z.; Li, J.; Zhan, X. Development of a typical driving cycle for an intra-city hybrid electric bus with a fixed route. Transp. Res. Part D Transp. Environ.
**2018**, 59, 346–360. [Google Scholar] [CrossRef] - Shi, S.; Lin, N.; Zhang, Y.; Huang, C.; Liu, L.; Lu, B.; Cheng, J. Research on Markov property analysis of driving cycle. In Proceedings of the 2013 IEEE Vehicle Power and Propulsion Conference (VPPC), Beijing, China, 15–18 October 2013; pp. 1–5. [Google Scholar]
- Shi, S.; Lin, N.; Zhang, Y.; Cheng, J.; Huang, C.; Liu, L.; Lu, B. Research on Markov property analysis of driving cycles and its application. Transp. Res. Part D Transp. Environ.
**2016**, 47, 171–181. [Google Scholar] [CrossRef] - Gao, J.D.; Qin, K.J.; Liang, R.L.; Li, M.L. Comparative analysis of medinm-duty diesel engine emissions under BJCBC and ETC. J. Jilin Univ. Technol. Ed.
**2012**, 42, 33–38. [Google Scholar] - Mock, P.; Kühlwein, J.; Tietge, U.; Franco, V.; Bandivadekar, A.; German, J. The WLTP: How a new test procedure for cars will affect fuel consumption values in the EU. Int. Counc. Clean Transp.
**2014**, 9, 35–47. [Google Scholar] - Yang, Z.; Wang, B.; Jiao, K. Life cycle assessment of fuel cell, electric and internal combustion engine vehicles under different fuel scenarios and driving mileages in China. Energy
**2020**, 198, 117365.1–117365.9. [Google Scholar] [CrossRef] - Merkisz, J.; Jacyna, M.; Merkisz-Guranowska, A.; Pielecha, J. The Parameters of Passenger Cars Engine in Terms of Real Drive Emission Test. Arch. Transp.
**2014**, 32, 43–50. [Google Scholar] [CrossRef] [Green Version] - Donateo, T.; Pacella, D.; Laforgia, D. Development of an Energy Management Strategy for Plug-In Series Hybrid Electric Vehicle Based on the Prediction of the Future Driving Cycles by ICT Technologies and Optimized Maps. In Proceedings of the SAE 2011 World Congress & Exhibition, Detroit, MI, USA, 12–14 April 2011. Paper No. SAE 2011-01-0892. [Google Scholar]
- Si, L.; Hirz, M.; Brunner, H. Big Data-Based Driving Pattern Clustering and Evaluation in Combination with Driving Circumstances. In Proceedings of the SAE World Congress 2018, Detroit, MI, USA, 10–12 April 2018. Paper No. SAE 2018-01-1087. [Google Scholar]
- Abdi, H.; Williams, L.J. Principal component analysis. Wiley Interdiscip. Rev. Comput. Stat.
**2010**, 2, 433–459. [Google Scholar] [CrossRef] - Xie, H.; Tian, G.; Chen, H.; Wang, J.; Huang, Y. A distribution density-based methodology for driving data cluster analysis: A case study for an extended-range electric city bus. Pattern Recognit.
**2018**, 73, 131–143. [Google Scholar] [CrossRef] - Berzi, L.; Delogu, M.; Pierini, M. Development of driving cycles for electric vehicles in the context of the city of Florence. Transp. Res. Part D Transp. Environ.
**2016**, 47, 299–322. [Google Scholar] [CrossRef] - Wang, Q.; Huo, H.; He, K.; Yao, Z.; Zhang, Q. Characterization of vehicle driving patterns and development of driving cycles in Chinese cities. Transp. Res. Part D Transp. Environ.
**2008**, 13, 289–297. [Google Scholar] [CrossRef] - Allaire, G.; Kaber, S.M. Numerical Linear Algebra; Springer: Berlin/Heidelberg, Germany, 2008; Volume 55. [Google Scholar]

**Figure 6.**The linear combination coefficients for first four principal components (The number on the x-axis coordinate corresponds to the serial number in Table 2).

Item | Information |
---|---|

Total number of vehicles counted by the platform | 679 |

The actual number of vehicles operating on the | 36 |

statistical day | |

The area distribution of the fuel cell logistics vehicle | Guangdong Province |

Shanghai | |

The driving mileage counted by the platform (on | 35,450 km |

the statistical day) | |

The cumulative driving mileage counted by the | 11,208,220 km |

platform (due to the statistical day) | |

The classification of signal recorded by the platform | Vehicle dynamics signals |

Fuel cell system signals | |

Battery system signals | |

Electric motor signals | |

The type of sensor used in the signal involved in this article | Vehicle speed sensor |

Vehicle acceleration sensor | |

GPS |

No. | Characteristic Parameters | Unit |
---|---|---|

1 | Average vehicle speed ${v}_{m}$ | $\mathrm{m}/\mathrm{s}$ |

2 | Average vehicle speed(neglecting parking situations) ${\stackrel{\u02d8}{v}}_{m}$ | $\mathrm{m}/\mathrm{s}$ |

3 | Standard deviation of vehicle speed ${v}_{std}$ | $\mathrm{m}/\mathrm{s}$ |

4 | Maximum acceleration ${a}_{max}$ | $\mathrm{m}/{\mathrm{s}}^{2}$ |

5 | Average acceleration while accelerating ${a}_{pm}$ | $\mathrm{m}/{\mathrm{s}}^{2}$ |

6 | Minimum acceleration ${a}_{min}$ | $\mathrm{m}/{\mathrm{s}}^{2}$ |

7 | Average acceleration while decelerating ${a}_{nm}$ | $\mathrm{m}/{\mathrm{s}}^{2}$ |

8 | Acceleration ratio $AR$ | - |

9 | Deceleration ratio $DR$ | - |

10 | Idling ratio $SR$ | - |

11 | Standard deviation of acceleration ${a}_{std}$ | $\mathrm{m}/{\mathrm{s}}^{2}$ |

12 | Standard deviation of jerk ${j}_{std}$ | $\mathrm{m}/{\mathrm{s}}^{3}$ |

13 | Accelerator pedal opening | - |

14 | Brake pedal opening | - |

Highway | Urban Road | National Highway | Others | |
---|---|---|---|---|

${v}_{m}$ | 19.05 | 10.73 | 14.62 | 4.26 |

${\stackrel{\u02d8}{v}}_{m}$ | 19.05 | 13.90 | 15.62 | 8.46 |

${v}_{std}$ | 0.84 | 3.87 | 1.09 | 5.44 |

${a}_{pm}$ | 0.14 | 0.42 | 0.19 | 0.43 |

${a}_{nm}$ | −0.15 | −0.43 | −0.20 | −0.45 |

$AR$ | 0.57 | 0.40 | 0.46 | 0.32 |

$DR$ | 0.41 | 0.39 | 0.54 | 0.29 |

$SR$ | 0 | 0.18 | 0.013 | 0.39 |

${a}_{std}$ | 0.18 | 0.57 | 0.25 | 0.48 |

${\dot{a}}_{std}$ | 0.12 | 0.29 | 0.16 | 0.23 |

${a}_{b}$ | 0.086 | 4.71 | 0.30 | 11.22 |

${a}_{t}$ | 23.60 | 15.53 | 18.76 | 10.77 |

Highway | Deviation | 3.975 | 4.075 | 4.122 | — |

Segment number | 359 | 2506 | 3966 | — | |

Urban road | Deviation | 1.886 | 2.142 | 2.688 | 2.874 |

Segment number | 52 | 3 | 1637 | 3174 | |

National highway | Deviation | 6.891 | 6.9791 | … | 8.168 |

Segment number | 391 | 1078 | … | 548 |

**Table 5.**Velocity-acceleration ($v-\left|a\right|$) probability distribution matrix of the original data/cycle(%).

$\mathit{v}-\left|\mathit{a}\right|$ | $[0,1)$ | $[1,2)$ | $[2,3)$ | $[3,4)$ |
---|---|---|---|---|

$[0,10)$ | 2.2/2.4 | 0.46/0.69 | 0.11/0 | 0.056/0 |

$[10,20)$ | 3.6/3.4 | 0.67/0.23 | 0.14/1.4 | 0.056/0 |

$[20,30)$ | 4.0/4.0 | 1.1/1.3 | 0.11/0 | 0.014/0 |

$[30,40)$ | 6.2/3.7 | 1.3/1.1 | 0.042/0.02 | 0.014/0 |

$[40,50)$ | 19/19 | 1.1/0.9 | 0.042/0.23 | 0.014/0.2 |

$[50,60)$ | 46/48 | 0.38/1.8 | 0.014/0.69 | 0/0.69 |

$[60,75)$ | 12/7.4 | 0.028/1.1 | 0/0.2 | 0/0 |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Zhou, S.; Jin, J.; Wei, Y.
A Driving Cycle for a Fuel Cell Logistics Vehicle on a Fixed Route: Case of the Guangdong Province. *World Electr. Veh. J.* **2021**, *12*, 5.
https://doi.org/10.3390/wevj12010005

**AMA Style**

Zhou S, Jin J, Wei Y.
A Driving Cycle for a Fuel Cell Logistics Vehicle on a Fixed Route: Case of the Guangdong Province. *World Electric Vehicle Journal*. 2021; 12(1):5.
https://doi.org/10.3390/wevj12010005

**Chicago/Turabian Style**

Zhou, Su, Jie Jin, and Yuehua Wei.
2021. "A Driving Cycle for a Fuel Cell Logistics Vehicle on a Fixed Route: Case of the Guangdong Province" *World Electric Vehicle Journal* 12, no. 1: 5.
https://doi.org/10.3390/wevj12010005