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Abstract: The purpose of this research is to develop a representative driving cycle for fuel cell
logistics vehicles running on the roads of Guangdong Province for subsequent energy management
research and control system optimization. Firstly, we collected and preliminarily screened the 42-
day driving data of a logistics vehicle through the remote monitoring platform, and determined
the vehicle characteristic signal vector for analysis. Secondly, the principal component analysis
method is used to reduce the dimensionality of these characteristic parameters, avoiding the linear
correlation between them and increase the comprehensiveness of the upcoming clustering. Next, the
dimensionality-reduced data are fed to a clustering machine. K-means clustering method is used to
gather the segmented road sections into highway, urban road, national highway and others. Finally,
several segments are chosen in accordance to the occurrence possibility of the four types of road
conditions, minimizing the deviation with the original data. By joining the segments and using a
moving average filtering window, a typical driving cycle for this fuel cell logistics vehicle on a fixed
route is constructed. Some statistical methods are done to validate the driving cycle.The effectiveness
analysis shows the driving cycle we constructed has a high degree of overlap with the original data.
This positive result provides a solid foundation for our follow-up research, and we can also apply
this method to develop other urban driving cycles of fuel cell logistics vehicle.

Keywords: fuel cell logistics vehicle; driving cycle; PCA; clustering

1. Introduction

Fuel cell power system attracts much attention due to its high efficiency, high specific
energy and environmental friendliness [1,2]. In recent years, several well-known automak-
ers have turned their attention to fuel cells and launched corresponding fuel cell vehicles,
such as Toyota’s Mirai, Honda’s Clarity, Hyundai’s nexo, and Mercedes-Benz’s GLC F-Cell.
The governments of many countries and regions in the world have launched a series of
policies to support the development of this industry and encourage the development of
hydrogen refueling stations [3]. Commercial vehicles like logistics vehicles are consid-
ered to be the perfect candidates for promoting the industrialization of fuel cell vehicles,
because usually they drive on a more structured and fixed route. Driving cycle is the
basis of optimizing or validating test methods for energy consumption and emission of
vehicles [4,5].

The driving cycle of fuel cell vehicles have a very important impact on the develop-
ment of fuel cell systems. F. Nandjou et al. [6] studied the dynamic process of inlet gas
heat and water transfer under NEDC for fuel cell performance. S. Kang et al. [7] studied
the dynamic behavior and correlation of each component in the PEMFC system during
the federal test procedure (FTP)-75, and solved the mass and heat transfer problems in the
humidifier and heat exchanger of PEMFC. B. Li et al. [8,9] studied the effects of cycling
conditions on the performance of fuel cells and the microstructure of membrane electrode
assemblies to predict fuel cell life.
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Though there are several famous standard driving cycles, such as JC10, FTP75 and
ECE+NEDC, scholars attempt to develop driving cycles suitable for local areas. Ho
et al. [10] collected on-road data along 12 designed routes and developed a Singapore
driving cycle for passenger cars to estimate fuel consumption and vehicular emissions.
Clustering, for example K-means clustering is a popular method for constructing typical
driving cycles. Shen et al. [11] collected driving data from a hybrid electric bus in Shanghai
and constructed its typical driving cycle by k-means clustering method. S.Shi et al. [12,13]
did some research on Markov property analysis about using the velocity and acceleration
joint probability distribution (VA distribution) of vehicles to distinguish different vehicle
driving cycles.

However, the researches above focus mainly on internal combustion engine vehicles
(ICEV) [14]. That is, the existing driving cycles are built specifically from data of con-
ventional vehicles. Considering the difference characteristics and driving requirements
between fuel cell vehicles (FCV) and conventional vehicles, applying these driving cycle
to a fuel cell hybrid vehicle is not reasonable [15]. One of the differences is that a fuel cell
logistics vehicle often cruises on a highway, which means the occurrence possibility of
highway conditions are likely to be the most among the 4 working conditions, which are
specifically national highway, urban road, highway and others. Besides, a fuel cell logistics
vehicle is generally manufactured with a much lower maximum speed, which reaches no
more than 80 km/h. The reality above leads to a great difference of the road map between
a fuel cell vehicle and an internal combustion engine vehicle.

In the current tide of new energy for automobiles, there is no doubt that lithium-power
battery is the most spotted power system. However, the shortcomings of lithium battery
electric vehicles such as higher emissions throughout the full life cycle and long charging
time give a segmented market for fuel cell vehicles [16]. From the perspective of compre-
hensive policies and operating costs, commercial vehicles running on structured roads are
the best entry point for these fuel cell engine suppliers. Nowadays, there are not many fuel
cell vehicles actually running on the roads of China, resulting in not much feedback on the
development of fuel cell systems based on actual driving cycle. Therefore, the purpose
of this article is mainly to focus on an existing structured road with fuel cell commercial
logistics vehicles running every day, as a research to promote subsequent fuel cell system
development, such as energy management research, control system optimization, and
so on.

It is true that the typical driving cycle extraction method used in this article has
not changed much from the driving cycle of other power systems. Everyone follows
such a pipelined process that data acquisition, determination of feature vectors, data pre-
processing, and statistical methods are used to describe each feature quantity in the overall
working condition. Finally, the typical driving cycles are determined, but those roads
cannot be used well in the development of our existing fuel cell system. Therefore, on the
eve of the start of this industry, we believe that it is very necessary to develop a typical
driving cycle for fuel cell logistics vehicles in a specific area.

This paper collected data of a fuel cell logistics vehicle running on a fixed route. The
process of how the driving cycle is built is shown in Figure 1. Further in this paper, the
driving cycle is validated.
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Figure 1. Construction method of driving cycle for fuel cell logistics vehicle.

2. Data Acquisition and Preprocessing
2.1. Introduction of the DAQ Paltform

In order to monitor the operation of fuel cell vehicles and fuel cell systems in real time,
and optimize energy management strategy and control systems in a timely and effective
manner, so as to protect the fuel cell system to a greater extent, a remote data monitoring
platform based on the on-board system is established. In this platform, the T-BOX system
sends the collected vehicle information, such as the state parameters of the motor, power
battery, and fuel cell system (collected by related sensors) to the cloud server via LTE, and
we can perform subsequent processing on these data in the background. The relevant
information of the remote data monitoring platform we are currently using is shown in
Table 1.

Table 1. The introduction of our data acquisition platform.

Item Information

Total number of vehicles counted by the platform 679

The actual number of vehicles operating on the 36statistical day

The area distribution of the fuel cell logistics vehicle Guangdong Province
Shanghai

The driving mileage counted by the platform (on 35,450 kmthe statistical day)

The cumulative driving mileage counted by the 11,208,220 kmplatform (due to the statistical day)

The classification of signal recorded by the platform

Vehicle dynamics signals
Fuel cell system signals
Battery system signals
Electric motor signals

The type of sensor used in the signal involved in this article
Vehicle speed sensor
Vehicle acceleration sensor
GPS

2.2. Determination of Driving Route

At present, our fuel cell logistics vehicles are mainly operated in Guangdong Province
and Shanghai. Considering that in the preliminary research process, we hope that the
sample route we choose will cover as many road types as possible, which will help us
follow-up on optimizing the energy management and the control strategy, so we chose a
route of the logistics vehicle in Yunfu City, Guangdong Province for research, as shown
in Figure 2. The whole path is 92 km in length and takes the fuel cell logistics vehicle for
about 2 hours. This route covers various types of roads such as national highway, urban
road and highway, and 42-day data is collected.
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Figure 2. The selected driving route.

After determining the sample driving route, we can acquire the route’s terrain profile
by using Google Earth software, the terrain data is shown in Figure 3.
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Figure 3. The terrain of the route.

The impact of terrain on the fuel cell system is mainly reflected in the intake pressure
of the air compressor, because the power level of fuel cell system we use at this stage is not
very large, taking into account the cost and policy factors, if we choose a cross very high
and very low altitude routes, then the controller design of the fuel cell system will have
great challenges, the actual output power will be greatly reduced. As can be seen from
the above figure, the maximum altitude of the sample driving route we selected is 339 m,
which is less than the maximum altitude required by the real drive emission(RDE) [17] test
to not exceed 700 m, but at the same time, the difference of the altitude of the whole journey
in our route is about 300 m, which exceeds the requirement of an altitude difference of less
than 100 m in the RDE test. Considering that our logistics vehicles usually travel between
cities, this prerequisite makes us difficult to find in the existing database that the road
features are rich as well as the altitude difference is small, so we choose to appropriately
relax the restriction on altitude difference.

2.3. Data Preprocessing

After acquiring the original data, we need to perform data preprocessing on the
original data, which mainly includes the following aspects: judgment of invalid operating
data, outlier detection and data filtering.
(1) Judgment of invalid operating data

This part is mainly due to the fact that after the vehicle is started or stopped, although
the data acquisition system has sent the vehicle information to the cloud during this period,
in fact, the vehicle has not displaced. Therefore, we have eliminated them through human
judgment.
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(2) Outlier detection
This part is mainly due to the signal interruption in the data communication process,

which is eliminated by the method of outlier detection in this research work.
(3) Data filting

Because the original data is noisy, it needs to be filtered. In this research, the method
of moving average filter is used to filter the original data.

3. Clustering of Vehicle Working Conditions Based on K-Means
3.1. Division of Working Conditions

The time-velocity sequence is divided into many segments along the time axis as
shown in Figure 4. The data are available in a Supplementary File named as “supplemen-
tary.csv”, the sampling time is 1 second and the speed is in kilometer per hour.Considering
the accuracy and complexity of the calculation, every segment is 1 kilometer long and
it’s assumed that the vehicles dynamic parameters in one particular segment are basically
the same.
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Figure 4. The division of time-velocity sequence in a certain day.

3.2. Selection of Characteristic Parameters

This paper refers to a literature[18] when selecting the characteristic parameters,
additionally the throttle pedal angle and brake pedal angle are taken into account. The
characteristics are chosen as listed in Table 2 [19].

Table 2. The list of selected characteristic parameters.

No. Characteristic Parameters Unit

1 Average vehicle speed vm m/s
2 Average vehicle speed(neglecting parking situations) v̆m m/s
3 Standard deviation of vehicle speed vstd m/s
4 Maximum acceleration amax m/s2

5 Average acceleration while accelerating apm m/s2

6 Minimum acceleration amin m/s2

7 Average acceleration while decelerating anm m/s2

8 Acceleration ratio AR -
9 Deceleration ratio DR -
10 Idling ratio SR -
11 Standard deviation of acceleration astd m/s2

12 Standard deviation of jerk jstd m/s3

13 Accelerator pedal opening -
14 Brake pedal opening -
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However, after a correlation analysis of the parameters all above, it’s found that the
correlation coefficient of the throttle and brake pedal angle reaches nearly 1. So the throttle
and brake pedal angle are eliminated from the parameters group. The calculation formulas
for above parameters are as follow.
(1) Average vehicle speed vm

vm =
1
n

n

∑
i=1

vi (1)

where n is the number of data points in each working condition segement, and vi is the
vehicle speed when the i-th data point corresponds to the working condition segement.
(2) Average vehicle speed v̆m(neglecting parking situations)

v̆m =
1
n

n

∑
i=1

vi(vi 6= 0) (2)

(3) Standard deviation of vehicle speedvstd

vstd =

√
∑n

i=1(vi − vm)
2

n− 1
(3)

(4) Maximum acceleration amax is the maximum value of acceleration of each segement.
(5) Average acceleration while accelerating apm

apm =
1

np

np

∑
ip=1

aip (4)

where np is the number of data points with positive acceleration in each segement, and aip
is the vehicle acceleration at the ip-th data point in the segement.
(6) Minimum acceleration amin is the minimum value of acceleration of each segement.
(7) Average acceleration while decelerating anm

anm =
1

nn

nn

∑
in=1

ain (5)

where nn is the number of data points with negative acceleration in each segement, and ain
is the vehicle acceleration when the in-th data point corresponds to the segement.
(8) Acceleration ratio AR

AR =
np
n

(6)

(9) Deceleration ratio DR
DR =

nn
n

(7)

(10) Idling ratio SR
SR =

ns
n

(8)

where ns is the number of data points where the vehicle speed is zero in each segement.
(11) Standard deviation of acceleration astd

astd =

√
∑n

i=1(ai − am)
2

n− 1
(9)

where ai is the acceleration corresponding to the i-th data point in the segement, and am is
the average acceleration of the segement.
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(12) Standard deviation of jerk jstd

jstd =

√
∑n

i=1(ji − jm)
2

n− 1
(10)

where ji is the impact degree corresponding to the i-th data point in the segement, jm is the
average jerk of the segement.
(13) The accelerator pedal opening is obtained through the fuel cell vehicle remote monitor-
ing platform.
(14) The brake pedal opening is obtained through the fuel cell vehicle remote monitor-
ing platform.

In summary, a characteristic parameter vector of 12 elements is formed as follows.

CP = [cp1 cp2 · · · cp12]
T (11)

3.3. Principal Component Analysis

In order to avoid over-fitting problem, it is necessary to do dimensionality reduction
to the data before cluster analysis and principal component analysis (PCA) [20] is used.
Since maximum acceleration and minimum acceleration do not contribute much, PCA is
conducted on the rest 12 characteristic parameters.

In general, when the sum of the variance’s contribution of several principal component
reaches up to 85%, these principal components are believed to be able to describe most
of the information of the original data [21]. The results obtained by PCA are shown in
Figures 5 and 6.
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T

ini ini ini inimDC ds ds ds= Eq. (11)
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Fig. 5. The cumulative contribution of first 6 principal components 

principal component's 
contribution
cumulative contribution 

Figure 5. The cumulative contribution of first 6 principal components.

In Figure 5, the cumulative contribution of the first 4 principal components reaches
90%. Figure 6 shows the linear combination coefficients of the twelve characteristics. The
higher the absolute value of the combination coefficient is, the stronger is the relationship
between the principal component and the characteristics [22].
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_
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Figure 6. The linear combination coefficients for first four principal components (The number on the
x-axis coordinate corresponds to the serial number in Table 2).

3.4. Clustering of Working Conditions

This paper uses K-means algorithm to cluster all segments in the principal component
domain [23]. Before K-means algorithm is conducted, a proper selection of the parameter
K is essential. A theory, which is called Elbow method, uses sum of the squared errors(SSE)
to find the proper K. This criteria is defined as formula below.

SSE =
k

∑
i=1

∑
p=Ci

|p−mi|2 (12)

in which p is the point to be clustered, mi is the cluster center, |p−mi|2 means the Euler
distance between them, k is the number of cluster center. It’s obvious that SSE decreases as
K increases, however, there exists an inflection point in the curve. When K is bigger than
the inflection point, little improvement of SSE is achieved. Thus, the proper selection of the
parameter K is the inflection point of the SSE curve, which is shown in Figure 7.
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Figure 7. Cluster parameter K versus SSE.
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Then set the cluster number as 4 and do the clustering to the data above. To show the
cluster result intuitively, all the segments are labeled in the three-dimension coordinate
composed of three principal components, as shown in Figure 8.

....

-

-
Figure 8. The clustering result of segments.

In reference to the statistical analysis of the clustering result, the four clustered sets
are defined as four different driving conditions, which is respectively highway, urban
road, national highway and others. Average values of these twelve parameters for the four
conditions are shown in Table 3. RDE test simply divides three driving conditions from
each other with maximum speed. On the contrary, this paper take not only the maximum
speed, but also the average speed, ratio of idling and deviation of the acceleration into
account. In Highway presents the highest average speed and lowest average acceleration
and the deviation of acceleration, indicating that the road condition is clear. Urban road
presents a lowest average speed and shows relatively high ratio of idling, deviation of
acceleration. Nation highway shares a relatively high average speed but lower than that of
the highway, and shows a low deviation of acceleration. Others shows a lowest average
speed and highest ratio of idling, which means there whether exists a traffic jam or simply
a start-stop scenario.

Table 3. Average values of characteristic parameters of four conditions.

Highway Urban Road National
Highway Others

vm 19.05 10.73 14.62 4.26
v̆m 19.05 13.90 15.62 8.46
vstd 0.84 3.87 1.09 5.44
apm 0.14 0.42 0.19 0.43
anm −0.15 −0.43 −0.20 −0.45
AR 0.57 0.40 0.46 0.32
DR 0.41 0.39 0.54 0.29
SR 0 0.18 0.013 0.39
astd 0.18 0.57 0.25 0.48
ȧstd 0.12 0.29 0.16 0.23
ab 0.086 4.71 0.30 11.22
at 23.60 15.53 18.76 10.77

The information of the whole journey validates the correctness of the the clustering
result. The proportion of the four types of driving condition (highway: urban road:
national highway: others) is 544: 856: 2498: 128. It’s clear that the proportions of the
driving conditions in real route is similar to the clustering result. In comparison to the RDE
test, which stipulates that the proportion of city, rural and motorway should be 34%, 33%
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and 33%, and the error of the proportion should be between −10% and +10%. It’s one of
the great difference of the road map construction method with the fuel cell vehicle.

4. Construction of Typical Driving Cycle

In accordance to the proportion of the four types of driving conditions, 10 segments
of National highway, 3 of Urban road and 4 of Highway are selected from the bank of
segments. They are combined together in a certain sequence, which is the same to the order
these driving conditions occur on the real route, as shown in Figure 9. Besides, 2 segments
from Others driving conditions are added at the start and the end of the route.

Figure 9. The segmentation of route in map.

In order to find the most representative driving segments, a criteria, shown in
Equation (13) is introduced and it may find the minimum of the deviation between a
certain driving segment with its cluster center.

kp =
nj

∑
i=1

∣∣∣∣1− ȳj

yi

∣∣∣∣ (13)

where kp is the deviation of a segment in this type of driving condition, yi is the eigenvalue
in the principal component space of a driving segment, ȳj is the mean value of the eigen-
value in the j-th (j = 1, 2, 3, 4) type of driving condition, and nj is the number of eigenvalues.
The calculation had been done and the best result is shown in Table 4.

Table 4. Selected driving segments and their deviations.

Highway Deviation 3.975 4.075 4.122 —
Segment number 359 2506 3966 —

Urban road Deviation 1.886 2.142 2.688 2.874
Segment number 52 3 1637 3174

National
highway

Deviation 6.891 6.9791 . . . 8.168
Segment number 391 1078 . . . 548

The driving cycle was formed by connecting the chosen segments in order. In this
case, there would possibly exist discontinuities between every two segments. In order
to solve this problem, this paper uses moving filter method to smooth the driving cycle
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curve. Finally, the typical driving cycle of fuel cell logistics vehicle is formed as shown in
Figure 10. The whole driving cycle is 18 km in length, lasting for 1581 seconds.

1,5001,000

Figure 10. Constructed driving cycle of fuel cell logistics vehicle.

5. Effectiveness Analysis of Driving Cycle

In order to validate the driving cycle, this paper calculates the errors of the character-
istic parameters between the original data and the cycle built in this paper. Two equations,
as shown in Equations (14) and (15), are introduced:

δi =
|Ai − A|

A
× 100% (14)

δ̄ =
1
n

n

∑
i=1

δi (15)

where δi is the relative error of each characteristic parameter, and δ̄i is the average error
derived from δi. A is the average value of a characteristic parameter of the original data,
Ai is that of the cycle built in this paper. The result shows the average error between the
original data and the cycle is only 7.9%.

Furthermore, this paper calculates the speed acceleration (v− |a|)probability distribu-
tion (SAPD) of the original data and the cycle. The velocity distribution is between 0 and
75 km/h, and the acceleration distribution is between -4 and 4 m/s2. The specific result is
shown in Table 5.

Table 5. Velocity-acceleration (v− |a|) probability distribution matrix of the original data/cycle(%).

v− |a| [0, 1) [1, 2) [2, 3) [3, 4)

[0, 10) 2.2/2.4 0.46/0.69 0.11/0 0.056/0
[10, 20) 3.6/3.4 0.67/0.23 0.14/1.4 0.056/0
[20, 30) 4.0/4.0 1.1/1.3 0.11/0 0.014/0
[30, 40) 6.2/3.7 1.3/1.1 0.042/0.02 0.014/0
[40, 50) 19/19 1.1/0.9 0.042/0.23 0.014/0.2
[50, 60) 46/48 0.38/1.8 0.014/0.69 0/0.69
[60, 75) 12/7.4 0.028/1.1 0/0.2 0/0

In this paper, the cosine similarity theorem is used to judge the similarity of the v− |a|
distribution probability matrix of the original data and the cycle [24]. First, the above two
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distribution probability matrices are converted into two vectors a and b. The equation for
cosine similarity is shown in Equation (16):

Ω = cos θ =
∑28

t=1 atbt√
∑28

t=1 a2
t

√
∑28

t=1 b2
t

(16)

where Ω is the cosine similarity and θ is the angle of two vectors. The result is 0.9903,
which is very close to 1, indicating that the driving cycle constructed in this paper are very
similar to the original one.

6. Discussion

Nowadays, there are not many fuel cell vehicles actually running on the roads of
China, resulting in not much feedback on the development of fuel cell systems based on
actual driving cycle. Therefore, the purpose of this article is mainly to focus on an existing
structured road with fuel cell commercial logistics vehicles running every day, as a research
to promote subsequent fuel cell system development, such as energy management research,
control system optimization, and so on.

This study proposed a methodology to construct a representative driving cycle of
fuel cell vehicles in Guangdong Province. After being pre-processed, the original data
are divided in spatial dimension. Characteristic parameters are derived and K-means
algorithm for cluster analysis is used. The results of the effectiveness analysis show that
the typical driving cycle we constructed can cover the original data well and reflect the
four road structures of highway, urban road, national highway and others.

In the process of constructing the driving cycle, a few prominent differences between
fuel cell vehicles (FCV) and internal combustion engine vehicles (ICEV) are shown. For
example, a fuel cell logistics vehicle have higher average velocity and smooth acceleration
due the its cruising on a highway, which suggests that the occurrence possibility of highway
conditions is the most. However, a fuel cell logistics vehicle has a much lower maximum
speed no more than 80 km/h, which leads to a lower energy consumption when the cycle
is used for vehicle power analysis. The facts above proves again the necessity of building
an independent driving cycle for FCV. The validity analysis of the driving conditions has
provided an outstanding evidence of the correctness of the driving cycle built in this paper,
and the cycle can be taken as basis for the optimization research of energy management
strategies of fuel cell powertrain system. As more and more enterprises pay much attention
on the development and application of commercial vehicles that run on a typical route, it’s
possible for the researchers in those enterprises to analyze the energy consumption along
the route following the procedure this paper puts forward, and plans wisely where a gas
station should be built.
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