# Energy-Efficient Resource and Power Allocation for Underlay Multicast Device-to-Device Transmission

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Related Work

## 3. System Model and Problem Formulation

## 4. Proposed Heuristic Energy-Efficient Resource and Power Allocation Algorithm

Algorithm 1 A heuristic energy-efficient resource and power allocation scheme for D2D multicast transmission |

1: $\mathcal{M}$: List of D2D clusters |

2: $\mathcal{N}$: List of CUs |

3: Construct the matrix ${G}_{M\times N}^{C2D}$ according to (13), |

4: i = 1, j = 1, 5: while $\mathcal{M}\ne \varnothing $,$i\le N$ and $j\le M$ do6: ${G}_{n,m}^{C2D}=\mathrm{arg}\mathrm{min}{G}_{i,j}^{C2D},i\in \mathcal{N},j\in \mathcal{M}$, 7 Record the value of n and m, |

8: Find ${P}_{m}^{D2{D}_{m}}$ and ${P}_{n}^{CU}$ from (14), |

9: if ${P}_{m}^{D2{D}_{m}}\le {P}_{\mathrm{max}}^{D2D}$ and ${P}_{n}^{CU}\le {P}_{\mathrm{max}}^{CU}$ then |

10: D2D cluster m shares resource with CU n, |

11: Substitute ${P}_{m}^{D2{D}_{m}}$ and ${P}_{n}^{CU}$ into the maximization problem built in (12), find the minimum transmit power; 12 j = j + 1, |

13: else |

14: i = i + 1, |

15: end if |

16: end while17: Compute ${\eta}_{all}$ according to (12) |

## 5. Simulation Results

## 6. Conclusions

## Acknowledgments

## Author Contributions

## Conflicts of Interest

## References

- IMT-2020 (5G) Promotion Group. White Paper on 5G Wireless Technology Architecture. Available online: http://www.imt-2020.cn/zh (accessed on 15 May 2015).
- Tehrani, M.N.; Uysal, M.; Yanikomeroglu, H. Device-to-device communication in 5G cellular networks: Challenges, solutions and future directions. IEEE Commun. Mag.
**2014**, 52, 86–92. [Google Scholar] [CrossRef] - Wei, L.L.; Hu, R.Q.; Qian, Y. Enable device-to-device communications underlying cellular networks: Challenges and research aspects. IEEE Commun. Mag.
**2014**, 52, 90–96. [Google Scholar] [CrossRef] - Condoluci, M.; Militano, L.; Araniti, G. Multicasting in LTE-A networks enhanced by device-to-device communications. In Proceedings of the 2013 IEEE Globecom Workshops (GC Workshops), Atlanta, GA, USA, 9–13 December 2013; pp. 567–572. [Google Scholar]
- Shang, B.; Zhao, L.; Chen, K.C. Operator’s Economy of Device-to-Device Offloading in Underlaying Cellular Networks. IEEE Commun. Lett.
**2017**, 21, 865–868. [Google Scholar] [CrossRef] - Meshgi, H.; Zhao, D.; Zheng, R. Joint channel and power allocation in underlay multicast device-to-device communications. In Proceedings of the 2015 IEEE International Conference on Communications (ICC), London, UK, 8–12 June 2015; pp. 2937–2942. [Google Scholar]
- Bhardwaj, A.; Agnihotri, S. A resource allocation scheme for device-to-device multicast in cellular networks. In Proceedings of the 2015 IEEE 26th Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), Hong Kong, China, 30 August–2 September 2015; pp. 1498–1502. [Google Scholar]
- Kitagawa, K.; Homma, H.; Suegara, Y. A user selection algorithm for D2D multicast communication underlying cellular systems. In Proceedings of the 2017 IEEE Wireless Communications and Networking Conference (WCNC 2017), San Francisco, CA, USA, 19–22 March 2017; pp. 1–6. [Google Scholar]
- Yu, S.; Langar, R.; Wang, X. A D2D-Multicast Based Computation Offloading Framework for Interactive Applications. In Proceedings of the 2016 IEEE Global Telecommunications Conference (GLOBECOM 2016), Washington, DC, USA, 4–8 December 2016; pp. 1–6. [Google Scholar]
- Zhao, P.; Feng, L.; Yu, P. Resource allocation for energy-efficient Device-to-Device multicast communication. In Proceedings of the 2016 19th International Symposium on Wireless Personal Multimedia Communications (WPMC 2016), Shenzhen, China, 14–16 November 2016; pp. 518–523. [Google Scholar]
- Chen, X.; Pu, L.; Gao, L. Exploiting massive D2D collaboration for energy-efficient mobile edge computing. IEEE Wirel. Commun.
**2016**, 24, 64–71. [Google Scholar] [CrossRef] - Jiang, L.; Tian, H.; Xing, Z. Social-aware energy harvesting device-to-device communications in 5G networks. IEEE Wirel. Commun.
**2016**, 23, 20–27. [Google Scholar] [CrossRef] - Xu, L.; Jiang, C.; Shen, Y. Energy efficient D2D communications: A perspective of mechanism design. IEEE Trans. Wirel. Commun.
**2016**, 15, 7272–7285. [Google Scholar] [CrossRef] - Guan, N.; Zhou, Y.; Liu, H. An energy efficient cooperative multicast transmission scheme with power control. In Proceedings of the 2011 IEEE Global Telecommunications Conference (GLOBECOM 2011), Houston, TX, USA, 5–9 December 2011; pp. 1–5. [Google Scholar]
- Feng, D.; Yu, G.; Xiong, C. Mode switching for energy-efficient device-to-device communications in cellular networks. IEEE Trans. Wirel. Commun.
**2015**, 14, 6993–7003. [Google Scholar] [CrossRef] - Feng, D.Q.; Lu, L.; Wu, Y.Y.; Li, G.Y.; Li, S.Q. Device-to-device communications underlying cellular Networks. IEEE Trans. Commun.
**2013**, 61, 3541–3551. [Google Scholar] [CrossRef] - Peng, B.; Peng, T.; Liu, Z. Cluster-based multicast transmission for Device-to-Device (D2D) communication. In Proceedings of the 2013 IEEE 78th Vehicular Technology Conference (VTC Fall), Las Vegas, NV, USA, 2–5 September 2013; pp. 1–5. [Google Scholar]
- Zhang, G.; Yang, K.; Chen, H.H. Socially aware cluster formation and radio resource allocation in D2D networks. IEEE Wirel. Commun.
**2016**, 23, 68–73. [Google Scholar] [CrossRef] - Ren, Y.; Liu, F.; Liu, Z.; Ji, Y. Power control in D2D-based vehicular communication networks. IEEE Trans. Veh. Technol.
**2015**, 64, 5547–5562. [Google Scholar] [CrossRef]

**Figure 1.**The considered device-to-device (D2D) multicast transmission network model. BS: base station.

**Table 1.**The simulation parameters. UE: user equipment; RB: resource blocks; SINR: signal-to-interference-and-noise ratio; CU: cellular users; D2D: Device-to-Device.

Parameter | Value |
---|---|

Cell Radius | 400 m |

Total UE number | 500, 1000 |

Spectrum bandwidth | 10 MHz |

Bandwidth of each RB | 180 KHz |

The path loss Component ($\alpha $) | 4 |

Shadowing | Log-normal fading with standard deviation of 8 dB |

Noise power spectrum density (${\sigma}^{2}$) | −174 dBm/Hz |

Minimum SINR Threshold (${\Gamma}_{\mathrm{min}}^{D2D}$,${\Gamma}_{\mathrm{min}}^{CU}$) | 10 dB |

Maximum transmit power of UE (${P}_{\mathrm{max}}^{CU}$,${P}_{\mathrm{max}}^{D2D}$) | CU: 23 dBm, D2D user: 20 dBm |

D2D cluster radius (r) | 30~90 m |

UE Transmission range | 90 m |

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Jiang, F.; Wang, H.; Ren, H.; Xu, S.
Energy-Efficient Resource and Power Allocation for Underlay Multicast Device-to-Device Transmission. *Future Internet* **2017**, *9*, 84.
https://doi.org/10.3390/fi9040084

**AMA Style**

Jiang F, Wang H, Ren H, Xu S.
Energy-Efficient Resource and Power Allocation for Underlay Multicast Device-to-Device Transmission. *Future Internet*. 2017; 9(4):84.
https://doi.org/10.3390/fi9040084

**Chicago/Turabian Style**

Jiang, Fan, Honglin Wang, Hao Ren, and Shuai Xu.
2017. "Energy-Efficient Resource and Power Allocation for Underlay Multicast Device-to-Device Transmission" *Future Internet* 9, no. 4: 84.
https://doi.org/10.3390/fi9040084