Communication Protocols of an Industrial Internet of Things Environment: A Comparative Study
Abstract
:1. Introduction
2. Related Work
3. MODBUS Theory
4. Comparison between IoT Protocols
5. Comparison between MODBUS TCP and MQTT
6. Latency and CPU Usage
7. Discussion
8. Conclusions
Funding
Conflicts of Interest
Abbreviations
6LoWPAN | IPv6 over low-power wireless personal area network |
AMQP | Advanced Message Queuing Protocol |
CoAP | Constrained Application Protocol |
EXI | Efficient XML Interchange |
HTTP | Hypertext Transfer Protocol |
IETF | Internet Engineering Taskforce |
IoT | Internet of Things |
IIoT | Industrial Internet of Things |
JSON | JavaScript Object Notation |
M2M | Machine-to-Machine |
MQTT | Message Queuing Telemetry Transport |
OASIS | Organization for the Advancement of Structured Information Standards |
SCADA | Supervisory Control and Data Acquisition |
SSL | Secure Sockets Layer |
TLS | Transport Layer Security |
UTF-8 | Unicode Transformation Format—8-bit |
XMPP | eXtensible Message and Presence Protocol |
References
- Zanella, A.; Bui, N.; Castellani, A.; Vangelista, L.; Zorzi, M. Internet of Things for Smart Cities. IEEE Internet Things J. 2014, 1, 22–32. [Google Scholar] [CrossRef]
- Ahlgren, B.; Hidell, M.; Ngai, E.C.-H. Internet of Things for Smart Cities: Interoperability and Open Data. IEEE Internet Comput. 2016, 20, 2–56. [Google Scholar] [CrossRef]
- Jaloudi, S. Software-Defined Radio for Modular Audio Mixers: Making Use of Market-Available Audio Consoles and Software-Defined Radio to Build Multiparty Audio-Mixing Systems. IEEE Consum. Electron. Mag. 2017, 6, 97–104. [Google Scholar] [CrossRef]
- Watthanawisuth, N.; Maturos, T.; Sappat, A.; Tuantranont, A. The IoT wearable stretch sensor using 3D-Graphene foam. In Proceedings of the IEEE Conference on SENSORS, Busan, Korea, 1–4 November 2015. [Google Scholar] [CrossRef]
- Chi, Q.; Yan, H.; Zhang, C.; Pang, Z.; Da Xu, L. A Reconfigurable Smart Sensor Interface for Industrial WSN in IoT Environment. IEEE Trans. Ind. Inform. 2014, 10, 1417–1425. [Google Scholar] [CrossRef]
- El Kaed, C.; Khan, I.; Berg, A.V.D.; Hossayni, H.; Saint-Marcel, C. SRE: Semantic Rules Engine for the Industrial Internet-Of-Things Gateways. IEEE Trans. Ind. Inform. 2018, 14, 715–724. [Google Scholar] [CrossRef] [Green Version]
- Iqbal, R.; Butt, T.; Shafiq, O.; Talib, M.; Umer, T. Context-Aware Data-Driven Intelligent Framework for Internet of Vehicles. IEEE Access 2018, 6, 58182–58194. [Google Scholar] [CrossRef]
- Silva, R.; Iqbal, R. Ethical Implications of Social Internet of Vehicle Systems. IEEE Internet Things J. 2018. [Google Scholar] [CrossRef]
- Long, C.; Cao, Y.; Jiang, T.; Zhang, Q. Edge Computing Framework for Cooperative Video Processing in Multimedia IoT Systems. IEEE Trans. Multimed. 2018, 20, 1126–1139. [Google Scholar] [CrossRef]
- Ja’afreh, M.A.; Aloqaily, M.; Ridhawi, I.A.; Mostafa, N. A hybrid-based 3D streaming framework for mobile devices over IoT environments. In Proceedings of the 3rd International Conference on Fog and Mobile Edge Computing (FMEC), Barcelona, Spain, 23–26 April 2018. [Google Scholar] [CrossRef]
- Al Ridhawi, I.; Aloqaily, M.; Kotb, Y.; Al Ridhawi, Y.; Jararweh, Y. A collaborative mobile edge computing and user solution for service composition in 5G systems. Wiley Trans. Emerg. Telecommun. Technol. 2018, 29, e3446. [Google Scholar] [CrossRef]
- Balasubramanian, V.; Aloqaily, M.; Zaman, F.; Jararweh, Y. Exploring Computing at the Edge: A Multi-Interface System Architecture Enabled Mobile Device Cloud. In Proceedings of the 7th International Conference on Cloud Networking (CloudNet), Tokyo, Japan, 22–24 October 2018. [Google Scholar] [CrossRef]
- Jaloudi, S. Open source software of smart city protocols current status and challenges. In Proceedings of the International Conference on Open Source Software Computing (OSSCOM), Amman, Jordan, 10–13 September 2015. [Google Scholar] [CrossRef]
- Standard 19464. Advanced Message Queuing Protocol 1.0 (AMQP 1.0); ISO/IEC: Geneva, Switzerland, 2016. [Google Scholar]
- O’Hara, J. ISO 19464 Connecting Business for Value. 2014. Available online: http://www.amqp.org/sites/amqp.org/files/2014.05.01%20ISO%2019464%20AMQP-ORG_0.pdf (accessed on 4 February 2019).
- Godfrey, R.; Ingham, D.; Schloming, R. OASIS Standard Advanced Message Queuing Protocol (AMQP) Version 1.0. 2012. Available online: http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-complete-v1.0-os.pdf (accessed on 4 February 2019).
- Standard PRF 20922. Message Queuing and Telemetry Transport (MQTT) Version 3.1.1; ISO/IEC: Geneva, Switzerland, 2016. [Google Scholar]
- Standard RFC 7252. Constrained Application Protocol (CoAP); IETF: Fremont, CA, USA, 2014. [Google Scholar]
- Standard RFC 6120. Extensible Message and Presence Protocol (XMPP); IETF: Fremont, CA, USA, 2011. [Google Scholar]
- Standard RFC 7159. The JavaScript Object Notation (JSON) Data Interchange Format; IETF: Fremont, CA, USA, 2014. [Google Scholar]
- Standard IEEE 802.11. Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY); IEEE: New York, NY, USA, 2012. [Google Scholar]
- Tao, F.; Cheng, J.; Qi, Q. IIHub: An Industrial Internet-of-Things Hub Toward Smart Manufacturing Based on Cyber-Physical System. IEEE Trans. Ind. Inform. 2018, 14, 2271–2280. [Google Scholar] [CrossRef]
- Ferrari, P.; Flammini, A.; Rinaldi, S.; Sisinni, E.; Maffei, D.; Malara, M. Impact of Quality of Service on Cloud Based Industrial IoT Applications with OPC UA. Electronics 2018, 7, 109. [Google Scholar] [CrossRef]
- Angrisani, L.; Cesaro, U.; D’Arco, M.; Grillo, D.; Tocchi, A. IOT Enabling Measurement Applications in Industry 4.0: Platform for Remote Programming ATES. In Proceedings of the IEEE Workshop on Metrology for Industry 4.0 and IoT, Brescia, Italy, 16–18 April 2018. [Google Scholar] [CrossRef]
- Müller, J.M.; Kiel, D.; Voigt, K.-I. What Drives the Implementation of Industry 4.0? The Role of Opportunities and Challenges in the Context of Sustainability. Sustainability 2018, 10, 247. [Google Scholar] [CrossRef]
- Sangkeun, Y.; Kim, Y.W.; Choi, H. An assessment framework for smart manufacturing. In Proceedings of the IEEE 20th International Conference on Advanced Communication Technology, Chuncheon-si Gangwon-do, Korea, 11–14 February 2018. [Google Scholar] [CrossRef]
- Moyne, J.; Iskandar, J. Big Data Analytics for Smart Manufacturing: Case Studies in Semiconductor Manufacturing. Processes 2017, 5, 39. [Google Scholar] [CrossRef]
- Chekired, D.A.; Khoukhi, L.; Mouftah, H.T. Industrial IoT Data Scheduling Based on Hierarchical Fog Computing: A Key for Enabling Smart Factory. IEEE Trans. Ind. Inform. 2018, 14, 4590–4602. [Google Scholar] [CrossRef]
- Mabkhot, M.M.; Al-Ahmari, A.M.; Salah, B.; Alkhalefah, H. Requirements of the Smart Factory System: A Survey and Perspective. Machines 2018, 6, 23. [Google Scholar] [CrossRef]
- Modbus Application Protocol Specification V1.1b3. 2012. Available online: http://www.modbus.org/docs/Modbus_Application_Protocol_V1_1b3.pdf (accessed on 3 February 2019).
- Modbus Messaging on TCP/IP Implementation Guide V1.0b. 2006. Available online: http://www.modbus.org/docs/Modbus_Messaging_Implementation_Guide_V1_0b.pdf (accessed on 3 February 2019).
- MODBUS/TCP Security. 2018. Available online: http://www.modbus.org/docs/MB-TCP-Security-v21_2018-07-24.pdf (accessed on 4 February 2019).
- Meng, Z.; Wu, Z.; Muvianto, C.; Gray, J. A Data-Oriented M2M Messaging Mechanism for Industrial IoT Applications. IEEE Internet Things J. 2017, 4, 236–246. [Google Scholar] [CrossRef]
- Brizzi, P.; Conzon, D.; Khaleel, H.; Tomasi, R.; Pastrone, C.; Spirito, A.M.; Knechtel, M.; Pramudianto, F.; Cultrona, P. Bringing the Internet of Things along the manufacturing line: A case study in controlling industrial robot and monitoring energy consumption remotely. In Proceedings of the IEEE 18th Conference on Emerging Technologies & Factory Automation (ETFA), Cagliari, Italy, 10–13 September 2013. [Google Scholar] [CrossRef]
- Chang, C.; Srirama, S.N.; Mass, J. A middleware for discovering proximity-based service-oriented Industrial Internet of Things. In Proceedings of the IEEE International Conference on Services Computing, New Your, NY, USA, 27 June–2 July 2015. [Google Scholar] [CrossRef]
- Packwood, D.; Sharma, M.; Ding, D.; Park, H.; Salcic, Z.; Malik, A.; Kevin, I.; Wang, K. FPGA-based Mixed-Criticality Execution Platform for SystemJ and the Internet of Industrial Things. In Proceedings of the IEEE 18th International Symposium on Real-Time Distributed Computing, Auckland, New Zealand, 13–17 April 2015. [Google Scholar] [CrossRef]
- Meng, Z.; Wu, Z.; Gray, J. A Collaboration-Oriented M2M Messaging Mechanism for the Collaborative Automation between Machines in Future Industrial Networks. Sensors 2017, 17, 2694. [Google Scholar] [CrossRef] [PubMed]
- Calderón Godoy, A.J.; González Pérez, I. Integration of Sensor and Actuator Networks and the SCADA System to Promote the Migration of the Legacy Flexible Manufacturing System towards the Industry 4.0 Concept. J. Sens. Actuator Netw. 2018, 7, 23. [Google Scholar] [CrossRef]
- Kruger, C.P.; Hancke, G.P. Implementing the Internet of Things vision in industrial wireless sensor networks. In Proceedings of the 12th IEEE International Conference on Industrial Informatics, Porto Alegre, Brazil, 27–30 July 2014. [Google Scholar] [CrossRef]
- Hu, P. A System Architecture for Software-Defined Industrial Internet of Things. In Proceedings of the IEEE International Conference on Ubiquitous Wireless Broadband, Montreal, QC, Canada, 4–7 October 2015. [Google Scholar] [CrossRef]
- Corotinschi, G.; Gitan, V.G. Enabling IoT connectivity for Modbus networks by using IoT edge gateways. In Proceedings of the IEEE International Conference on Development and Application Systems, Suceava, Romania, 24–26 May 2018. [Google Scholar] [CrossRef]
- Joshi, R.; Jadav, H.M.; Mali, A.; Kulkarni, S.V. IOT application for real-time monitor of PLC data using EPICS. In Proceedings of the IEEE International Conference on Internet of Things and Applications, Pune, India, 22–24 January 2016. [Google Scholar] [CrossRef]
- Trancă, D.-C.; Pălăcean, A.V.; Mihu, A.C.; Rosner, D. ZigBee based wireless modbus aggregator for intelligent industrial facilities. In Proceedings of the IEEE 25th Telecommunication Forum, Belgrade, Serbia, 21–22 November 2017. [Google Scholar] [CrossRef]
- Shinde, K.S.; Bhagat, P.H. Industrial process monitoring using loT. In Proceedings of the IEEE International conference on IoT in Social, Mobile, Analytics and Cloud, Palladam, India, 10–11 February 2017. [Google Scholar] [CrossRef]
- Standard IEEE 754. Binary Floating-Point Arithmetic; IEEE: New York, NY, USA, 2008. [Google Scholar]
- Yokotani, T.; Sasaki, Y. Comparison with HTTP and MQTT on required network resources for IoT. In Proceedings of the IEEE International Conference on Control, Electronics, Renewable Energy and Communications, Bandung, Indonesia, 13–15 September 2016. [Google Scholar] [CrossRef]
- Joshi, J.; Rajapriya, V.; Rahul, S.R.; Kumar, P.; Polepally, S.; Samineni, R.; Tej, D.K. Performance enhancement and IoT based monitoring for smart home. In Proceedings of the IEEE International Conference on Information Networking, Da Nang, Vietnam, 11–13 January 2017. [Google Scholar] [CrossRef]
- Thota, P.; Kim, Y. Implementation and Comparison of M2M Protocols for Internet of Things. In Proceedings of the IEEE International Conference on ACIT-CSII-BCD, Las Vegas, NV, USA, 12–14 December 2016. [Google Scholar] [CrossRef]
- Luzuriaga, J.E.; Perezy, M.; Boronaty, P.; Cano, J.C.; Calafate, C.; Manzoni, P. A comparative evaluation of AMQP and MQTT protocols over unstable and mobile networks. In Proceedings of the 12th Annual IEEE Consumer Communications and Networking Conference (CCNC), Las Vegas, NV, USA, 9–12 January 2015. [Google Scholar] [CrossRef]
- Gao, W.; Nguyeny, J.; Yu, W.; Lu, C.; Kuy, D.; Hatcher, W.G. Towards Emulation-Based Performance Assessment of Constrained Application Protocol (CoAP) in Dynamic Networks. IEEE Internet Things J. 2017, 4, 1597–1610. [Google Scholar] [CrossRef]
- Koster, M.; Keranen, A.; Jimene, J. IETF Draft Standard Publish-Subscribe Broker for the Constrained Application Protocol (CoAP). 2019. Available online: https://tools.ietf.org/html/draft-ietf-core-coap-pubsub-06 (accessed on 4 February 2019).
- Käbisch, S.; Peintner, D. W3C Recommendation Canonical EXI. 2018. Available online: https://www.w3.org/TR/exi-c14n/ (accessed on 4 February 2019).
- Carías, J.F.; Labaka, L.; Sarriegi, J.M.; Hernantes, J. Defining a Cyber Resilience Investment Strategy in an Industrial Internet of Things Context. Sensors 2019, 19, 138. [Google Scholar] [CrossRef] [PubMed]
- Kwon, S.; Jeong, J.; Shon, T. Toward Security Enhanced Provisioning in Industrial IoT Systems. Sensors 2018, 18, 4372. [Google Scholar] [CrossRef] [PubMed]
- Xun, P.; Zhu, P.-D.; Hu, Y.-F.; Cui, P.-S.; Zhang, Y. Command Disaggregation Attack and Mitigation in Industrial Internet of Things. Sensors 2017, 17, 2408. [Google Scholar] [CrossRef] [PubMed]
- Aloqaily, M.; Otoum, S.; Ridhawi, I.A.; Jararweh, Y. An Intrusion Detection System for Connected Vehicles in Smart Cities. J. Ad Hoc Netw. 2019, in press. [Google Scholar] [CrossRef]
- Otoum, S.; Kantarci, B.; Mouftah, H. Adaptively Supervised and Intrusion-Aware Data Aggregation for Wireless Sensor Clusters in Critical Infrastructures. In Proceedings of the IEEE International Conference on Communications (ICC), Kansas City, MO, USA, 20–24 May 2018. [Google Scholar] [CrossRef]
- Otoum, S.; Kantarci, B.; Mouftah, H.T. Detection of Known and Unknown Intrusive Sensor Behavior in Critical Applications. IEEE Sens. Lett. 2017, 1, 1–4. [Google Scholar] [CrossRef]
- Wang, C.; Shen, J.; Liu, Q.; Ren, Y.; Li, T. A Novel Security Scheme Based on Instant Encrypted Transmission for Internet of Things. Secur. Commun. Netw. 2018, 2018, 3680851. [Google Scholar] [CrossRef]
- Otoum, S.; Kantarci, B.; Mouftah, H.T. Hierarchical trust-based black-hole detection in WSN-based smart grid monitoring. In Proceedings of the IEEE International Conference on Communications (ICC), Paris, France, 21–25 May 2017. [Google Scholar] [CrossRef]
Data Access | Type | Function Code | Meaning |
---|---|---|---|
1 bit | physical discrete input | 0x02 | read discrete inputs |
1 bit | internal bits, physical coils | 0x01 | read coils |
1 bit | internal bits, physical coils | 0x05 | write single coil |
1 bit | internal bits, physical coils | 0x0F | write multiple coils |
16 bit | physical input registers | 0x04 | read input registers |
16 bit | internal and physical output registers | 0x03 | read holding registers |
16 bit | internal and physical output registers | 0x06 | write single register |
16 bit | internal and physical output registers | 0x10 | write multiple registers |
16 bit | internal and physical output registers | 0x17 | read/write registers |
16 bit | internal and physical output registers | 0x16 | mask write register |
16 bit | internal and physical output registers | 0x18 | read first in first out (FIFO) queue |
Feature | HTTP | CoAP | MQTT | MODBUS TCP |
---|---|---|---|---|
infrastructure | Ethernet, Wi-Fi | 6LoWPAN | Ethernet, Wi-Fi | Ethernet, Wi-Fi |
network layer | IPv4 or IPv6 | IPv6 | IPv4 or IPv6 | IPv4 or IPv6 |
transport layer | TCP | UDP | TCP | TCP |
transport port | 80, 443 | 5683 | 1883, 8883 | 502, 802 |
model | synchronous | asynchronous | asynchronous | synchronous |
pattern | request—response | both | publish—subscribe | request—response |
mechanism | one-to-one | one-to-one | one-to-many | one-to-one |
methodology | document-oriented | document-oriented | message-oriented | byte-oriented |
paradigm | long polling-based | polling-based | event-based | polling-based |
quality level | one level | two: CON or NON | three: QoS 0, 1, 2 | one level |
standard | IETF (RFC7230) | IETF (RFC7252) | ISO/IEC, OASIS | modbus.org |
encoding | ASCII text | RESTful (Binary) | UTF-8 (Binary) | Binary |
security | SSL, TLS | DTLS | SSL, TLS | TLS |
Character | UTF-8 (Decimal) | UTF-8 (Hex) | Meaning |
---|---|---|---|
0 | 48 | 0x30 | Digit Zero |
1 | 49 | 0x31 | Digit One |
2 | 50 | 0x32 | Digit Two |
3 | 51 | 0x33 | Digit Three |
4 | 52 | 0x34 | Digit Four |
5 | 53 | 0x35 | Digit Five |
6 | 54 | 0x36 | Digit Six |
7 | 55 | 0x37 | Digit Seven |
8 | 56 | 0x38 | Digit Eight |
9 | 57 | 0x39 | Digit Nine |
A | 65 | 0x41 | Capital Letter A |
B | 66 | 0x42 | Capital Letter B |
C | 67 | 0x43 | Capital Letter C |
D | 68 | 0x44 | Capital Letter D |
E | 69 | 0x45 | Capital Letter E |
F | 70 | 0x46 | Capital Letter F |
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jaloudi, S. Communication Protocols of an Industrial Internet of Things Environment: A Comparative Study. Future Internet 2019, 11, 66. https://doi.org/10.3390/fi11030066
Jaloudi S. Communication Protocols of an Industrial Internet of Things Environment: A Comparative Study. Future Internet. 2019; 11(3):66. https://doi.org/10.3390/fi11030066
Chicago/Turabian StyleJaloudi, Samer. 2019. "Communication Protocols of an Industrial Internet of Things Environment: A Comparative Study" Future Internet 11, no. 3: 66. https://doi.org/10.3390/fi11030066
APA StyleJaloudi, S. (2019). Communication Protocols of an Industrial Internet of Things Environment: A Comparative Study. Future Internet, 11(3), 66. https://doi.org/10.3390/fi11030066