
future internet

Article

Communication Protocols of an Industrial Internet of
Things Environment: A Comparative Study

Samer Jaloudi

Department of Information and Communication Technology, Al Quds Open University, Nablus 00407,
West Bank, Palestine; sgalodi@qou.edu or samer.jaloudi@ieee.org; Tel.: +970-0599-376-492

Received: 4 February 2019; Accepted: 4 March 2019; Published: 7 March 2019
����������
�������

Abstract: Most industrial and SCADA-like (supervisory control and data acquisition) systems use
proprietary communication protocols, and hence interoperability is not fulfilled. However, the
MODBUS TCP is an open de facto standard, and is used for some automation and telecontrol systems.
It is based on a polling mechanism and follows the synchronous request–response pattern, as opposed
to the asynchronous publish–subscribe pattern. In this study, polling-based and event-based protocols
are investigated to realize an open and interoperable Industrial Internet of Things (IIoT) environment.
Many Internet of Things (IoT) protocols are introduced and compared, and the message queuing
telemetry transport (MQTT) is chosen as the event-based, publish–subscribe protocol. The study
shows that MODBUS defines an optimized message structure in the application layer, which is
dedicated to industrial applications. In addition, it shows that an event-oriented IoT protocol
complements the MODBUS TCP but cannot replace it. Therefore, two scenarios are proposed to build
the IIoT environment. The first scenario is to consider the MODBUS TCP as an IoT protocol, and
build the environment using the MODBUS TCP on a standalone basis. The second scenario is to use
MQTT in conjunction with the MODBUS TCP. The first scenario is efficient and complies with most
industrial applications where the request–response pattern is needed only. If the publish–subscribe
pattern is needed, the MQTT in the second scenario complements the MODBUS TCP and eliminates
the need for a gateway; however, MQTT lacks interoperability. To maintain a homogeneous message
structure for the entire environment, industrial data are organized using the structure of MODBUS
messages, formatted in the UTF-8, and then transferred in the payload of an MQTT publish message.
The open and interoperable environment can be used for Internet SCADA, Internet-based monitoring,
and industrial control systems.

Keywords: automation; IIoT; MQTT; MODBUS; publish–subscribe; request–response; SCADA

1. Introduction

The Internet of Things (IoT) is an emerging technology that represents a cost-effective, scalable,
and reliable ecosystem, proposed for many applications, including smart city sectors [1,2], consumer
devices [3,4], industrial environments [5,6], Internet of vehicles [7,8], multimedia [9,10], and 5G
systems [11,12]. The IoT platform, from the communications perspective, consists of a TCP/IP network
and standard protocols [13]. Standard protocols primarily include advanced message queuing protocol
version 1.0 (AMQP 1.0) [14–16], message queuing and telemetry transport (MQTT) [17], constrained
application protocol (CoAP) [18], extensible messaging and presence protocol (XMPP) [19], and
JavaScript object notation (JSON) [20]. The TCP/IP networks include Wi-Fi [21], Internet, Intranet,
and modern mobile networks. The employment of a communication infrastructure and protocol
depends on the field of application, the timing requirements, and the data transmission rates [13].
Therefore, the requirements of consumer electronics are different from those of smart city sectors and
industrial applications.

Future Internet 2019, 11, 66; doi:10.3390/fi11030066 www.mdpi.com/journal/futureinternet

http://www.mdpi.com/journal/futureinternet
http://www.mdpi.com
https://orcid.org/0000-0002-7428-6086
http://www.mdpi.com/1999-5903/11/3/66?type=check_update&version=1
http://dx.doi.org/10.3390/fi11030066
http://www.mdpi.com/journal/futureinternet

Future Internet 2019, 11, 66 2 of 18

In the industry context, Industrial Internet of Things (IIoT) [22,23], Industry 4.0 [24,25], Smart
Manufacturing [26,27], and Smart Factory [28,29] are all terminologies for the emerging industrial
environments that employ information and communication technologies (ICTs), including IoT
platforms, while maintaining industry requirements. The term IIoT refers to the use of IoT technologies
in many fields of application such as manufacturing, factories, transportation, gas, oil, and electric grids.
However, most industrial and SCADA-like (supervisory control and data acquisition) systems of these
fields employ proprietary communication protocols and ICTs, which lead to closed industrial systems.
Hence, customers are stuck to a single vendor, costs are high, and interoperability is not fulfilled.

In this paper, standard IoT protocols are introduced and compared. Then, MQTT is chosen for
machine-to-machine (M2M) communications to complement the MODBUS TCP [30–32] operations
in an IIoT environment. This environment integrates an event-based message-oriented protocol,
i.e., MQTT, with a polling-based request–response protocol, intended for industrial applications,
i.e., MODBUS TCP. The study shows that the MODBUS TCP and MQTT can coexist together,
and in parallel, within the same IIoT environment. While industrial requirements of control and
monitoring can be met via the MODBUS TCP using the request–response model, the MQTT protocol
complements its operation by fulfilling the IoT requirements, using the publish–subscribe pattern
for M2M communications. The IoT protocol works in parallel with the MODBUS TCP and relays
industrial data to an Internet-based server for remote monitoring, analysis, and archiving. To solve
the interoperability problem, industrial data are formatted using the MODBUS message format and
transferred in the payload of the MQTT publish messages. In fact, the IoT protocols cannot replace the
MODBUS protocol in most industrial applications, especially when an optimized message structure
is required in the application layer. A second scenario is proposed here, which is to consider the
MODBUS TCP as an IoT protocol, and hence build the IIoT environment with the MODBUS TCP only.
This solution is efficient and complies with most industrial applications; however, it only depends on
the request–response model. The choice of solution is totally dependent on the requirements of the
industrial application.

The developed environment can be employed in many industrial applications, including Internet
SCADA, Internet-based monitoring, and industrial control systems. Hence, customers are not stuck to
a single vendor, costs are reduced, and interoperability is maintained.

The remainder of the paper is organized as follows. Section 2 presents a related literature survey,
Section 3 presents a theoretical background of the MODBUS protocol, Section 4 compares IoT protocols,
and Section 5 compares MQTT and the MODBUS TCP. Section 6 compares the latencies and resource
usage of both protocols. Section 7 presents a discussion and Section 8 concludes the paper.

2. Related Work

In the context of industry, researchers are proposing and examining protocols, networks, and
middleware architectures for industrial ICT infrastructure and integration.

For integration purposes, the authors of [33] proposed a data-oriented machine-to-machine (M2M)
communication middleware based on the ZeroMQ platform for IIoT applications. The researchers
of [34] presented a case study for controlling industrial robots and monitoring energy consumption
remotely based on Ebbits middleware, which transforms data into web services. Another
service-oriented IIoT middleware is proposed in [35] for balancing task allocation between a mobile
terminal and a utility cloud service. In [36], a platform based on SystemJ for IIoT is proposed using
an FPGA (field programmable gate array), and then tested in an automation system. Reference [37]
describes a collaboration-oriented M2M (CoM2M) messaging mechanism for IIoT, based on the
platform PicknPack food packaging line. In [38], legacy flexible manufacturing systems are integrated
with the SCADA system of an Industry 4.0 framework via Ethernet. However, these research papers
investigated middleware architectures for integration purposes.

The infrastructure of an IIoT was examined in [39], where the IoT vision in industrial wireless
sensor networks was implemented using the IPv6 over low-power wireless personal area network

Future Internet 2019, 11, 66 3 of 18

(6LoWPAN) and CoAP. Furthermore, the author of [40] proposed a software-defined network for an
IIoT based on new networking technologies. However, these research papers investigated network
solutions and architectures.

Infrastructure protocols were examined in many studies. For example, the authors of [41]
developed an edge IoT gateway to extend the connectivity of MODBUS devices to IoT by storing
the scanned data from MODBUS devices locally, and then transferring the changes via an MQTT
publisher to MQTT clients via a broker. The researchers of [42] designed and implemented a web-based
real-time data monitoring system that uses MODBUS TCP communications, following which all data
are displayed in a real-time chart in an Internet browser, which is refreshed at regular intervals using
hypertext transfer protocol (HTTP) polling communications. In [43], a MODBUS serial protocol was
reported that collects data serially via a RS-232 protocol and transfers the collected data over the
ZigBee protocol. In [44], measurements of field devices collected by the MODBUS serial protocol were
transferred over HTTP using a Wi-Fi network. However, these papers proposed a gateway as a bridge
between MODBUS and the Internet, Intranet, or wireless network.

In this study, the MODBUS TCP is proposed to be implemented in two scenarios—either alone, or
in parallel with an MQTT publisher without a gateway. The first solution proposes the MODBUS TCP
as an IoT protocol to build the industrial environment on a standalone basis. Using the second
arrangement, the MODBUS TCP executes its operations while maintaining the requirements of
industrial applications and MQTT achieves the M2M communications for IoT functions.

3. MODBUS Theory

The MODBUS TCP is a byte-oriented, industrial communication protocol, open de facto standard,
used for data exchange between embedded systems, devices, and industrial applications. Devices,
reacting as clients, may benefit from the inexpensive implementation of such a lightweight protocol for
polling industrial devices that react as servers. Polling communications follow the request–response
mechanism, where a client queries the server for specific data or executes commands in the server
using a frame of bytes arranged in a specific way, called a frame format. The server replies to the client
queries via a frame of bytes either holding measurement data from sensors or confirming the execution
of commands. Sixteen-bit data registers store measurement values, and coils hold the status of ON and
OFF switches. Therefore, MODBUS TCP uses the polling mechanism, as opposed to the event-based
mechanism, explained in the next section.

As listed in Table 1, the protocol specifications [30] define three categories of function codes for
the access of data in remote devices. These data are stored in coils or registers as status values for
measurements or transferred as setpoints for control. Coils perform one-bit read and write operations
for switching the attached devices ON and OFF or reading and writing one-bit internal configuration
values. Discrete inputs perform one-bit read operations for reading the status of the attached devices,
whether they are switched ON or OFF. The 16-bit input registers are responsible for measurements
from physical devices, and the 16-bit holding registers perform read and write operations related to
internal reconfigurable values.

Table 1. Function codes for data access in MODBUS.

Data Access Type Function Code Meaning

1 bit physical discrete input 0x02 read discrete inputs
1 bit internal bits, physical coils 0x01 read coils
1 bit internal bits, physical coils 0x05 write single coil
1 bit internal bits, physical coils 0x0F write multiple coils

16 bit physical input registers 0x04 read input registers
16 bit internal and physical output registers 0x03 read holding registers
16 bit internal and physical output registers 0x06 write single register
16 bit internal and physical output registers 0x10 write multiple registers
16 bit internal and physical output registers 0x17 read/write registers
16 bit internal and physical output registers 0x16 mask write register
16 bit internal and physical output registers 0x18 read first in first out (FIFO) queue

Future Internet 2019, 11, 66 4 of 18

A message structure of a MODBUS TCP client query for reading input registers is shown in
Figure 1. The slave replies to the master query in the same format with the read registers using the
function code (FC) “read input registers” (FC = 0x04), or as a confirmation to executing commands in
case of other function codes such as “write single coil” (FC = 0x05).

The header of the MODBUS frame consists of four fields: a two-byte transaction identifier (ID);
a two-byte protocol type (MODBUS over TCP); a two-byte length, which counts the number of bytes
for the rest fields; and a one-byte unit identifier (Unit). However, the protocol data unit (PDU) consists
of a one-byte function code (FC), which is, here, a code to read the registers and a data field that may
contain other fields depending on the FC itself. Both the header and the PDU form an application data
unit (ADU), which is the complete frame of the query.

The following illustrative example explains the principle of the MODBUS frame format that uses
a function code (0x04) to read three continuous input registers in a remote device. The function is
able to read from 1 to 125 contiguous input registers. Here, a client query asks a server to read
the values of three continuous input registers—register address “14” (0x000E), register address
“15” (0x000F), and register address “16” (0x0010). Therefore, the client sends a single message
“0001000000060104000E0003” and the server replies by sending one frame “000100000009010406FE20
6666A63F” that contains three values of continuous registers. The first register contains the hexadecimal
value “0xFE20,” which corresponds to the sixteen-bit signed short integer value “11111110 00100000”
or the decimal value “–480”. The last two registers hold the IEEE 754 short floating-point [45]
representation “0x3FA66666” or the decimal value “1.3”.

Future Internet 2019, 11, x FOR PEER REVIEW 4 of 18

16 bit
internal and physical output

registers 0x06 write single register

16 bit
internal and physical output

registers 0x10 write multiple registers

16 bit internal and physical output
registers

0x17 read/write registers

16 bit internal and physical output
registers 0x16 mask write register

16 bit
internal and physical output

registers 0x18
read first in first out (FIFO)

queue

A message structure of a MODBUS TCP client query for reading input registers is shown in
Figure 1. The slave replies to the master query in the same format with the read registers using the
function code (FC) “read input registers” (FC = 0x04), or as a confirmation to executing commands in
case of other function codes such as “write single coil” (FC = 0x05).

The header of the MODBUS frame consists of four fields: a two-byte transaction identifier (ID);
a two-byte protocol type (MODBUS over TCP); a two-byte length, which counts the number of bytes
for the rest fields; and a one-byte unit identifier (Unit). However, the protocol data unit (PDU)
consists of a one-byte function code (FC), which is, here, a code to read the registers and a data field
that may contain other fields depending on the FC itself. Both the header and the PDU form an
application data unit (ADU), which is the complete frame of the query.

The following illustrative example explains the principle of the MODBUS frame format that
uses a function code (0x04) to read three continuous input registers in a remote device. The function
is able to read from 1 to 125 contiguous input registers. Here, a client query asks a server to read the
values of three continuous input registers—register address “14” (0x000E), register address “15”
(0x000F), and register address “16” (0x0010). Therefore, the client sends a single message
“0001000000060104000E0003” and the server replies by sending one frame
“000100000009010406FE206666A63F” that contains three values of continuous registers. The first
register contains the hexadecimal value “0xFE20,” which corresponds to the sixteen-bit signed short
integer value “11111110 00100000” or the decimal value “–480”. The last two registers hold the IEEE
754 short floating-point [45] representation “0x3FA66666” or the decimal value “1.3”.

Figure 1. MODBUS query and response, an illustrative example.

Using the MODBUS specifications [30], the information from Table 1, and the MODBUS frame
of Figure 1, the total consumed bytes (size) can be calculated via Equation (1). The formula is derived
for the function code of “read input registers” (0x04) and is plotted in Figure 2, where N refers to the
number of registers, which is doubled because each register contains two bytes:

Figure 1. MODBUS query and response, an illustrative example.

Using the MODBUS specifications [30], the information from Table 1, and the MODBUS frame of
Figure 1, the total consumed bytes (size) can be calculated via Equation (1). The formula is derived
for the function code of “read input registers” (0x04) and is plotted in Figure 2, where N refers to the
number of registers, which is doubled because each register contains two bytes:

Size = request_bytes + response_bytes

= (7 + 5) + (9 + 2 × N)

= 2 × N + 21

. (1)

For the request case, the header occupies 7 bytes, the function code occupies 1 byte, the start
register-address occupies 2 bytes, and the quantity occupies 2 bytes. For the response case, the header
occupies 7 bytes, the function code 1 byte, and the length 1 byte.

Future Internet 2019, 11, 66 5 of 18

Future Internet 2019, 11, x FOR PEER REVIEW 5 of 18

request bytes response bytes

7 5 9 2

2 21

Size _ _

() (* N)

* N

. (1)

For the request case, the header occupies 7 bytes, the function code occupies 1 byte, the start
register-address occupies 2 bytes, and the quantity occupies 2 bytes. For the response case, the
header occupies 7 bytes, the function code 1 byte, and the length 1 byte.

Figure 2. Relationship between the number of bytes and the number of registers of function codes
(FC) “read input registers” (0x04), “write multiple coils” (0x0F), and “write multiple registers”
(0x10).

The same principle is applied to other function codes, such as “read holding registers” (0x03),
which has the same linear equation; “write multiple registers” (0x10), which can be represented by
the linear equation (2*N + 25); and “write multiple coils” (0x0F), which can be represented by the
linear equation (N + 25). As an example, if the number of registers (N) is 4, the size is 29 for the “read
input registers” (0x04) and 33 for the “write multiple registers” (0x10) function codes.

If the client application requires the execution of both operations—read and write—within the
same message for a remote device, the function code “read/write multiple registers” (0x17) shows
higher performance than both the “read input registers” (0x04) and the “write multiple registers”
(0x10) function codes if used separately. Equation (2) illustrates two linear formulae for the function
code “read/write multiple registers” (0x17), which sends both commands within the same message:

Bytes request 17 2 Read
Bytes response 9 2 Write

Total size 26 2 Read Write

_ * N

_ * N

_ * N N

. (2)

Both equations of the function code “read/write multiple registers” (0x17) request and response
are plotted in Figure 3. Both equations are linear and depend on the number of registers to be written
(NWrite) and read (NRead).

As a result, the MODBUS TCP has an optimized frame structure suitable for SCADA-like
systems and has a communication mechanism that fulfills the industrial requirements. In addition, it
has a communication model and pattern that are compatible with industrial applications. As shown

Figure 2. Relationship between the number of bytes and the number of registers of function codes (FC)
“read input registers” (0x04), “write multiple coils” (0x0F), and “write multiple registers” (0x10).

The same principle is applied to other function codes, such as “read holding registers” (0x03),
which has the same linear equation; “write multiple registers” (0x10), which can be represented by the
linear equation (2∗N + 25); and “write multiple coils” (0x0F), which can be represented by the linear
equation (N + 25). As an example, if the number of registers (N) is 4, the size is 29 for the “read input
registers” (0x04) and 33 for the “write multiple registers” (0x10) function codes.

If the client application requires the execution of both operations—read and write—within the
same message for a remote device, the function code “read/write multiple registers” (0x17) shows
higher performance than both the “read input registers” (0x04) and the “write multiple registers”
(0x10) function codes if used separately. Equation (2) illustrates two linear formulae for the function
code “read/write multiple registers” (0x17), which sends both commands within the same message:

Bytes_request = 17 + 2 × NRead

Bytes_response = 9 + 2 × NWrite

∴ Total_size = 26 + 2 × (NRead + NWrite)

. (2)

Both equations of the function code “read/write multiple registers” (0x17) request and response
are plotted in Figure 3. Both equations are linear and depend on the number of registers to be written
(NWrite) and read (NRead).

As a result, the MODBUS TCP has an optimized frame structure suitable for SCADA-like systems
and has a communication mechanism that fulfills the industrial requirements. In addition, it has a
communication model and pattern that are compatible with industrial applications. As shown in
Figures 1–3, the protocol is lightweight. Moreover, it has an open specification, and uses TCP/IP
networks. Accordingly, it can be considered as an IoT protocol.

Future Internet 2019, 11, 66 6 of 18

Future Internet 2019, 11, x FOR PEER REVIEW 6 of 18

in Figures 1–3, the protocol is lightweight. Moreover, it has an open specification, and uses TCP/IP
networks. Accordingly, it can be considered as an IoT protocol.

Figure 3. Relationship between the number of bytes and the number of registers of the MODBUS
function code (FC) “read/write multiple registers” (0x17).

4. Comparison between IoT Protocols

A performance comparison between HTTP and MQTT is conducted in [46] on required
network resources for IoT, while the payload was fixed to zero bytes and the topic names were
varied. In addition, a performance analysis of MQTT, HTTP, and CoAP was performed in [47] for
IoT-based monitoring of a smart home. The authors of [48] discussed and analyzed the efficiency,
usage, and requirements of MQTT and CoAP. Moreover, the authors of [49] compared AMQP and
MQTT over mobile networks, and the authors of [50] emulated a quantitative performance
assessment of CoAP in comparison with HTTP.

In this section, the main differences between HTTP, CoAP, MQTT, AMQP, XMPP, and
MODBUS TCP protocols are discussed from various telecommunication aspects. Then, a protocol is
chosen that fulfills the requirements of the IIoT environment.

Accordingly, Table 2 summarizes these differences from different communication aspects
including infrastructure, architecture, mechanism, model, messaging pattern, methodology, and
transmission paradigm. These protocols use the client–server communication architecture. HTTP
uses the request–response model and is a document-oriented protocol, whereas MQTT uses the
publish–subscribe model and is message-oriented. Thus, MQTT is one-to-many, and HTTP is
one-to-one (peer-to-peer). CoAP uses a specific infrastructure—namely, 6LoWPAN (IEEE
802.15.4)—which employs IPv6 in the network layer. Both MQTT and HTTP use an inexpensive and
available communication infrastructure, which is Internet or Intranet in wire mode (Ethernet—IEEE
802.3) or wireless mode (Wi-Fi—IEEE 802.11)—which may employ either IPv4 or IPv6 in the
network layer. In the transport layer, MQTT and HTTP protocols use TCP port numbers 1883 and 80,
respectively. However, CoAP uses UDP port number 5683. Given that MQTT is event-based, it is a
message-oriented protocol. Thus, CoAP mimics HTTP in using polling-based messaging, but in a
shorter time and smaller frame-size.

Figure 3. Relationship between the number of bytes and the number of registers of the MODBUS
function code (FC) “read/write multiple registers” (0x17).

4. Comparison between IoT Protocols

A performance comparison between HTTP and MQTT is conducted in [46] on required network
resources for IoT, while the payload was fixed to zero bytes and the topic names were varied.
In addition, a performance analysis of MQTT, HTTP, and CoAP was performed in [47] for IoT-based
monitoring of a smart home. The authors of [48] discussed and analyzed the efficiency, usage, and
requirements of MQTT and CoAP. Moreover, the authors of [49] compared AMQP and MQTT over
mobile networks, and the authors of [50] emulated a quantitative performance assessment of CoAP in
comparison with HTTP.

In this section, the main differences between HTTP, CoAP, MQTT, AMQP, XMPP, and MODBUS
TCP protocols are discussed from various telecommunication aspects. Then, a protocol is chosen that
fulfills the requirements of the IIoT environment.

Accordingly, Table 2 summarizes these differences from different communication aspects
including infrastructure, architecture, mechanism, model, messaging pattern, methodology, and
transmission paradigm. These protocols use the client–server communication architecture. HTTP
uses the request–response model and is a document-oriented protocol, whereas MQTT uses the
publish–subscribe model and is message-oriented. Thus, MQTT is one-to-many, and HTTP
is one-to-one (peer-to-peer). CoAP uses a specific infrastructure—namely, 6LoWPAN (IEEE
802.15.4)—which employs IPv6 in the network layer. Both MQTT and HTTP use an inexpensive and
available communication infrastructure, which is Internet or Intranet in wire mode (Ethernet—IEEE
802.3) or wireless mode (Wi-Fi—IEEE 802.11)—which may employ either IPv4 or IPv6 in the network
layer. In the transport layer, MQTT and HTTP protocols use TCP port numbers 1883 and 80, respectively.
However, CoAP uses UDP port number 5683. Given that MQTT is event-based, it is a message-oriented
protocol. Thus, CoAP mimics HTTP in using polling-based messaging, but in a shorter time and
smaller frame-size.

Future Internet 2019, 11, 66 7 of 18

Table 2. Comparison of Internet of Things (IoT) protocols.

Feature HTTP CoAP MQTT MODBUS TCP

infrastructure Ethernet, Wi-Fi 6LoWPAN Ethernet, Wi-Fi Ethernet, Wi-Fi
network layer IPv4 or IPv6 IPv6 IPv4 or IPv6 IPv4 or IPv6
transport layer TCP UDP TCP TCP
transport port 80, 443 5683 1883, 8883 502, 802

model synchronous asynchronous asynchronous synchronous
pattern request—response both publish—subscribe request—response

mechanism one-to-one one-to-one one-to-many one-to-one
methodology document-oriented document-oriented message-oriented byte-oriented

paradigm long polling-based polling-based event-based polling-based
quality level one level two: CON or NON three: QoS 0, 1, 2 one level

standard IETF (RFC7230) IETF (RFC7252) ISO/IEC, OASIS modbus.org
encoding ASCII text RESTful (Binary) UTF-8 (Binary) Binary
security SSL, TLS DTLS SSL, TLS TLS

CoAP is an application layer protocol, dedicated to communication with constrained devices in
IPv6-based IoT infrastructures. Two communication patterns are used by CoAP, i.e., publish–subscribe
and request–response [51]. The CoAP messaging pattern is based on the exchange of messages between
endpoints and uses a short fixed-length binary header that may be followed by a compact binary option
and a payload. Compared to HTTP, as shown in Figure 4, CoAP runs over the connectionless UDP in
the transport layer, whereas in the network layer, CoAP uses either IPv6 or 6LoWPAN. When CoAP
uses IPv6, it is necessary for it to use Ethernet or Wi-Fi for the data link and physical layers, respectively.
When CoAP uses 6LoWPAN, it employs IEEE 802.15.4e for the data link and physical layers.

The content (payload) of HTTP may vary according to the type of transferred data, called
content-type, which could be plain text, HTML, XML, GIF image, PDF application, or audio.
For the exchange of data using HTTP, XML is used, which handles verbose plain text for solving
interoperability issues. However, for CoAP, the efficient XML interchange (EXI) [52] is used, which
encodes verbose XML documents in binary format, if interoperability is considered. This is normally
used for constrained devices to increase the performance and decrease the consumed power. Hence,
CoAP is suitable for constrained devices in IoT-based wireless sensor networks that employ IPv6-based
infrastructure. However, it needs a gateway to exchange data over the Internet.

Future Internet 2019, 11, x FOR PEER REVIEW 7 of 18

Table 2. Comparison of Internet of Things (IoT) protocols.

Feature HTTP CoAP MQTT MODBUS TCP
infrastructure Ethernet, Wi-Fi 6LoWPAN Ethernet, Wi-Fi Ethernet, Wi-Fi
network layer IPv4 or IPv6 IPv6 IPv4 or IPv6 IPv4 or IPv6
transport layer TCP UDP TCP TCP
transport port 80, 443 5683 1883, 8883 502, 802

model synchronous asynchronous asynchronous synchronous
pattern request—response both publish—subscribe request—response

mechanism one-to-one one-to-one one-to-many one-to-one
methodology document-oriented document-oriented message-oriented byte-oriented

paradigm long polling-based polling-based event-based polling-based
quality level one level two: CON or NON three: QoS 0, 1, 2 one level

standard IETF (RFC7230) IETF (RFC7252) ISO/IEC, OASIS modbus.org
encoding ASCII text RESTful (Binary) UTF-8 (Binary) Binary
security SSL, TLS DTLS SSL, TLS TLS

CoAP is an application layer protocol, dedicated to communication with constrained devices in
IPv6-based IoT infrastructures. Two communication patterns are used by CoAP, i.e.,
publish–subscribe and request–response [51]. The CoAP messaging pattern is based on the exchange
of messages between endpoints and uses a short fixed-length binary header that may be followed by
a compact binary option and a payload. Compared to HTTP, as shown in Figure 4, CoAP runs over
the connectionless UDP in the transport layer, whereas in the network layer, CoAP uses either IPv6
or 6LoWPAN. When CoAP uses IPv6, it is necessary for it to use Ethernet or Wi-Fi for the data link
and physical layers, respectively. When CoAP uses 6LoWPAN, it employs IEEE 802.15.4e for the
data link and physical layers.

The content (payload) of HTTP may vary according to the type of transferred data, called
content-type, which could be plain text, HTML, XML, GIF image, PDF application, or audio. For the
exchange of data using HTTP, XML is used, which handles verbose plain text for solving
interoperability issues. However, for CoAP, the efficient XML interchange (EXI) [52] is used, which
encodes verbose XML documents in binary format, if interoperability is considered. This is normally
used for constrained devices to increase the performance and decrease the consumed power. Hence,
CoAP is suitable for constrained devices in IoT-based wireless sensor networks that employ
IPv6-based infrastructure. However, it needs a gateway to exchange data over the Internet.

(a) (b) (c)

Figure 4. Communication protocols in the IEEE model (a); the HTTP (b); the CoAP (c). Figure 4. Communication protocols in the IEEE model (a); the HTTP (b); the CoAP (c).

Future Internet 2019, 11, 66 8 of 18

There are two common features and two main differences between MQTT and CoAP. Both
target constrained devices and networks, and both have low data overhead. Importantly, MQTT is
one-to-many and TCP-based message-oriented, whereas CoAP is one-to-one and UDP-based. Since
TCP is connection-oriented, and UDP is connectionless, MQTT is more reliable. Moreover, CoAP needs
a dedicated communication infrastructure based on IPv6 networks in addition to a dedicated gateway
to pass content over the Internet. Hence, CoAP was not used for this IIoT environment. In the same
manner, HTTP, which is polling-based, was not considered for this study because of its philosophy that
uses the synchronous communication model for peer-to-peer and request–response exchange of data.

XMPP is an XML-based messaging protocol that is able to transfer verbose messages, audio and
video signals in chat conversations. In addition, it supports request–response as well as an event-based
communication pattern. However, the XML-based verbose messages of XMPP increase the message
size of SCADA-like applications, which have byte-oriented messages, and hence, cannot be used for
IIoT efficiently. As a comparison, MODBUS has small-sized data units, with a maximum of 255 bytes,
which are suitable for automation, telecontrol, and monitoring, whereas XMPP messages need more
than 400 bytes of overhead.

To summarize, many IoT protocols exist, and event-based protocols are of considerable interest
for transferring data as notifications to complement the MODBUS TCP. This MODBUS protocol
is polling-based, synchronous, request–response, and optimized for control and monitoring in
industrial applications. It can establish an IIoT environment, either on a standalone basis or in
conjunction with an event-based protocol to cover the publish–subscribe mechanism if needed. MQTT
is able to complement the MODBUS TCP via its asynchronous model, event-based paradigm, and
publish–subscribe pattern. Alternatively, HTTP uses a request–response mechanism and, hence, was
not considered for this study. CoAP was also found to be not suitable for this scenario because it needs
a specific infrastructure, and hence, a gateway to pass data over the Internet, which adds more costs
and causes complications to the environment. In addition, XMPP was not considered here, because
it is XML-based verbose protocol that requires a large overhead for small-sized industrial packets.
Moreover, AMQP was eliminated because it is dedicated to the exchange of business messages between
two entities. This protocol is used normally for application-to-application integration at the enterprise
level, which is higher than the level of both MODBUS TCP and MQTT.

Transport Layer Security (TLS) and its predecessor, Secure Sockets Layer (SSL), have been
designed to provide security over a TCP/IP network. If HTTP uses SSL or TLS, it employs port 443.
This is also applicable to MODBUS TCP and MQTT, which employ ports 802 and 8883, respectively.

5. Comparison between MODBUS TCP and MQTT

In this section, a comparison between the MODBUS TCP and the MQTT protocol is conducted
from three aspects. These aspects are the communication model of the protocol in the original IEEE
model, the message exchange philosophy, and the required number of bytes for some message types
that demonstrate the overhead of each type. However, the other protocols are not compared for the
reasons listed above.

As shown in Figure 5, the MQTT and the MODBUS TCP protocols are both in the same level in
the IEEE model. While the MQTT protocol encodes the user data in UTF-8, the MODBUS TCP uses a
byte-encoded frame format for the user data, which is intended for industrial applications.

Figure 6 illustrates a comparison between MQTT philosophy and MODBUS philosophy, from
the perspective of the exchange of messages. The request of the MODBUS query uses a TCP-based
connection and employs a frame-format based on an application-layer message structure, which is
optimized and dedicated for telecontrol and monitoring. The case is different with MQTT; while the
first client (publisher) produces an event using four messages, the second client (subscriber) consumes
that event in six messages.

Future Internet 2019, 11, 66 9 of 18

Future Internet 2019, 11, x FOR PEER REVIEW 9 of 18

(a) (b) (c)

Figure 5. The IEEE model (a); compared to the MODBUS TCP (b); and the MQTT (c).

The publisher sends a connect packet (CONNECT), with username (un) and password (pwd) if
required, to the server (broker) trying to establish a TCP connection. The server acknowledges the
attempt with a CONNACK packet, telling the client (publisher) whether the connection is
successfully established. Then, the client publishes the temperature value, for example, via a
PUBLISH packet, with temp topic and a value of 22.7. The client ends the publish event with the
server by sending a DISCONNECT packet.

Meanwhile, and in addition to the aforementioned steps, the subscriber must SUBSCRIBE to the
same topic (temp) to receive the published messages of interest. The subscription packet is
acknowledged with the SUBACK packet. When the broker receives the message that handles the
temperature value, via the same PUBLISH packet, it forwards it to the subscriber, which may then
terminate the connection using the DISCONNECT message.

(a) (b)

Figure 6. Comparison of protocols for the exchange of messages: (a) MQTT; (b) MODBUS TCP.

As a comparison between MODBUS TCP and MQTT messages, Figure 7 shows the required
number of bytes of the MODBUS messages, compared to those of MQTT. The message of the
MODBUS TCP requires 27 bytes to read the values of three registers using the function code “read
input registers” (FC = 0x04), as shown in Figures 1 and 2. However, the message of the MODBUS

Figure 5. The IEEE model (a); compared to the MODBUS TCP (b); and the MQTT (c).

The publisher sends a connect packet (CONNECT), with username (un) and password (pwd) if
required, to the server (broker) trying to establish a TCP connection. The server acknowledges the
attempt with a CONNACK packet, telling the client (publisher) whether the connection is successfully
established. Then, the client publishes the temperature value, for example, via a PUBLISH packet,
with temp topic and a value of 22.7. The client ends the publish event with the server by sending a
DISCONNECT packet.

Meanwhile, and in addition to the aforementioned steps, the subscriber must SUBSCRIBE to
the same topic (temp) to receive the published messages of interest. The subscription packet is
acknowledged with the SUBACK packet. When the broker receives the message that handles the
temperature value, via the same PUBLISH packet, it forwards it to the subscriber, which may then
terminate the connection using the DISCONNECT message.

Future Internet 2019, 11, x FOR PEER REVIEW 9 of 18

(a) (b) (c)

Figure 5. The IEEE model (a); compared to the MODBUS TCP (b); and the MQTT (c).

The publisher sends a connect packet (CONNECT), with username (un) and password (pwd) if
required, to the server (broker) trying to establish a TCP connection. The server acknowledges the
attempt with a CONNACK packet, telling the client (publisher) whether the connection is
successfully established. Then, the client publishes the temperature value, for example, via a
PUBLISH packet, with temp topic and a value of 22.7. The client ends the publish event with the
server by sending a DISCONNECT packet.

Meanwhile, and in addition to the aforementioned steps, the subscriber must SUBSCRIBE to the
same topic (temp) to receive the published messages of interest. The subscription packet is
acknowledged with the SUBACK packet. When the broker receives the message that handles the
temperature value, via the same PUBLISH packet, it forwards it to the subscriber, which may then
terminate the connection using the DISCONNECT message.

(a) (b)

Figure 6. Comparison of protocols for the exchange of messages: (a) MQTT; (b) MODBUS TCP.

As a comparison between MODBUS TCP and MQTT messages, Figure 7 shows the required
number of bytes of the MODBUS messages, compared to those of MQTT. The message of the
MODBUS TCP requires 27 bytes to read the values of three registers using the function code “read
input registers” (FC = 0x04), as shown in Figures 1 and 2. However, the message of the MODBUS

Figure 6. Comparison of protocols for the exchange of messages: (a) MQTT; (b) MODBUS TCP.

As a comparison between MODBUS TCP and MQTT messages, Figure 7 shows the required
number of bytes of the MODBUS messages, compared to those of MQTT. The message of the MODBUS
TCP requires 27 bytes to read the values of three registers using the function code “read input registers”
(FC = 0x04), as shown in Figures 1 and 2. However, the message of the MODBUS TCP requires 29 bytes

Future Internet 2019, 11, 66 10 of 18

to write the values of two registers using the function code “write multiple registers” (FC = 0x10) in a
remote device. In both cases, the MODBUS TCP issues a query from the client side and a response
from the server side. Meanwhile, if the function code “read/write multiple registers” (0x17) is used
for both operations, the total consumed bytes for reading three registers and writing two registers
within the same connection is 36 bytes. For MQTT, in this example, publishing a 10-byte payload by
the producer and consuming it by the subscriber requires 115 bytes. It is important to mention that the
total consumed bytes of MQTT publish and subscribe messages depends on the topic length and the
length of the user data.

Future Internet 2019, 11, x FOR PEER REVIEW 10 of 18

TCP requires 29 bytes to write the values of two registers using the function code “write multiple
registers” (FC = 0x10) in a remote device. In both cases, the MODBUS TCP issues a query from the
client side and a response from the server side. Meanwhile, if the function code “read/write multiple
registers” (0x17) is used for both operations, the total consumed bytes for reading three registers and
writing two registers within the same connection is 36 bytes. For MQTT, in this example, publishing
a 10-byte payload by the producer and consuming it by the subscriber requires 115 bytes. It is
important to mention that the total consumed bytes of MQTT publish and subscribe messages
depends on the topic length and the length of the user data.

Figure 7. Required bytes of MQTT messages compared to those of MODBUS.

Figure 8 shows the overhead portion of the three messages for a constant payload of 10 bytes.
The function code “read/write multiple registers” (0x17) has an overhead of 26 bytes out of 36 bytes.
The function codes “read input registers” (0x04) and “write multiple registers” (0x10) have a total
overhead of 46 bytes out of 56-bytes (the total size). In comparison, the MQTT publish–subscribe
message has an overhead of 105 bytes out of 115 bytes.

Figure 8. MQTT and MODBUS overheads for a payload of 10 bytes.

Figure 7. Required bytes of MQTT messages compared to those of MODBUS.

Figure 8 shows the overhead portion of the three messages for a constant payload of 10 bytes.
The function code “read/write multiple registers” (0x17) has an overhead of 26 bytes out of 36 bytes.
The function codes “read input registers” (0x04) and “write multiple registers” (0x10) have a total
overhead of 46 bytes out of 56-bytes (the total size). In comparison, the MQTT publish–subscribe
message has an overhead of 105 bytes out of 115 bytes.

Future Internet 2019, 11, x FOR PEER REVIEW 10 of 18

TCP requires 29 bytes to write the values of two registers using the function code “write multiple
registers” (FC = 0x10) in a remote device. In both cases, the MODBUS TCP issues a query from the
client side and a response from the server side. Meanwhile, if the function code “read/write multiple
registers” (0x17) is used for both operations, the total consumed bytes for reading three registers and
writing two registers within the same connection is 36 bytes. For MQTT, in this example, publishing
a 10-byte payload by the producer and consuming it by the subscriber requires 115 bytes. It is
important to mention that the total consumed bytes of MQTT publish and subscribe messages
depends on the topic length and the length of the user data.

Figure 7. Required bytes of MQTT messages compared to those of MODBUS.

Figure 8 shows the overhead portion of the three messages for a constant payload of 10 bytes.
The function code “read/write multiple registers” (0x17) has an overhead of 26 bytes out of 36 bytes.
The function codes “read input registers” (0x04) and “write multiple registers” (0x10) have a total
overhead of 46 bytes out of 56-bytes (the total size). In comparison, the MQTT publish–subscribe
message has an overhead of 105 bytes out of 115 bytes.

Figure 8. MQTT and MODBUS overheads for a payload of 10 bytes. Figure 8. MQTT and MODBUS overheads for a payload of 10 bytes.

Future Internet 2019, 11, 66 11 of 18

The result of Figure 8 is illustrated in Figure 9 for values between 2 bytes and 106 bytes. The figure
demonstrates the overhead percentage with respect to the total message size according to Equation (3):

Overhead(%) =
Overhead

Overhead + Payload
× 100%. (3)

The percentage overheads of the aforementioned function codes are calculated and plotted in
Figure 9. The figure shows values for fewer than 106 bytes because the message size in industrial
applications and SCADA-like systems is small. MQTT has the highest overhead; the function code
“read input registers” (0x04) has the least overhead (21 bytes), and the function code “write multiple
registers” (0x10), which is covered by the curve of the function code “read/write multiple registers
(0x17), has 25 bytes of overhead. However, if the application client reads and writes registers in the
same message, the function code “read/write multiple registers” (0x17) shows lower overhead than
the function codes “read input registers” (0x04) and “write multiple registers” (0x10) if both are used
separately for the same purpose.

Accordingly, the MQTT protocol is suitable for IoT-based publish–subscribe applications, but it is
unable to replace the MODBUS TCP, which fulfills the industrial requirements and uses an optimized
frame-format for request–response communications between industrial clients and servers. These
properties make it suitable for SCADA-like systems, automation, monitoring, and control. In Section 6,
performance of MQTT and the MODBUS TCP are tested and compared based on the Round-Trip time
(RTT) measurements and the central processing unit (CPU) usage.

Future Internet 2019, 11, x FOR PEER REVIEW 11 of 18

The result of Figure 8 is illustrated in Figure 9 for values between 2 bytes and 106 bytes. The
figure demonstrates the overhead percentage with respect to the total message size according to
Equation (3):

OverheadOverhead(%) 100%
Overhead Payload

. (3)

The percentage overheads of the aforementioned function codes are calculated and plotted in
Figure 9. The figure shows values for fewer than 106 bytes because the message size in industrial
applications and SCADA-like systems is small. MQTT has the highest overhead; the function code
“read input registers” (0x04) has the least overhead (21 bytes), and the function code “write multiple
registers” (0x10), which is covered by the curve of the function code “read/write multiple registers
(0x17), has 25 bytes of overhead. However, if the application client reads and writes registers in the
same message, the function code “read/write multiple registers” (0x17) shows lower overhead than
the function codes “read input registers” (0x04) and “write multiple registers” (0x10) if both are used
separately for the same purpose.

Accordingly, the MQTT protocol is suitable for IoT-based publish–subscribe applications, but it
is unable to replace the MODBUS TCP, which fulfills the industrial requirements and uses an
optimized frame-format for request–response communications between industrial clients and
servers. These properties make it suitable for SCADA-like systems, automation, monitoring, and
control. In Section 6, performance of MQTT and the MODBUS TCP are tested and compared based
on the Round-Trip time (RTT) measurements and the central processing unit (CPU) usage.

Figure 9. The overhead of an MQTT message compared to that of MODBUS.

6. Latency and CPU Usage

In order to support the results of Section 5, the performance of MQTT and the MODBUS TCP
are compared in this section. This performance is based on the Round-Trip Time (RTT)
measurements and the CPU usage. A Java-based MQTT publisher was developed and installed on a
laptop that runs the operating system Linux Ubuntu 16.04. The specifications of the laptop were:
Dell-Inspiron 3537, Intel® CoreTM i5-4200U CPU at 1.6 GHz × 4, 5.85 GiB RAM. The server (broker)
was the Apache ActiveMQ software, which was installed on a desktop PC that runs the operating
system Microsoft Windows XP. The desktop PC featured Pentium Dual Core CPU at 3.2 GHz and 2
GB RAM. The consumer was the MQTT.FX software, which was installed on the desktop PC as well.

Figure 9. The overhead of an MQTT message compared to that of MODBUS.

6. Latency and CPU Usage

In order to support the results of Section 5, the performance of MQTT and the MODBUS TCP are
compared in this section. This performance is based on the Round-Trip Time (RTT) measurements and
the CPU usage. A Java-based MQTT publisher was developed and installed on a laptop that runs the
operating system Linux Ubuntu 16.04. The specifications of the laptop were: Dell-Inspiron 3537, Intel®

CoreTM i5-4200U CPU at 1.6 GHz × 4, 5.85 GiB RAM. The server (broker) was the Apache ActiveMQ
software, which was installed on a desktop PC that runs the operating system Microsoft Windows XP.
The desktop PC featured Pentium Dual Core CPU at 3.2 GHz and 2 GB RAM. The consumer was the
MQTT.FX software, which was installed on the desktop PC as well. The RTT values measured from the

Future Internet 2019, 11, 66 12 of 18

publisher and the CPU usage measured from the desktop PC are shown in Figure 10. The publisher
that connected to the server (broker) started counting the RTT from the time of creating the socket to
closing it, which includes the time needed for formatting the message in a publish message, connecting
to the server without a logon process, publishing the message, and disconnecting from the server,
in addition to the network latency. The CPU usage values are the maximum registered values, and the
tests were conducted for payload sizes of 5, 10, 25, 50, and 100 bytes.

Future Internet 2019, 11, x FOR PEER REVIEW 12 of 18

The RTT values measured from the publisher and the CPU usage measured from the desktop PC are
shown in Figure 10. The publisher that connected to the server (broker) started counting the RTT
from the time of creating the socket to closing it, which includes the time needed for formatting the
message in a publish message, connecting to the server without a logon process, publishing the
message, and disconnecting from the server, in addition to the network latency. The CPU usage
values are the maximum registered values, and the tests were conducted for payload sizes of 5, 10,
25, 50, and 100 bytes.

(a) (b)

Figure 10. MQTT-related measurements: (a) Round-Trip Time (RTT); (b) CPU usage.

The RTT measurements of the MODBUS TCP were also conducted using the same network. A
MODBUS TCP client was developed and installed on the laptop, and a MODBUS TCP server was
developed and installed on the desktop PC. Many tests of function codes were carried out for “read
holding registers” (FC = 0x03), “read input registers” (FC = 0x04), and “write multiple registers” (FC
= 0x10). The total transmitted bytes in each transaction were 27 bytes, 33 bytes, and 35 bytes
respectively; the total was 95 bytes when all messages were transmitted within one transaction. The
RTT values, which were measured on the client side, were between 6 ms and 8 ms, and the CPU
usage, which was measured on the server side, had a maximum value of 3%.

These results confirm the theoretical outcomes of Section 5, which show that the MODBUS TCP
is a lightweight protocol suitable for SCADA-like systems and industrial applications. The MODBUS
TCP client connects to the MODBUS TCP server using polling communications (direct one-to-one
communications). However, the MQTT client connects to another client via a server, called a broker.
This fact explains the high CPU consumption while the MQTT server was busy in receiving and
redirecting the publish messages.

7. Discussion

Based on the comparisons of Sections 4–6 as well as the theoretical study of the MODBUS TCP
in Section 3, two scenarios are discussed here to build the industrial IoT environment.

The first scenario is to employ only the MODBUS TCP to build the IIoT environment. The study
of Section 3 proved that MODBUS TCP is able to react as an IoT protocol. Security is a fundamental
issue in IoT, which was solved in [32] for MODBUS TCP using TLS. As mentioned above in Section
5, the MODBUS TCP is able to build the IIoT environment using the synchronous request–response
communication pattern on a standalone basis, which is a scenario that complies with most industrial
applications. However, this solution totally relies on the polling-based mechanism.

In the second scenario, the event-based mechanism is fulfilled by MQTT, where M2M
communications are required, using the asynchronous publish–subscribe communication pattern.
For industrial functions, the MODBUS TCP is employed, which fulfills the synchronous
request–response communication pattern. In this scenario, MQTT works in parallel with the
MODBUS TCP within the same platform, as shown in Figure 11. This figure illustrates the
simulation environment of the second scenario. The environment consisted of a desktop PC running
Microsoft Windows XP, a laptop running Linux Ubuntu 16.04, and an LAN/Internet network. The

Figure 10. MQTT-related measurements: (a) Round-Trip Time (RTT); (b) CPU usage.

The RTT measurements of the MODBUS TCP were also conducted using the same network.
A MODBUS TCP client was developed and installed on the laptop, and a MODBUS TCP server was
developed and installed on the desktop PC. Many tests of function codes were carried out for “read
holding registers” (FC = 0x03), “read input registers” (FC = 0x04), and “write multiple registers”
(FC = 0x10). The total transmitted bytes in each transaction were 27 bytes, 33 bytes, and 35 bytes
respectively; the total was 95 bytes when all messages were transmitted within one transaction.
The RTT values, which were measured on the client side, were between 6 ms and 8 ms, and the CPU
usage, which was measured on the server side, had a maximum value of 3%.

These results confirm the theoretical outcomes of Section 5, which show that the MODBUS TCP is
a lightweight protocol suitable for SCADA-like systems and industrial applications. The MODBUS
TCP client connects to the MODBUS TCP server using polling communications (direct one-to-one
communications). However, the MQTT client connects to another client via a server, called a broker.
This fact explains the high CPU consumption while the MQTT server was busy in receiving and
redirecting the publish messages.

7. Discussion

Based on the comparisons of Sections 4–6 as well as the theoretical study of the MODBUS TCP in
Section 3, two scenarios are discussed here to build the industrial IoT environment.

The first scenario is to employ only the MODBUS TCP to build the IIoT environment. The study
of Section 3 proved that MODBUS TCP is able to react as an IoT protocol. Security is a fundamental
issue in IoT, which was solved in [32] for MODBUS TCP using TLS. As mentioned above in Section 5,
the MODBUS TCP is able to build the IIoT environment using the synchronous request–response
communication pattern on a standalone basis, which is a scenario that complies with most industrial
applications. However, this solution totally relies on the polling-based mechanism.

In the second scenario, the event-based mechanism is fulfilled by MQTT, where M2M
communications are required, using the asynchronous publish–subscribe communication pattern. For
industrial functions, the MODBUS TCP is employed, which fulfills the synchronous request–response
communication pattern. In this scenario, MQTT works in parallel with the MODBUS TCP within
the same platform, as shown in Figure 11. This figure illustrates the simulation environment of the
second scenario. The environment consisted of a desktop PC running Microsoft Windows XP, a laptop
running Linux Ubuntu 16.04, and an LAN/Internet network. The desktop PC is equipped with a

Future Internet 2019, 11, 66 13 of 18

java-based MODBUS TCP client, the ActiveMQ MQTT server, and the MQTT.FX consumer. The laptop
was equipped with a multithreaded Java program; one thread ran the MQTT publisher, and another
thread ran the MODBUS TCP server. In addition, an online MQTT broker and consumer, provided by
HiveMQ for testing, were employed here as an Internet-based server.

Future Internet 2019, 11, x FOR PEER REVIEW 13 of 18

desktop PC is equipped with a java-based MODBUS TCP client, the ActiveMQ MQTT server, and
the MQTT.FX consumer. The laptop was equipped with a multithreaded Java program; one thread
ran the MQTT publisher, and another thread ran the MODBUS TCP server. In addition, an online
MQTT broker and consumer, provided by HiveMQ for testing, were employed here as an
Internet-based server.

Figure 11. Simulation environment of the second scenario.

The RTT measurements and the CPU usage of this environment were measured for the
MODBUS TCP and then compared to the previous results of Section 6. The RTT values of the
MODBUS TCP, which were measured on the desktop PC, had a maximum value of 9 ms. This
represents an increase of maximum 12.5% from the previous RTT values presented in Section 6. As
illustrated in Figure 12, the CPU history of the laptop, which contains an MQTT publisher and a
MODBUS TCP server, showed that the CPU usage is always less than 20%. These results indicate
that the concurrent execution of MQTT in parallel with the MODBUS TCP within the same platform
does not severely influence the performance of the MODBUS TCP. Nevertheless, while MQTT
fulfills the event-based paradigm, it lacks interoperability.

Figure 12. CPU history of the laptop that ran an MQTT publisher and MODBUS TCP server.

The MQTT protocol formats the data using the UTF-8 standard, and hence interoperability is
not fulfilled. To maintain a homogeneous message for the entire environment, industrial data are
organized using the structure of MODBUS messages, formatted in the UTF-8 and then transferred in
the payload of an MQTT publish message, as shown in Figure 13a. The hexadecimal representations
of Figure 13a were obtained based on the information of Table 3. Digit numbers zero to nine are
formatted in UTF-8 using the hexadecimal representation. Digit number “0” is represented by “30”
and digit number “9” is represented by “39”. Additionally, letters “A” to “F” are represented by
“41” to “46”, respectively. Each byte of the MODBUS message is represented by two bytes, as shown
in Figure 13. For example, the ID part of the MODBUS message is “00 01”, which leads to “30 30 30
31” representation, and doubles the payload of the MQTT publish message. The MQTT publish
message was subsequently transmitted to the online hivemq.com server, and the result is illustrated
in Figure 13b.

Figure 11. Simulation environment of the second scenario.

The RTT measurements and the CPU usage of this environment were measured for the MODBUS
TCP and then compared to the previous results of Section 6. The RTT values of the MODBUS TCP,
which were measured on the desktop PC, had a maximum value of 9 ms. This represents an increase
of maximum 12.5% from the previous RTT values presented in Section 6. As illustrated in Figure 12,
the CPU history of the laptop, which contains an MQTT publisher and a MODBUS TCP server, showed
that the CPU usage is always less than 20%. These results indicate that the concurrent execution
of MQTT in parallel with the MODBUS TCP within the same platform does not severely influence
the performance of the MODBUS TCP. Nevertheless, while MQTT fulfills the event-based paradigm,
it lacks interoperability.

Future Internet 2019, 11, x FOR PEER REVIEW 13 of 18

desktop PC is equipped with a java-based MODBUS TCP client, the ActiveMQ MQTT server, and
the MQTT.FX consumer. The laptop was equipped with a multithreaded Java program; one thread
ran the MQTT publisher, and another thread ran the MODBUS TCP server. In addition, an online
MQTT broker and consumer, provided by HiveMQ for testing, were employed here as an
Internet-based server.

Figure 11. Simulation environment of the second scenario.

The RTT measurements and the CPU usage of this environment were measured for the
MODBUS TCP and then compared to the previous results of Section 6. The RTT values of the
MODBUS TCP, which were measured on the desktop PC, had a maximum value of 9 ms. This
represents an increase of maximum 12.5% from the previous RTT values presented in Section 6. As
illustrated in Figure 12, the CPU history of the laptop, which contains an MQTT publisher and a
MODBUS TCP server, showed that the CPU usage is always less than 20%. These results indicate
that the concurrent execution of MQTT in parallel with the MODBUS TCP within the same platform
does not severely influence the performance of the MODBUS TCP. Nevertheless, while MQTT
fulfills the event-based paradigm, it lacks interoperability.

Figure 12. CPU history of the laptop that ran an MQTT publisher and MODBUS TCP server.

The MQTT protocol formats the data using the UTF-8 standard, and hence interoperability is
not fulfilled. To maintain a homogeneous message for the entire environment, industrial data are
organized using the structure of MODBUS messages, formatted in the UTF-8 and then transferred in
the payload of an MQTT publish message, as shown in Figure 13a. The hexadecimal representations
of Figure 13a were obtained based on the information of Table 3. Digit numbers zero to nine are
formatted in UTF-8 using the hexadecimal representation. Digit number “0” is represented by “30”
and digit number “9” is represented by “39”. Additionally, letters “A” to “F” are represented by
“41” to “46”, respectively. Each byte of the MODBUS message is represented by two bytes, as shown
in Figure 13. For example, the ID part of the MODBUS message is “00 01”, which leads to “30 30 30
31” representation, and doubles the payload of the MQTT publish message. The MQTT publish
message was subsequently transmitted to the online hivemq.com server, and the result is illustrated
in Figure 13b.

Figure 12. CPU history of the laptop that ran an MQTT publisher and MODBUS TCP server.

The MQTT protocol formats the data using the UTF-8 standard, and hence interoperability is
not fulfilled. To maintain a homogeneous message for the entire environment, industrial data are
organized using the structure of MODBUS messages, formatted in the UTF-8 and then transferred in
the payload of an MQTT publish message, as shown in Figure 13a. The hexadecimal representations
of Figure 13a were obtained based on the information of Table 3. Digit numbers zero to nine are
formatted in UTF-8 using the hexadecimal representation. Digit number “0” is represented by “30”
and digit number “9” is represented by “39”. Additionally, letters “A” to “F” are represented by
“41” to “46”, respectively. Each byte of the MODBUS message is represented by two bytes, as shown
in Figure 13. For example, the ID part of the MODBUS message is “00 01”, which leads to “30 30
30 31” representation, and doubles the payload of the MQTT publish message. The MQTT publish

Future Internet 2019, 11, 66 14 of 18

message was subsequently transmitted to the online hivemq.com server, and the result is illustrated in
Figure 13b.

Using the arrangement of Figure 13a, the message structure, which is the MODBUS TCP, was
maintained throughout the entire IIoT environment for both the control part and the monitoring part.
This led to a unified message structure, unified data processing, and hence the interoperability problem
was solved.

Future Internet 2019, 11, x FOR PEER REVIEW 14 of 18

Using the arrangement of Figure 13a, the message structure, which is the MODBUS TCP, was
maintained throughout the entire IIoT environment for both the control part and the monitoring
part. This led to a unified message structure, unified data processing, and hence the interoperability
problem was solved.

(a) (b)

Figure 13. (a) MODBUS message formatted via UTF-8 in the MQTT payload to solve the
interoperability problem in the second scenario; (b) message as it appeared on hivemq.com
consumer.

In conclusion, the choice of solution is totally dependent on the requirements of the industrial
application. The MODBUS TCP builds the IIoT environment if publish–subscribe communications
are not required, representing a secured solution that fulfills the requirements of most IIoT
applications. If M2M communications are required, MQTT can be used, although it doubles the
payload of the publish message in order to solve the interoperability problem.

Table 3. UTF-8 encoding characters.

Character UTF-8 (Decimal) UTF-8 (Hex) Meaning
0 48 0x30 Digit Zero
1 49 0x31 Digit One
2 50 0x32 Digit Two
3 51 0x33 Digit Three
4 52 0x34 Digit Four
5 53 0x35 Digit Five
6 54 0x36 Digit Six
7 55 0x37 Digit Seven
8 56 0x38 Digit Eight
9 57 0x39 Digit Nine
A 65 0x41 Capital Letter A
B 66 0x42 Capital Letter B
C 67 0x43 Capital Letter C
D 68 0x44 Capital Letter D
E 69 0x45 Capital Letter E
F 70 0x46 Capital Letter F

8. Conclusions

Two scenarios are introduced to build the industrial IoT environment. The first scenario
employs the MODBUS TCP only for synchronous polling communications; this solution complies
with most industrial control systems and SCADA-like applications. However, if asynchronous
event-based communications are required, MQTT complements MODBUS TCP operations. In this
particular case, an industrial IoT environment requires the employment of at least two
protocols—one for the IoT functions, mainly for M2M communications, and another for the
industrial functions. MODBUS fulfills the industrial requirements, mainly the telecontrol,

Figure 13. (a) MODBUS message formatted via UTF-8 in the MQTT payload to solve the interoperability
problem in the second scenario; (b) message as it appeared on hivemq.com consumer.

Table 3. UTF-8 encoding characters.

Character UTF-8 (Decimal) UTF-8 (Hex) Meaning

0 48 0x30 Digit Zero
1 49 0x31 Digit One
2 50 0x32 Digit Two
3 51 0x33 Digit Three
4 52 0x34 Digit Four
5 53 0x35 Digit Five
6 54 0x36 Digit Six
7 55 0x37 Digit Seven
8 56 0x38 Digit Eight
9 57 0x39 Digit Nine
A 65 0x41 Capital Letter A
B 66 0x42 Capital Letter B
C 67 0x43 Capital Letter C
D 68 0x44 Capital Letter D
E 69 0x45 Capital Letter E
F 70 0x46 Capital Letter F

In conclusion, the choice of solution is totally dependent on the requirements of the industrial
application. The MODBUS TCP builds the IIoT environment if publish–subscribe communications are
not required, representing a secured solution that fulfills the requirements of most IIoT applications.
If M2M communications are required, MQTT can be used, although it doubles the payload of the
publish message in order to solve the interoperability problem.

8. Conclusions

Two scenarios are introduced to build the industrial IoT environment. The first scenario employs
the MODBUS TCP only for synchronous polling communications; this solution complies with most
industrial control systems and SCADA-like applications. However, if asynchronous event-based
communications are required, MQTT complements MODBUS TCP operations. In this particular case,
an industrial IoT environment requires the employment of at least two protocols—one for the IoT
functions, mainly for M2M communications, and another for the industrial functions. MODBUS fulfills
the industrial requirements, mainly the telecontrol, monitoring, and automation functions. MQTT
works in parallel with the MODBUS TCP and complements its functions, but cannot replace MODBUS.

Future Internet 2019, 11, 66 15 of 18

Since MQTT lacks interoperability, the industrial data are formatted using the structure of
MODBUS messages, and then transferred in the payload of the MQTT publish message, which
uses the format of the UTF-8. Thus, the message structure of the MODBUS TCP is maintained
throughout the entire environment. This solution provides interoperability, but doubles the payload of
the industrial data.

The simulation results and measurements, presented in Sections 6 and 7, show that the concurrent
execution of MQTT in parallel with the MODBUS TCP within the same platform does not severely
influence the performance of the MODBUS TCP.

Security is a fundamental issue in IoT, which was solved in [32] for MODBUS TCP using TLS
via TCP port 802. MQTT may also employ TLS for encryption via port 8883. More information
on the security of industrial IoT systems can be found in [53–55], on intrusion detection in [56–58],
on encryption in [59], and on black-hole detection in [60].

Funding: This research received no external funding.

Conflicts of Interest: The author declares no conflict of interest.

Abbreviations

6LoWPAN IPv6 over low-power wireless personal area network
AMQP Advanced Message Queuing Protocol
CoAP Constrained Application Protocol
EXI Efficient XML Interchange
HTTP Hypertext Transfer Protocol
IETF Internet Engineering Taskforce
IoT Internet of Things
IIoT Industrial Internet of Things
JSON JavaScript Object Notation
M2M Machine-to-Machine
MQTT Message Queuing Telemetry Transport
OASIS Organization for the Advancement of Structured Information Standards
SCADA Supervisory Control and Data Acquisition
SSL Secure Sockets Layer
TLS Transport Layer Security
UTF-8 Unicode Transformation Format—8-bit
XMPP eXtensible Message and Presence Protocol

References

1. Zanella, A.; Bui, N.; Castellani, A.; Vangelista, L.; Zorzi, M. Internet of Things for Smart Cities. IEEE Internet
Things J. 2014, 1, 22–32. [CrossRef]

2. Ahlgren, B.; Hidell, M.; Ngai, E.C.-H. Internet of Things for Smart Cities: Interoperability and Open Data.
IEEE Internet Comput. 2016, 20, 2–56. [CrossRef]

3. Jaloudi, S. Software-Defined Radio for Modular Audio Mixers: Making Use of Market-Available Audio
Consoles and Software-Defined Radio to Build Multiparty Audio-Mixing Systems. IEEE Consum.
Electron. Mag. 2017, 6, 97–104. [CrossRef]

4. Watthanawisuth, N.; Maturos, T.; Sappat, A.; Tuantranont, A. The IoT wearable stretch sensor using
3D-Graphene foam. In Proceedings of the IEEE Conference on SENSORS, Busan, Korea, 1–4 November 2015.
[CrossRef]

5. Chi, Q.; Yan, H.; Zhang, C.; Pang, Z.; Da Xu, L. A Reconfigurable Smart Sensor Interface for Industrial WSN
in IoT Environment. IEEE Trans. Ind. Inform. 2014, 10, 1417–1425. [CrossRef]

6. El Kaed, C.; Khan, I.; Berg, A.V.D.; Hossayni, H.; Saint-Marcel, C. SRE: Semantic Rules Engine for the
Industrial Internet-Of-Things Gateways. IEEE Trans. Ind. Inform. 2018, 14, 715–724. [CrossRef]

7. Iqbal, R.; Butt, T.; Shafiq, O.; Talib, M.; Umer, T. Context-Aware Data-Driven Intelligent Framework for
Internet of Vehicles. IEEE Access 2018, 6, 58182–58194. [CrossRef]

http://dx.doi.org/10.1109/JIOT.2014.2306328
http://dx.doi.org/10.1109/MIC.2016.124
http://dx.doi.org/10.1109/MCE.2017.2714720
http://dx.doi.org/10.1109/ICSENS.2015.7370275
http://dx.doi.org/10.1109/TII.2014.2306798
http://dx.doi.org/10.1109/TII.2017.2769001
http://dx.doi.org/10.1109/ACCESS.2018.2874592

Future Internet 2019, 11, 66 16 of 18

8. Silva, R.; Iqbal, R. Ethical Implications of Social Internet of Vehicle Systems. IEEE Internet Things J. 2018.
[CrossRef]

9. Long, C.; Cao, Y.; Jiang, T.; Zhang, Q. Edge Computing Framework for Cooperative Video Processing in
Multimedia IoT Systems. IEEE Trans. Multimed. 2018, 20, 1126–1139. [CrossRef]

10. Ja’afreh, M.A.; Aloqaily, M.; Ridhawi, I.A.; Mostafa, N. A hybrid-based 3D streaming framework for mobile
devices over IoT environments. In Proceedings of the 3rd International Conference on Fog and Mobile Edge
Computing (FMEC), Barcelona, Spain, 23–26 April 2018. [CrossRef]

11. Al Ridhawi, I.; Aloqaily, M.; Kotb, Y.; Al Ridhawi, Y.; Jararweh, Y. A collaborative mobile edge computing
and user solution for service composition in 5G systems. Wiley Trans. Emerg. Telecommun. Technol. 2018, 29,
e3446. [CrossRef]

12. Balasubramanian, V.; Aloqaily, M.; Zaman, F.; Jararweh, Y. Exploring Computing at the Edge:
A Multi-Interface System Architecture Enabled Mobile Device Cloud. In Proceedings of the 7th International
Conference on Cloud Networking (CloudNet), Tokyo, Japan, 22–24 October 2018. [CrossRef]

13. Jaloudi, S. Open source software of smart city protocols current status and challenges. In Proceedings
of the International Conference on Open Source Software Computing (OSSCOM), Amman, Jordan,
10–13 September 2015. [CrossRef]

14. Standard 19464. Advanced Message Queuing Protocol 1.0 (AMQP 1.0); ISO/IEC: Geneva, Switzerland, 2016.
15. O’Hara, J. ISO 19464 Connecting Business for Value. 2014. Available online: http://www.amqp.org/sites/

amqp.org/files/2014.05.01%20ISO%2019464%20AMQP-ORG_0.pdf (accessed on 4 February 2019).
16. Godfrey, R.; Ingham, D.; Schloming, R. OASIS Standard Advanced Message Queuing Protocol (AMQP)

Version 1.0. 2012. Available online: http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-complete-
v1.0-os.pdf (accessed on 4 February 2019).

17. Standard PRF 20922. Message Queuing and Telemetry Transport (MQTT) Version 3.1.1; ISO/IEC: Geneva,
Switzerland, 2016.

18. Standard RFC 7252. Constrained Application Protocol (CoAP); IETF: Fremont, CA, USA, 2014.
19. Standard RFC 6120. Extensible Message and Presence Protocol (XMPP); IETF: Fremont, CA, USA, 2011.
20. Standard RFC 7159. The JavaScript Object Notation (JSON) Data Interchange Format; IETF: Fremont, CA,

USA, 2014.
21. Standard IEEE 802.11. Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY); IEEE: New York,

NY, USA, 2012.
22. Tao, F.; Cheng, J.; Qi, Q. IIHub: An Industrial Internet-of-Things Hub Toward Smart Manufacturing Based

on Cyber-Physical System. IEEE Trans. Ind. Inform. 2018, 14, 2271–2280. [CrossRef]
23. Ferrari, P.; Flammini, A.; Rinaldi, S.; Sisinni, E.; Maffei, D.; Malara, M. Impact of Quality of Service on Cloud

Based Industrial IoT Applications with OPC UA. Electronics 2018, 7, 109. [CrossRef]
24. Angrisani, L.; Cesaro, U.; D’Arco, M.; Grillo, D.; Tocchi, A. IOT Enabling Measurement Applications in

Industry 4.0: Platform for Remote Programming ATES. In Proceedings of the IEEE Workshop on Metrology
for Industry 4.0 and IoT, Brescia, Italy, 16–18 April 2018. [CrossRef]

25. Müller, J.M.; Kiel, D.; Voigt, K.-I. What Drives the Implementation of Industry 4.0? The Role of Opportunities
and Challenges in the Context of Sustainability. Sustainability 2018, 10, 247. [CrossRef]

26. Sangkeun, Y.; Kim, Y.W.; Choi, H. An assessment framework for smart manufacturing. In Proceedings of the
IEEE 20th International Conference on Advanced Communication Technology, Chuncheon-si Gangwon-do,
Korea, 11–14 February 2018. [CrossRef]

27. Moyne, J.; Iskandar, J. Big Data Analytics for Smart Manufacturing: Case Studies in Semiconductor
Manufacturing. Processes 2017, 5, 39. [CrossRef]

28. Chekired, D.A.; Khoukhi, L.; Mouftah, H.T. Industrial IoT Data Scheduling Based on Hierarchical Fog
Computing: A Key for Enabling Smart Factory. IEEE Trans. Ind. Inform. 2018, 14, 4590–4602. [CrossRef]

29. Mabkhot, M.M.; Al-Ahmari, A.M.; Salah, B.; Alkhalefah, H. Requirements of the Smart Factory System:
A Survey and Perspective. Machines 2018, 6, 23. [CrossRef]

30. Modbus Application Protocol Specification V1.1b3. 2012. Available online: http://www.modbus.org/docs/
Modbus_Application_Protocol_V1_1b3.pdf (accessed on 3 February 2019).

31. Modbus Messaging on TCP/IP Implementation Guide V1.0b. 2006. Available online: http://www.modbus.
org/docs/Modbus_Messaging_Implementation_Guide_V1_0b.pdf (accessed on 3 February 2019).

http://dx.doi.org/10.1109/JIOT.2018.2841969
http://dx.doi.org/10.1109/TMM.2017.2764330
http://dx.doi.org/10.1109/FMEC.2018.8364067
http://dx.doi.org/10.1002/ett.3446
http://dx.doi.org/10.1109/CloudNet.2018.8549296
http://dx.doi.org/10.1109/OSSCOM.2015.7372690
http://www.amqp.org/sites/amqp.org/files/2014.05.01%20ISO%2019464%20AMQP-ORG_0.pdf
http://www.amqp.org/sites/amqp.org/files/2014.05.01%20ISO%2019464%20AMQP-ORG_0.pdf
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-complete-v1.0-os.pdf
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-complete-v1.0-os.pdf
http://dx.doi.org/10.1109/TII.2017.2759178
http://dx.doi.org/10.3390/electronics7070109
http://dx.doi.org/10.1109/METROI4.2018.8428326
http://dx.doi.org/10.3390/su10010247
http://dx.doi.org/10.23919/ICACT.2018.8323828
http://dx.doi.org/10.3390/pr5030039
http://dx.doi.org/10.1109/TII.2018.2843802
http://dx.doi.org/10.3390/machines6020023
http://www.modbus.org/docs/Modbus_Application_Protocol_V1_1b3.pdf
http://www.modbus.org/docs/Modbus_Application_Protocol_V1_1b3.pdf
http://www.modbus.org/docs/Modbus_Messaging_Implementation_Guide_V1_0b.pdf
http://www.modbus.org/docs/Modbus_Messaging_Implementation_Guide_V1_0b.pdf

Future Internet 2019, 11, 66 17 of 18

32. MODBUS/TCP Security. 2018. Available online: http://www.modbus.org/docs/MB-TCP-Security-v21_
2018-07-24.pdf (accessed on 4 February 2019).

33. Meng, Z.; Wu, Z.; Muvianto, C.; Gray, J. A Data-Oriented M2M Messaging Mechanism for Industrial IoT
Applications. IEEE Internet Things J. 2017, 4, 236–246. [CrossRef]

34. Brizzi, P.; Conzon, D.; Khaleel, H.; Tomasi, R.; Pastrone, C.; Spirito, A.M.; Knechtel, M.; Pramudianto, F.;
Cultrona, P. Bringing the Internet of Things along the manufacturing line: A case study in controlling
industrial robot and monitoring energy consumption remotely. In Proceedings of the IEEE 18th Conference
on Emerging Technologies & Factory Automation (ETFA), Cagliari, Italy, 10–13 September 2013. [CrossRef]

35. Chang, C.; Srirama, S.N.; Mass, J. A middleware for discovering proximity-based service-oriented Industrial
Internet of Things. In Proceedings of the IEEE International Conference on Services Computing, New Your,
NY, USA, 27 June–2 July 2015. [CrossRef]

36. Packwood, D.; Sharma, M.; Ding, D.; Park, H.; Salcic, Z.; Malik, A.; Kevin, I.; Wang, K. FPGA-based
Mixed-Criticality Execution Platform for SystemJ and the Internet of Industrial Things. In Proceedings of
the IEEE 18th International Symposium on Real-Time Distributed Computing, Auckland, New Zealand,
13–17 April 2015. [CrossRef]

37. Meng, Z.; Wu, Z.; Gray, J. A Collaboration-Oriented M2M Messaging Mechanism for the Collaborative
Automation between Machines in Future Industrial Networks. Sensors 2017, 17, 2694. [CrossRef] [PubMed]

38. Calderón Godoy, A.J.; González Pérez, I. Integration of Sensor and Actuator Networks and the SCADA
System to Promote the Migration of the Legacy Flexible Manufacturing System towards the Industry 4.0
Concept. J. Sens. Actuator Netw. 2018, 7, 23. [CrossRef]

39. Kruger, C.P.; Hancke, G.P. Implementing the Internet of Things vision in industrial wireless sensor networks.
In Proceedings of the 12th IEEE International Conference on Industrial Informatics, Porto Alegre, Brazil,
27–30 July 2014. [CrossRef]

40. Hu, P. A System Architecture for Software-Defined Industrial Internet of Things. In Proceedings of the
IEEE International Conference on Ubiquitous Wireless Broadband, Montreal, QC, Canada, 4–7 October 2015.
[CrossRef]

41. Corotinschi, G.; Gitan, V.G. Enabling IoT connectivity for Modbus networks by using IoT edge gateways.
In Proceedings of the IEEE International Conference on Development and Application Systems, Suceava,
Romania, 24–26 May 2018. [CrossRef]

42. Joshi, R.; Jadav, H.M.; Mali, A.; Kulkarni, S.V. IOT application for real-time monitor of PLC data using EPICS.
In Proceedings of the IEEE International Conference on Internet of Things and Applications, Pune, India,
22–24 January 2016. [CrossRef]

43. Trancă, D.-C.; Pălăcean, A.V.; Mihu, A.C.; Rosner, D. ZigBee based wireless modbus aggregator for
intelligent industrial facilities. In Proceedings of the IEEE 25th Telecommunication Forum, Belgrade, Serbia,
21–22 November 2017. [CrossRef]

44. Shinde, K.S.; Bhagat, P.H. Industrial process monitoring using loT. In Proceedings of the IEEE International
conference on IoT in Social, Mobile, Analytics and Cloud, Palladam, India, 10–11 February 2017. [CrossRef]

45. Standard IEEE 754. Binary Floating-Point Arithmetic; IEEE: New York, NY, USA, 2008.
46. Yokotani, T.; Sasaki, Y. Comparison with HTTP and MQTT on required network resources for IoT.

In Proceedings of the IEEE International Conference on Control, Electronics, Renewable Energy and
Communications, Bandung, Indonesia, 13–15 September 2016. [CrossRef]

47. Joshi, J.; Rajapriya, V.; Rahul, S.R.; Kumar, P.; Polepally, S.; Samineni, R.; Tej, D.K. Performance enhancement
and IoT based monitoring for smart home. In Proceedings of the IEEE International Conference on
Information Networking, Da Nang, Vietnam, 11–13 January 2017. [CrossRef]

48. Thota, P.; Kim, Y. Implementation and Comparison of M2M Protocols for Internet of Things. In Proceedings of
the IEEE International Conference on ACIT-CSII-BCD, Las Vegas, NV, USA, 12–14 December 2016. [CrossRef]

49. Luzuriaga, J.E.; Perezy, M.; Boronaty, P.; Cano, J.C.; Calafate, C.; Manzoni, P. A comparative evaluation of
AMQP and MQTT protocols over unstable and mobile networks. In Proceedings of the 12th Annual IEEE
Consumer Communications and Networking Conference (CCNC), Las Vegas, NV, USA, 9–12 January 2015.
[CrossRef]

50. Gao, W.; Nguyeny, J.; Yu, W.; Lu, C.; Kuy, D.; Hatcher, W.G. Towards Emulation-Based Performance
Assessment of Constrained Application Protocol (CoAP) in Dynamic Networks. IEEE Internet Things J. 2017,
4, 1597–1610. [CrossRef]

http://www.modbus.org/docs/MB-TCP-Security-v21_2018-07-24.pdf
http://www.modbus.org/docs/MB-TCP-Security-v21_2018-07-24.pdf
http://dx.doi.org/10.1109/JIOT.2016.2646375
http://dx.doi.org/10.1109/ETFA.2013.6647947
http://dx.doi.org/10.1109/SCC.2015.27
http://dx.doi.org/10.1109/ISORC.2015.27
http://dx.doi.org/10.3390/s17112694
http://www.ncbi.nlm.nih.gov/pubmed/29165347
http://dx.doi.org/10.3390/jsan7020023
http://dx.doi.org/10.1109/INDIN.2014.6945586
http://dx.doi.org/10.1109/ICUWB.2015.7324414
http://dx.doi.org/10.1109/DAAS.2018.8396092
http://dx.doi.org/10.1109/IOTA.2016.7562697
http://dx.doi.org/10.1109/TELFOR.2017.8249409
http://dx.doi.org/10.1109/I-SMAC.2017.8058374
http://dx.doi.org/10.1109/ICCEREC.2016.7814989
http://dx.doi.org/10.1109/ICOIN.2017.7899537
http://dx.doi.org/10.1109/ACIT-CSII-BCD.2016.021
http://dx.doi.org/10.1109/CCNC.2015.7158101
http://dx.doi.org/10.1109/JIOT.2017.2717386

Future Internet 2019, 11, 66 18 of 18

51. Koster, M.; Keranen, A.; Jimene, J. IETF Draft Standard Publish-Subscribe Broker for the Constrained
Application Protocol (CoAP). 2019. Available online: https://tools.ietf.org/html/draft-ietf-core-coap-
pubsub-06 (accessed on 4 February 2019).

52. Käbisch, S.; Peintner, D. W3C Recommendation Canonical EXI. 2018. Available online: https://www.w3.
org/TR/exi-c14n/ (accessed on 4 February 2019).

53. Carías, J.F.; Labaka, L.; Sarriegi, J.M.; Hernantes, J. Defining a Cyber Resilience Investment Strategy in an
Industrial Internet of Things Context. Sensors 2019, 19, 138. [CrossRef] [PubMed]

54. Kwon, S.; Jeong, J.; Shon, T. Toward Security Enhanced Provisioning in Industrial IoT Systems. Sensors 2018,
18, 4372. [CrossRef] [PubMed]

55. Xun, P.; Zhu, P.-D.; Hu, Y.-F.; Cui, P.-S.; Zhang, Y. Command Disaggregation Attack and Mitigation in
Industrial Internet of Things. Sensors 2017, 17, 2408. [CrossRef] [PubMed]

56. Aloqaily, M.; Otoum, S.; Ridhawi, I.A.; Jararweh, Y. An Intrusion Detection System for Connected Vehicles in
Smart Cities. J. Ad Hoc Netw. 2019, in press. [CrossRef]

57. Otoum, S.; Kantarci, B.; Mouftah, H. Adaptively Supervised and Intrusion-Aware Data Aggregation for
Wireless Sensor Clusters in Critical Infrastructures. In Proceedings of the IEEE International Conference on
Communications (ICC), Kansas City, MO, USA, 20–24 May 2018. [CrossRef]

58. Otoum, S.; Kantarci, B.; Mouftah, H.T. Detection of Known and Unknown Intrusive Sensor Behavior in
Critical Applications. IEEE Sens. Lett. 2017, 1, 1–4. [CrossRef]

59. Wang, C.; Shen, J.; Liu, Q.; Ren, Y.; Li, T. A Novel Security Scheme Based on Instant Encrypted Transmission
for Internet of Things. Secur. Commun. Netw. 2018, 2018, 3680851. [CrossRef]

60. Otoum, S.; Kantarci, B.; Mouftah, H.T. Hierarchical trust-based black-hole detection in WSN-based smart
grid monitoring. In Proceedings of the IEEE International Conference on Communications (ICC), Paris,
France, 21–25 May 2017. [CrossRef]

© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

https://tools.ietf.org/html/draft-ietf-core-coap-pubsub-06
https://tools.ietf.org/html/draft-ietf-core-coap-pubsub-06
https://www.w3.org/TR/exi-c14n/
https://www.w3.org/TR/exi-c14n/
http://dx.doi.org/10.3390/s19010138
http://www.ncbi.nlm.nih.gov/pubmed/30609777
http://dx.doi.org/10.3390/s18124372
http://www.ncbi.nlm.nih.gov/pubmed/30544752
http://dx.doi.org/10.3390/s17102408
http://www.ncbi.nlm.nih.gov/pubmed/29065461
http://dx.doi.org/10.1016/j.adhoc.2019.02.001
http://dx.doi.org/10.1109/ICC.2018.8422401
http://dx.doi.org/10.1109/LSENS.2017.2752719
http://dx.doi.org/10.1155/2018/3680851
http://dx.doi.org/10.1109/ICC.2017.7997099
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	MODBUS Theory
	Comparison between IoT Protocols
	Comparison between MODBUS TCP and MQTT
	Latency and CPU Usage
	Discussion
	Conclusions
	References

