Impact of Different Drying Processes on the Physico-Chemical Properties of Liquitablet Formulations Containing Lornoxicam
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Solubility Studies as Preliminary Experiments
2.2.2. Sample Preparation
2.2.3. Liquitablets Characterization
Liquitablets Parameters
Differential Scanning Calorimetry (DSC) Thermogravimetric Analysis (TGA)
X-Ray Powder Diffraction Analysis (XRPD)
Fourier Transform Infrared Spectroscopy (FT-IR)
Wettability
2.2.4. In Vitro Dissolution Test
2.2.5. Statistical Analysis
3. Results and Discussion
3.1. Solubility Studies
3.2. Liquitablets Parameters
3.3. Solid Phase Characterization
3.3.1. Thermoanalytical Results
3.3.2. Structural Characterization: X-Ray Powder Diffraction Analysis (XRPD)
3.3.3. Structural Characterization: FT-IR
3.3.4. Wettability Investigations
3.4. Evaluation of In Vitro Dissolution Test
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
API | active pharmaceutical ingredient |
LXM | lornoxicam |
PVP K90 | polyvinylpyrrolidone K90 |
PM | physical mixture |
VDLT | vacuum-dried liquitablets |
FDLT | freeze-dried liquitablets |
w/w | weight per weight |
DSC | differential scanning calorimetry |
TGA | thermogravimetric Analysis |
Tg | glass transition |
XRPD | X-ray powder diffraction analysis |
FT-IR | Fourier transform infrared spectroscopy |
min | minute |
mm | millimeter |
SM | simple marketed |
RM | rapid marketed |
References
- Kalepu, S.; Nekkanti, V. Insoluble drug delivery strategies: Review of recent advances and business prospects. Acta Pharm. Sin. B 2015, 5, 442–453. [Google Scholar] [CrossRef]
- Gowthami, B.; Krishna, S.G.; Rao, D.S. Novel approaches to enhance oral bioavailability of poorly soluble drugs. Int. J. Res. Pharm. Sci. 2020, 2, 12–16. [Google Scholar]
- Nyamba, I.; Sombié, C.B.; Yabré, M.; Zimé-Diawara, H.; Yaméogo, J.; Ouédraogo, S.; Lechanteur, A.; Semdé, R.; Evrard, B. Pharmaceutical approaches for enhancing solubility and oral bioavailability of poorly soluble drugs. Eur. J. Pharm. Biopharm. 2024, 204, 114513. [Google Scholar] [CrossRef] [PubMed]
- Kumari, L.; Choudhari, Y.; Patel, P.; Das Gupta, G.; Singh, D.; Rosenholm, J.M.; Bansal, K.K.; Das Kurmi, B. Advancement in Solubilization Approaches: A Step towards Bioavailability Enhancement of Poorly Soluble Drugs. Life 2023, 13, 1099. [Google Scholar] [CrossRef] [PubMed]
- Karbasi, A.B.; Barfuss, J.D.; Morgan, T.C.; Collins, D.; Costenbader, D.A.; Dennis, D.G.; Hinman, A.; Ko, K.; Messina, C.; Nguyen, K.C.; et al. Sol-moiety: Discovery of a water-soluble prodrug technology for enhanced oral bioavailability of insoluble therapeutics. Nat. Commun. 2024, 15, 8487. [Google Scholar] [CrossRef] [PubMed]
- Stella, V.J.; Nti-Addae, K.W. Prodrug strategies to overcome poor water solubility. Adv. Drug Deliv. Rev. 2007, 59, 677–694. [Google Scholar] [CrossRef]
- Millard, J.W.; Alvarez-Núñez, F.; Yalkowsky, S.H. Solubilization by Cosolvents: Establishing Useful Constants for the Log-Linear Model. Int. J. Pharm. 2002, 245, 153–166. [Google Scholar] [CrossRef]
- Chettri, A.; Subba, A.; Singh, G.P.; Bag, P.P. Pharmaceutical co-crystals: A green way to enhance drug stability and solubility for improved therapeutic efficacy. J. Pharm. Pharmacol. 2024, 76, 1–12. [Google Scholar] [CrossRef]
- Blagden, N.; De Matas, M.; Gavan, P.T.; York, P. Crystal engineering of active pharmaceutical ingredients to improve solubility and dissolution rates. Adv. Drug Deliv. Rev. 2007, 59, 617–630. [Google Scholar] [CrossRef]
- Ambrus, R.; Alshweiat, A.; Szabó-Révész, P.; Bartos, C.; Csóka, I. Smartcrystals for Efficient Dissolution of Poorly Water-Soluble Meloxicam. Pharmaceutics 2022, 14, 245. [Google Scholar] [CrossRef]
- Csicsák, D.; Szolláth, R.; Kádár, S.; Ambrus, R.; Bartos, C.; Balogh, E.; Antal, I.; Köteles, I.; Tőzsér, P.; Bárdos, V.; et al. The Effect of the Particle Size Reduction on the Biorelevant Solubility and Dissolution of Poorly Soluble Drugs with Different Acid-Base Character. Pharmaceutics 2023, 15, 278. [Google Scholar] [CrossRef]
- Jinno, J.-I.; Kamada, N.; Miyake, M.; Yamada, K.; Mukai, T.; Odomi, M.; Toguchi, H.; Liversidge, G.G.; Higaki, K.; Kimura, T. Effect of particle size reduction on dissolution and oral absorption of a poorly water-soluble drug, cilostazol, in beagle dogs. J. Control. Release 2006, 111, 56–64. [Google Scholar] [CrossRef] [PubMed]
- Hermenean, A.; Dossi, E.; Hamilton, A.; Trotta, M.C.; Russo, M.; Lepre, C.C.; Sajtos, C.; Rusznyák, Á.; Váradi, J.; Bácskay, I.; et al. Chrysin Directing an Enhanced Solubility through the Formation of a Supramolecular Cyclodextrin–Calixarene Drug Delivery System: A Potential Strategy in Antifibrotic Diabetes Therapeutics. Pharmaceuticals 2024, 17, 107. [Google Scholar] [CrossRef] [PubMed]
- Jain, N.K.; Gupta, U. Application of dendrimer–drug complexation in the enhancement of drug solubility and bioavailability. Expert Opin. Drug Metab. Toxicol. 2008, 4, 1035–1052. [Google Scholar] [CrossRef] [PubMed]
- Mu, H.; Holm, R.; Müllertz, A. Lipid-based formulations for oral administration of poorly water-soluble drugs. Int. J. Pharm. 2013, 453, 215–224. [Google Scholar] [CrossRef]
- Butreddy, A.; Bandari, S.; Repka, M.A. Quality-by-design in hot melt extrusion based amorphous solid dispersions: An industrial perspective on product development. Eur. J. Pharm. Sci. 2021, 158, 105655. [Google Scholar] [CrossRef]
- Sripetthong, S.; Nalinbenjapun, S.; Basit, A.; Ovatlarnporn, C. Synthesis of Quarternized Chitosans and Their Potential Applications in the Solubility Enhancement of Indomethacin by Solid Dispersion. AAPS PharmSciTech 2024, 25, 179. [Google Scholar] [CrossRef]
- Serajuddin, A.T. Solid dispersion of poorly water-soluble drugs: Early promises, subsequent problems, and recent breakthroughs. J. Pharm. Sci. 1999, 88, 1058–1066. [Google Scholar] [CrossRef]
- Lam, M.; Asare-Addo, K.; Nokhodchi, A. Liqui-Tablet: The Innovative Oral Dosage Form Using the Newly Developed Liqui-Mass Technology. AAPS PharmSciTech 2021, 22, 85. [Google Scholar] [CrossRef]
- Lam, M.; Nokhodchi, A. Producing High-Dose Liqui-Tablet (Ketoprofen 100 mg) for Enhanced Drug Release Using Novel Liqui-Mass Technology. J. Pharm. Innov. 2021, 17, 778–790. [Google Scholar] [CrossRef]
- Cahyani, A.N.; Susanto, A.; Dewi, I.R.; Nurhikmah, I. Formulasi Tablet Parasetamol Dengan Kombinasi PVP dan Amilum Umbi Porang (Amorphopallus onchopyllus) Sebagai Bahan Pengikat Terhadap Sifat Fisik Tablet. J. Ilm. JOPHUS J. Pharm. UMUS 2023, 4, 1–11. [Google Scholar] [CrossRef]
- Lam, M.; Nokhodchi, A. Pharmaceutical Methods and Compositions. International Patent Application No. PCT/GB2019/052065, 24 July 2019. [Google Scholar]
- Hillstrom, C.; Jakobsson, J.G. Lornoxicam: Pharmacology and usefulness to treat acute postoperative and musculoskeletal pain a narrative review. Expert Opin. Pharmacother. 2013, 14, 1679–1694. [Google Scholar] [CrossRef]
- Balfour, J.A.; Fitton, A.; Barradell, L.B. Lornoxicam: A review of its pharmacology and therapeutic potential in the management of painful and inflammatory conditions. Drugs 1996, 51, 639–657. [Google Scholar] [CrossRef] [PubMed]
- Nousheen, L.; Rajasekaran, S.; Qureshi, M.S. Solubility enhancement of lornoxicam with poloxamer 188 by solvent evaporation method. Int. J. Health Sci. 2022, 6, 8186–8195. [Google Scholar] [CrossRef]
- Li, F.; Song, S.; Guo, Y.; Zhao, Q.; Zhang, X.; Pan, W.; Yang, X. Preparation and pharmacokinetics evaluation of oral self-emulsifying system for poorly water-soluble drug Lornoxicam. Drug Deliv. 2013, 22, 487–498. [Google Scholar] [CrossRef] [PubMed]
- Kalyanappa, S.; Krishna, M.R.; Goli, D. Design and in vitro Evaluation of a Novel Sustained Release Double Layered Tablets of Lornoxicam by using semi synthetic polymers. Indian J. Pharm. Educ. Res. 2015, 49, s31–s41. [Google Scholar] [CrossRef]
- Nijhawan, M.; Santhosh, A.; Babu, P.R.S.; Subrahmanyam, C.V.S. Solid state manipulation of lornoxicam for cocrystals—Physicochemical characterization. Drug Dev. Ind. Pharm. 2013, 40, 1163–1172. [Google Scholar] [CrossRef]
- Zewail, M.B.; ASaad, G.F.; Swellam, S.M.; Abd-Allah, S.M.; K.HOsny, S.; Sallah, S.K.; E.EIssa, J.; S.MOhamed, S.; El-Dakroury, W.A. Design, characterization and in vivo performance of solid lipid nanoparticles (SLNs)-loaded mucoadhesive buccal tablets for efficient delivery of Lornoxicam in experimental inflammation. Int. J. Pharm. 2022, 624, 122006. [Google Scholar] [CrossRef]
- Usman, F.; Javed, I.; Hussain, S.Z.; Ranjha, N.M.; Hussain, I. Hydrophilic nanoparticles packed in oral tablets can improve the plasma profile of short half-life hydrophobic drugs. RSC Adv. 2016, 6, 94896–94904. [Google Scholar] [CrossRef]
- Shokri, J.; Adibkia, K.; Javadzadeh, Y. Liquisolid Technology: What It Can Do for NSAIDs Delivery? Colloids Surf. B Biointerfaces 2015, 136, 185–191. [Google Scholar]
- El-Setouhy, D.A.; Gamiel, A.A.-R.; Badawi, A.A.E.-L.; Osman, A.S.; Labib, D.A. Comparative study on thein vitroperformance of blister molded and conventional lornoxicam immediate release liquitablets: Accelerated stability study and anti-inflammatory and ulcerogenic effects. Pharm. Dev. Technol. 2016, 22, 256–265. [Google Scholar] [CrossRef] [PubMed]
- Strickley, R.G. Solubilizing Excipients in Oral and Injectable Formulations. Pharm. Res. 2004, 21, 201–230. [Google Scholar] [CrossRef]
- Hussein, A.A. Preparation and Evaluation of Liquid and Solid Self-Microemulsifying Drug Delivery System of Mebendazole. Iraqi J. Pharm. Sci. 2017, 23, 89–100. [Google Scholar] [CrossRef]
- Kolling, W.M. Handbook of Pharmaceutical Excipients. Am. J. Pharm. Educ. 2004, 68, BF1. [Google Scholar]
- Wang, Y.; Chin, C.-Y.; Shivashekaregowda, N.K.H.; Shi, Q. Effects of polyvinylpyrrolidone on the crystallization of amorphous griseofulvin: Fracture and molecular mobility. J. Appl. Crystallogr. 2024, 57, 782–792. [Google Scholar] [CrossRef]
- Kumar, R.; Sinha, V. Tailoring of drug delivery of 5-fluorouracil to the colon via a mixed film coated unit system. Acta Pharm. 2011, 61, 343–351. [Google Scholar] [CrossRef] [PubMed]
- Humbert-Droz, P.; Seidel, M.; Martani, R. Fast Disintegrating Oral Dosage Form. U.S. Patent 6,083,531, 4 July 2000. [Google Scholar]
- Carstensen, J.T. Preformulation. In Modern Pharmaceutics; CRC Press: Boca Raton, FL, USA, 2002; pp. 279–313. [Google Scholar]
- Wagner, J.G. Interpretation of Percent Dissolved-Time Plots Derived from In Vitro Testing of Conventional Tablets and Capsules. J. Pharm. Sci. 1969, 58, 1253–1257. [Google Scholar] [CrossRef]
- Moore, J.W.; Flanner, H.H. Mathematical Comparison of Dissolution Profiles. Pharm. Technol. 1996, 20, 64–74. [Google Scholar]
- Moutasim, M.Y.; ElMeshad, A.N.; El-Nabarawi, M.A. A pharmaceutical study on lornoxicam fast disintegrating tablets: Formulation and in vitro and in vivo evaluation. Drug Deliv. Transl. Res. 2017, 7, 450–459. [Google Scholar] [CrossRef] [PubMed]
- Sheinin, E.B. Pharmacopeial Methods and Tests. In Specification of Drug Substances and Products; Elsevier: Amsterdam, The Netherlands, 2025; pp. 161–184. [Google Scholar]
- Wesolowski, M.; Leyk, E. Coupled and Simultaneous Thermal Analysis Techniques in the Study of Pharmaceuticals. Pharmaceutics 2023, 15, 1596. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Majid, K.; Maqbool, M.; Hussain, T.; Yousaf, A.M.; Khan, I.U.; Mehmood, Y.; Aleem, A.; Arshad, M.S.; Younus, A.; et al. Formulation and characterization of lornoxicam-loaded cellulosic-microsponge gel for possible applications in arthritis. Saudi Pharm. J. 2020, 28, 994–1003. [Google Scholar] [CrossRef]
- Carvalho, A.; Zangaro, G.; Fernandes, R.; Ekawa, B.; Nascimento, A.; Silva, B.; Ashton, G.; Parkes, G.; Ionashiro, M.; Caires, F. Lornoxicam drug—A new study of thermal degradation under oxidative and pyrolysis conditions using the thermoanalytical techniques, DRX and LC-MS/MS. Thermochim. Acta 2019, 680, 178353. [Google Scholar] [CrossRef]
- Suresh, K.; Nangia, A. Lornoxicam Salts: Crystal Structures, Conformations, and Solubility. Cryst. Growth Des. 2014, 14, 2945–2953. [Google Scholar] [CrossRef]
- Khairnar, S.; Kini, R.; Harwalkar, M.; Chaudhari, S.R. A Review on Freeze Drying Process of Pharmaceuticals. Int. J. Res. Pharm. Sci. 2014, 4, 76–94. [Google Scholar]
- Kumbhar, D.; Wavikar, P.; Vavia, P. Niosomal Gel of Lornoxicam for Topical Delivery: In vitro Assessment and Pharmacodynamic Activity. AAPS PharmSciTech 2013, 14, 1072–1082. [Google Scholar] [CrossRef]
- Colombo, M.; Orthmann, S.; Bellini, M.; Staufenbiel, S.; Bodmeier, R. Influence of Drug Brittleness, Nanomilling Time, and Freeze-Drying on the Crystallinity of Poorly Water-Soluble Drugs and Its Implications for Solubility Enhancement. AAPS PharmSciTech 2017, 18, 2437–2445. [Google Scholar] [CrossRef]
- Kurakula, M.; Rao, G.K. Pharmaceutical assessment of polyvinylpyrrolidone (PVP): As excipient from conventional to controlled delivery systems with a spotlight on COVID-19 inhibition. J. Drug Deliv. Sci. Technol. 2020, 60, 102046. [Google Scholar] [CrossRef]
- Rusdin, A.; Gazzali, A.M.; Thomas, N.A.; Megantara, S.; Aulifa, D.L.; Budiman, A.; Muchtaridi, M. Advancing Drug Delivery Paradigms: Polyvinyl Pyrolidone (PVP)-Based Amorphous Solid Dispersion for Enhanced Physicochemical Properties and Therapeutic Efficacy. Polymers 2024, 16, 286. [Google Scholar] [CrossRef] [PubMed]
- Ochi, M.; Kimura, K.; Kanda, A.; Kawachi, T.; Matsuda, A.; Yuminoki, K.; Hashimoto, N. Physicochemical and Pharmacokinetic Characterization of Amorphous Solid Dispersion of Meloxicam with Enhanced Dissolution Property and Storage Stability. AAPS PharmSciTech 2015, 17, 932–939. [Google Scholar] [CrossRef]
- Srivastava, A.; Khan, M.A.; Bedi, S.; Bhandari, U. A Review on Different Solubility Enhancement Techniques of Ticagrelor. Int. J. Pharm. Investig. 2022, 13, 1–6. [Google Scholar] [CrossRef]
- Jadhav, P.; Yadav, A. Formulation, optimization, and in vitro evaluation of polymeric nanosuspension of flurbiprofen. Asian J. Pharm. Clin. Res. 2019, 12, 183–191. [Google Scholar] [CrossRef]
- Joseph, J.; Vedha Hari, B.N.; Devi, D.R. Experimental optimization of Lornoxicam liposomes for sustained topical delivery. Eur. J. Pharm. Sci. 2018, 112, 38–51. [Google Scholar] [CrossRef]
- Noreen, M.; Farooq, M.A.; Ghayas, S.; Bushra, R.; Yaqoob, N.; Abrar, M.A. Formulation and in vitro characterization of sustained release tablets of lornoxicam. Lat. Am. J. Pharm. 2019, 38, 701–711. [Google Scholar]
- Alhalaweh, A.; Vilinska, A.; Gavini, E.; Rassu, G.; Velaga, S.P. Surface Thermodynamics of Mucoadhesive Dry Powder Formulation of Zolmitriptan. AAPS PharmSciTech 2011, 12, 1186–1192. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Hao, J.; Yang, B.; Hu, B.; Cui, Z.; Li, S. Contact Angle Measurements: An Alternative Approach Towards Understanding the Mechanism of Increased Drug Dissolution from Ethylcellulose Tablets Containing Surfactant and Exploring the Relationship Between Their Contact Angles and Dissolution Behaviors. AAPS PharmSciTech 2018, 19, 1582–1591. [Google Scholar] [CrossRef]
- Hanum, T.I.; Nasution, A.; Sumaiyah, S.; Bangun, H. Physical stability and dissolution of ketoprofen nanosuspension formulation: Polyvinylpyrrolidone and Tween 80 as stabilizers. Pharmacia 2023, 70, 209–215. [Google Scholar] [CrossRef]
- Bansal, A.K.; Pande, V. Development and Evaluation of Dual Cross-Linked Pulsatile Beads for Chronotherapy of Rheumatoid Arthritis. J. Pharm. 2013, 2013, 906178. [Google Scholar] [CrossRef][Green Version]
- Taldaev, A.; Pankov, D.I.; Terekhov, R.P.; Zhevlakova, A.K.; Selivanova, I.A. Modification of the Physicochemical Properties of Active Pharmaceutical Ingredients via Lyophilization. Pharmaceutics 2023, 15, 2607. [Google Scholar] [CrossRef] [PubMed]
- Patil, S.B.; Shahi, S.R.; Udavant, Y.K.; Atram, S.C.; Salunke, R.J.; Neb, G.B. Formulation and evaluation of quick dispersible tablet of olanzapine. Int. J. Pharm. Res. Dev.-Online 2009, 7, 001. [Google Scholar][Green Version]
- Rajebahadur, M.; Zia, H.; Nues, A.; Lee, C. Mechanistic Study of Solubility Enhancement of Nifedipine Using Vitamin E TPGS or Solutol HS-15. Drug Deliv. 2006, 13, 201–206. [Google Scholar] [CrossRef]
Composition/Tablet (% w/w) | |
---|---|
Avicel® PH-102 | 47.7 |
PVP K 90 | 5 |
Sodium bicarbonate | 15 |
Tween® 80 | 32.3 |
Media | mg/mL (n = 3) |
---|---|
Distilled water (pH 6.8) | 0.0131 ± 0.52 |
Buffer solution (pH 1.2) | 0.003 ± 0 |
Pure Tween® 80 | 6.197 ± 0.22 |
15% w/v aqueous solution of NaHCO3 | 5.794 ± 0.59 |
Tween® 80: 15% w/v aqueous solution of NaHCO3 (3:1) | 16.56 ± 0.94 |
Average Weight (mg) (n = 3) | Drug Content (%) (n = 3) | Dimensions (mm) | Image | |
---|---|---|---|---|
VDLT | 306 ± 0.94 | 95.73 ± 2.676 | 22.802 × 8.724 | |
FDLT | 307 ± 0.42 | 99.45 ± 3.950 | 22.819 × 8.724 |
Crystallinity (%) | |
---|---|
LXM | 88.1 |
PM | 66.50 |
VDLT | 57.6 |
FDLT | 50.3 |
Contact Angle (°) | Surface Free Energy (mN/m) | Polarity (%) | ||
---|---|---|---|---|
Water | DIM | |||
API | 42.0 | 18.68 | 65.37 | 33.32 |
VDLT | 28.76 | 14.14 | 75.96 | 40.95 |
FDLT | 33.60 | 16.01 | 73.19 | 39.75 |
Similarity Factor (f2) | |
---|---|
FDLT and VDLT | 49 |
FDLT and SM | 7.45 |
FDLT and RM | 79.35 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Balla-Bartos, C.; Gamiel, A.; Motzwickler-Németh, A.; Ambrus, R. Impact of Different Drying Processes on the Physico-Chemical Properties of Liquitablet Formulations Containing Lornoxicam. Pharmaceutics 2025, 17, 1096. https://doi.org/10.3390/pharmaceutics17091096
Balla-Bartos C, Gamiel A, Motzwickler-Németh A, Ambrus R. Impact of Different Drying Processes on the Physico-Chemical Properties of Liquitablet Formulations Containing Lornoxicam. Pharmaceutics. 2025; 17(9):1096. https://doi.org/10.3390/pharmaceutics17091096
Chicago/Turabian StyleBalla-Bartos, Csilla, Alaa Gamiel, Anett Motzwickler-Németh, and Rita Ambrus. 2025. "Impact of Different Drying Processes on the Physico-Chemical Properties of Liquitablet Formulations Containing Lornoxicam" Pharmaceutics 17, no. 9: 1096. https://doi.org/10.3390/pharmaceutics17091096
APA StyleBalla-Bartos, C., Gamiel, A., Motzwickler-Németh, A., & Ambrus, R. (2025). Impact of Different Drying Processes on the Physico-Chemical Properties of Liquitablet Formulations Containing Lornoxicam. Pharmaceutics, 17(9), 1096. https://doi.org/10.3390/pharmaceutics17091096