Characterization and In Vivo Antiangiogenic Activity Evaluation of Morin-Based Cyclodextrin Inclusion Complexes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of the Inclusion Complexes
2.3. Phase-Solubility Studies
2.4. Quantification of MRN
2.5. Determination of Dissolution Rate
2.6. UV–Vis Titration
2.7. NMR Spectroscopy
2.8. Dynamic Light Scattering (DLS)
2.9. Zeta Potential (ζ)
2.10. Wide-Angle X-ray Diffraction (WAXD)
2.11. Thermogravimetric Analysis (TGA)
2.12. Fourier-Transform Infrared (FT-IR)
2.13. In Vivo Studies
2.13.1. Chick Chorioallantoic Membrane (CAM) Assay
2.13.2. Zebrafish Embryo Culture and Treatment Protocol
2.13.3. Quantitative Determination of Endogenous Alkaline Phosphatase (EAP) Activity
2.14. Statistical Analysis
3. Results and Discussion
3.1. In Solution Studies
Dynamic Light Scattering (DLS) and Zeta Potential (ζ)
3.2. Solid-State Characterization
3.2.1. Wide-Angle X-ray Diffraction (WAXD)
3.2.2. Thermogravimetric Analysis (TGA)
3.2.3. FT-IR Analysis
3.3. Biological In Vivo Studies
3.3.1. Antiangiogenic Activity on Chick Chorioallantoic Membrane (CAM)
3.3.2. Zebrafish Embryos Model
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dzobo, K. The Role of Natural Products as Sources of Therapeutic Agents for Innovative Drug Discovery. Compr. Pharmacol. 2022, 408–422. [Google Scholar] [CrossRef]
- Di Marzio, L.; Ventura, C.A.; Cosco, D.; Paolino, D.; Di Stefano, A.; Stancanelli, R.; Tommasini, S.; Cannavà, C.; Celia, C.; Fresta, M. Nanotherapeutics for Anti-Inflammatory Delivery. J. Drug Deliv. Sci. Technol. 2016, 32, 174–191. [Google Scholar] [CrossRef]
- Atanasov, A.G.; Zotchev, S.B.; Dirsch, V.M.; Supuran, C.T. Natural Products in Drug Discovery: Advances and Opportunities. Nat. Rev. Drug Discov. 2021, 20, 200–216. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Yang, S.; Wang, K.; Lu, J.; Bao, X.; Wang, R.; Qiu, Y.; Wang, T.; Yu, H. Cellular Senescence and Cancer: Focusing on Traditional Chinese Medicine and Natural Products. Cell Prolif. 2020, 53, e12894. [Google Scholar] [CrossRef] [PubMed]
- Rabiei, Z.; Solati, K.; Amini-Khoei, H. Phytotherapy in Treatment of Parkinson’s Disease: A Review. Pharm. Biol. 2019, 57, 355–362. [Google Scholar] [CrossRef] [PubMed]
- Colone, M.; Calcabrini, A.; Stringaro, A. Drug Delivery Systems of Natural Products in Oncology. Molecules 2020, 25, 4560. [Google Scholar] [CrossRef]
- Li, B.; Shao, H.; Gao, L.; Li, H.; Sheng, H.; Zhu, L. Nano-Drug Co-Delivery System of Natural Active Ingredients and Chemotherapy Drugs for Cancer Treatment: A Review. Drug Deliv. 2022, 29, 2130–2161. [Google Scholar] [CrossRef]
- Cristiano, M.C.; Mancuso, A.; Fresta, M.; Torella, D.; De Gaetano, F.; Ventura, C.A.; Paolino, D. Topical Unsaturated Fatty Acid Vesicles Improve Antioxidant Activity of Ammonium Glycyrrhizinate. Pharmaceutics 2021, 13, 548. [Google Scholar] [CrossRef]
- Dias, M.C.; Pinto, D.C.G.A.; Silva, A.M.S. Plant Flavonoids: Chemical Characteristics and Biological Activity. Molecules 2021, 26, 5377. [Google Scholar] [CrossRef]
- Calis, Z.; Mogulkoc, R.; Baltaci, A.K. The Roles of Flavonols/Flavonoids in Neurodegeneration and Neuroinflammation. Mini Rev. Med. Chem. 2020, 20, 1475–1488. [Google Scholar] [CrossRef]
- Sun, Q.; Liu, Q.; Zhou, X.; Wang, X.; Li, H.; Zhang, W.; Yuan, H.; Sun, C. Flavonoids Regulate Tumor-Associated Macrophages—From Structure-Activity Relationship to Clinical Potential (Review). Pharm. Res. 2022, 184, 106419. [Google Scholar] [CrossRef] [PubMed]
- Adinew, G.M.; Taka, E.; Mendonca, P.; Messeha, S.S.; Soliman, K.F.A. The Anticancer Effects of Flavonoids through MiRNAs Modulations in Triple-Negative Breast Cancer. Nutrients 2021, 13, 1212. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Hu, D.; Song, X.; Han, T.; Gao, Y.; Xing, Y. The Role of Biologically Active Ingredients from Natural Drug Treatments for Arrhythmias in Different Mechanisms. Biomed. Res. Int. 2017, 2017, 4615727. [Google Scholar] [CrossRef]
- Zhang, W.-L.; Zhu, L.; Jiang, J.-G. Active Ingredients from Natural Botanicals in the Treatment of Obesity. Obes. Rev. 2014, 15, 957–967. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Ding, Z.; Li, Z.; Ding, Y.; Jiang, F.; Liu, J. Antioxidant and Antibacterial Study of 10 Flavonoids Revealed Rutin as a Potential Antibiofilm Agent in Klebsiella Pneumoniae Strains Isolated from Hospitalized Patients. Microb. Pathog. 2021, 159, 105121. [Google Scholar] [CrossRef]
- Nag, D.; Dastidar, D.G.; Chakrabarti, G. Natural Flavonoid Morin Showed Anti-Bacterial Activity against Vibrio Cholera after Binding with Cell Division Protein FtsA near ATP Binding Site. Biochim. Biophys. Acta Gen. Subj. 2021, 1865, 129931. [Google Scholar] [CrossRef]
- Cushnie, T.P.T.; Lamb, A.J. Antimicrobial Activity of Flavonoids. Int. J. Antimicrob. Agents 2005, 26, 343–356. [Google Scholar] [CrossRef]
- Li, B.Q.; Fu, T.; Dongyan, Y.; Mikovits, J.A.; Ruscetti, F.W.; Wang, J.M. Flavonoid Baicalin Inhibits HIV-1 Infection at the Level of Viral Entry. Biochem. Biophys. Res. Commun. 2000, 276, 534–538. [Google Scholar] [CrossRef]
- Serafini, M.; Peluso, I.; Raguzzini, A. Flavonoids as Anti-Inflammatory Agents. Proc. Nutr. Soc. 2010, 69, 273–278. [Google Scholar] [CrossRef]
- Khater, M.; Greco, F.; Osborn, H.M.I. Antiangiogenic Activity of Flavonoids: A Systematic Review and Meta-Analysis. Molecules 2020, 25, 4712. [Google Scholar] [CrossRef]
- Caselli, A.; Cirri, P.; Santi, A.; Paoli, P. Morin: A Promising Natural Drug. Curr. Med. Chem. 2016, 23, 774–791. [Google Scholar] [CrossRef] [PubMed]
- Rajput, S.A.; Wang, X.Q.; Yan, H.C. Morin Hydrate: A Comprehensive Review on Novel Natural Dietary Bioactive Compound with Versatile Biological and Pharmacological Potential. Biomed. Pharmacother. 2021, 138, 111511. [Google Scholar] [CrossRef] [PubMed]
- de Farias, A.L.; Arbeláez, M.I.A.; Meneguin, A.B.; da Barud, H.S.; Brighenti, F.L. Mucoadhesive Controlled-Release Formulations Containing Morin for the Control of Oral Biofilms. Biofouling 2022, 38, 71–83. [Google Scholar] [CrossRef] [PubMed]
- Chemmugil, P.; Lakshmi, P.T.V.; Annamalai, A. Exploring Morin as an Anti-Quorum Sensing Agent (Anti-QSA) against Resistant Strains of Staphylococcus Aureus. Microb. Pathog. 2019, 127, 304–315. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Guo, C.; Wei, Z.; He, X.; Kou, J.; Zhou, E.; Yang, Z.; Fu, Y. Morin Suppresses Inflammatory Cytokine Expression by Downregulation of Nuclear Factor-ΚB and Mitogen-Activated Protein Kinase (MAPK) Signaling Pathways in Lipopolysaccharide-Stimulated Primary Bovine Mammary Epithelial Cells. J. Dairy Sci. 2016, 99, 3016–3022. [Google Scholar] [CrossRef] [PubMed]
- Jung, H.-J.; Kim, S.-J.; Song, Y.-S.; Park, E.-H.; Lim, C.-J. Evaluation of the Antiangiogenic, Anti-Inflammatory, and Antinociceptive Activities of Morin. Planta Med. 2010, 76, 273–275. [Google Scholar] [CrossRef]
- Jangid, A.K.; Pooja, D.; Kulhari, H. Determination of Solubility, Stability and Degradation Kinetics of Morin Hydrate in Physiological Solutions. RSC Adv. 2018, 8, 28836–28842. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Yang, Y.; Ning, E.; Peng, Y.; Zhang, J. Mechanisms of Poor Oral Bioavailability of Flavonoid Morin in Rats: From Physicochemical to Biopharmaceutical Evaluations. Eur. J. Pharm. Sci. 2019, 128, 290–298. [Google Scholar] [CrossRef]
- De Gaetano, F.; Cristiano, M.C.; Venuti, V.; Crupi, V.; Majolino, D.; Paladini, G.; Acri, G.; Testagrossa, B.; Irrera, A.; Paolino, D.; et al. Rutin-Loaded Solid Lipid Nanoparticles: Characterization and In Vitro Evaluation. Molecules 2021, 26, 1039. [Google Scholar] [CrossRef]
- De Gaetano, F.; Celesti, C.; Paladini, G.; Venuti, V.; Cristiano, M.C.; Paolino, D.; Iannazzo, D.; Strano, V.; Gueli, A.M.; Tommasini, S.; et al. Solid Lipid Nanoparticles Containing Morin: Preparation, Characterization, and Ex Vivo Permeation Studies. Pharmaceutics 2023, 15, 1605. [Google Scholar] [CrossRef]
- Ahmad, N.; Ahmad, R.; Naqvi, A.A.; Alam, M.A.; Ashafaq, M.; Samim, M.; Iqbal, Z.; Ahmad, F.J. Rutin-Encapsulated Chitosan Nanoparticles Targeted to the Brain in the Treatment of Cerebral Ischemia. Int. J. Biol. Macromol. 2016, 91, 640–655. [Google Scholar] [CrossRef] [PubMed]
- Elmowafy, M.; Shalaby, K.; Elkomy, M.H.; Alsaidan, O.A.; Gomaa, H.A.M.; Abdelgawad, M.A.; Mostafa, E.M. Polymeric Nanoparticles for Delivery of Natural Bioactive Agents: Recent Advances and Challenges. Polymers 2023, 15, 1123. [Google Scholar] [CrossRef] [PubMed]
- Sogut, O.; Aydemir Sezer, U.; Sezer, S. Liposomal Delivery Systems for Herbal Extracts. J. Drug Deliv. Sci. Technol. 2021, 61, 102147. [Google Scholar] [CrossRef]
- Wüpper, S.; Lüersen, K.; Rimbach, G. Cyclodextrins, Natural Compounds, and Plant Bioactives—A Nutritional Perspective. Biomolecules 2021, 11, 401. [Google Scholar] [CrossRef]
- De Gaetano, F.; Cristiano, M.C.; Paolino, D.; Celesti, C.; Iannazzo, D.; Pistarà, V.; Iraci, N.; Ventura, C.A. Bicalutamide Anticancer Activity Enhancement by Formulation of Soluble Inclusion Complexes with Cyclodextrins. Biomolecules 2022, 12, 1716. [Google Scholar] [CrossRef] [PubMed]
- Muñoz-Shugulí, C.; Vidal, C.P.; Cantero-López, P.; Lopez-Polo, J. Encapsulation of Plant Extract Compounds Using Cyclodextrin Inclusion Complexes, Liposomes, Electrospinning and Their Combinations for Food Purposes. Trends Food Sci. Technol. 2021, 108, 177–186. [Google Scholar] [CrossRef]
- Lima Nascimento, J.; Coelho, A.G.; Oliveira Barros, Y.S.; Sousa Oliveira, I.; Vieira da Silva, F.; Custódio Viana, A.F.S.; Araújo, B.Q.; dos Santos Rocha, M.; das Chagas Pereira de Andrade, F.; de Oliveira Barbosa, C.; et al. Production and Characterization of a β-Cyclodextrin Inclusion Complex with Platonia Insignis Seed Extract as a Proposal for a Gastroprotective System. Appl. Sci. 2022, 13, 58. [Google Scholar] [CrossRef]
- De Gaetano, F.; d’Avanzo, N.; Mancuso, A.; De Gaetano, A.; Paladini, G.; Caridi, F.; Venuti, V.; Paolino, D.; Ventura, C.A. Chitosan/Cyclodextrin Nanospheres for Potential Nose-to-Brain Targeting of Idebenone. Pharmaceuticals 2022, 15, 1206. [Google Scholar] [CrossRef]
- Venuti, V.; Crupi, V.; Fazio, B.; Majolino, D.; Acri, G.; Testagrossa, B.; Stancanelli, R.; De Gaetano, F.; Gagliardi, A.; Paolino, D.; et al. Physicochemical Characterization and Antioxidant Activity Evaluation of Idebenone/Hydroxypropyl-β-Cyclodextrin Inclusion Complex. Biomolecules 2019, 9, 531. [Google Scholar] [CrossRef]
- Kazlauskaite, J.A.; Ivanauskas, L.; Bernatoniene, J. Cyclodextrin-Assisted Extraction Method as a Green Alternative to Increase the Isoflavone Yield from Trifolium pratensis L. Extract. Pharmaceutics 2021, 13, 620. [Google Scholar] [CrossRef]
- López-Nicolás, J.M.; Rodríguez-Bonilla, P.; García-Carmona, F. Cyclodextrins and Antioxidants. Crit. Rev. Food Sci. Nutr. 2014, 54, 251–276. [Google Scholar] [CrossRef] [PubMed]
- dos Santos Lima, B.; de Alcântara Campos, C.; da Silva Santos, A.C.R.; Santos, V.C.N.; Trindade, G.D.G.G.; Shanmugam, S.; Pereira, E.W.M.; Marreto, R.N.; Duarte, M.C.; da Silva Almeida, J.R.G.; et al. Development of Morin/Hydroxypropyl-β-Cyclodextrin Inclusion Complex: Enhancement of Bioavailability, Antihyperalgesic and Anti-Inflammatory Effects. Food Chem. Toxicol. 2019, 126, 15–24. [Google Scholar] [CrossRef] [PubMed]
- Jullian, C.; Orosteguis, T.; Pérez-Cruz, F.; Sánchez, P.; Mendizabal, F.; Olea-Azar, C. Complexation of Morin with Three Kinds of Cyclodextrin. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2008, 71, 269–275. [Google Scholar] [CrossRef] [PubMed]
- Higuchi, T.; Connors, K.A. “Phase Solubility Techniques”, Advanced Analytical Chemistry of Instrumentation. Sci. Res. 1965, 4, 117–212. Available online: https://www.scirp.org/(S(i43dyn45teexjx455qlt3d2q))/reference/ReferencesPapers.aspx?ReferenceID=170636 (accessed on 3 May 2023).
- Certo, G.; Costa, R.; D’Angelo, V.; Russo, M.; Albergamo, A.; Dugo, G.; Germanò, M.P. Anti-Angiogenic Activity and Phytochemical Screening of Fruit Fractions from Vitex Agnus Castus. Nat. Prod. Res. 2017, 31, 2850–2856. [Google Scholar] [CrossRef]
- Westerfield, M. The Zebrafish Book: A Guide for the Laboratory Use of Zebrafish (Danio Rerio); University of Oregon Press: Corvallis, OR, USA, 2000. [Google Scholar]
- Iannuzzi, A.M.; Camero, C.M.; D’Ambola, M.; D’Angelo, V.; Amira, S.; Bader, A.; Braca, A.; De Tommasi, N.; Germanò, M.P. Antiangiogenic Iridoids from Stachys Ocymastrum and Premna Resinosa. Planta Med. 2019, 85, 1034–1039. [Google Scholar] [CrossRef]
- Dimitrić Marković, J.M.; Marković, Z.S.; Krstić, J.B.; Milenković, D.; Lučić, B.; Amić, D. Interpretation of the IR and Raman Spectra of Morin by Density Functional Theory and Comparative Analysis. Vib. Spectrosc. 2013, 64, 1–9. [Google Scholar] [CrossRef]
- Hu, Y.-J.; Yue, H.-L.; Li, X.-L.; Zhang, S.-S.; Tang, E.; Zhang, L.-P. Molecular Spectroscopic Studies on the Interaction of Morin with Bovine Serum Albumin. J. Photochem. Photobiol. B Biol. 2012, 112, 16–22. [Google Scholar] [CrossRef]
- Panhwar, Q.K.; Memon, S. Synthesis of Cr(III)-Morin Complex: Characterization and Antioxidant Study. Sci. World J. 2014, 2014, 845208. [Google Scholar] [CrossRef]
- Cody, V.; Luft, J.R. Luft Conformational Analysis of Flavonoids: Crystal and Molecular Structures of Morin Hydrate and Myricetin (1:2) Triphenylphosphine Oxide Complex. J. Mol. Struct. 1994, 317, 89–97. [Google Scholar] [CrossRef]
- Rescifina, A.; Surdo, E.; Cardile, V.; Avola, R.; Eleonora Graziano, A.C.; Stancanelli, R.; Tommasini, S.; Pistarà, V.; Ventura, C.A. Gemcitabine Anticancer Activity Enhancement by Water Soluble Celecoxib/Sulfobutyl Ether-β-Cyclodextrin Inclusion Complex. Carbohydr. Polym. 2019, 206, 792–800. [Google Scholar] [CrossRef] [PubMed]
- De Gaetano, F.; Scala, A.; Celesti, C.; Lambertsen Larsen, K.; Genovese, F.; Bongiorno, C.; Leggio, L.; Iraci, N.; Mazzaglia, A.; Ventura, C.A. Amphiphilic Cyclodextrin Nanoparticles as Delivery System for Idebenone: A Preformulation Study. Molecules 2023, 28, 3023. [Google Scholar] [CrossRef] [PubMed]
- Do, T.T.; Van Hooghten, R.; Van Den Mooter, G. A Study of the Aggregation of Cyclodextrins: Determination of the Critical Aggregation Concentration, Size of Aggregates and Thermodynamics Using Isodesmic and K2–K Models. Int. J. Pharm. 2017, 521, 318–326. [Google Scholar] [CrossRef] [PubMed]
- Loftsson, T.; Másson, M.; Sigurdsson, H.H. Sigurdsson Cyclodextrins and Drug Permeability through Semi-Permeable Cellophane Membranes. Int. J. Pharm. 2002, 232, 35–43. [Google Scholar] [CrossRef] [PubMed]
- Loftsson, T.; Másson, M.; Brewster, M.E. Self-Association of Cyclodextrins and Cyclodextrin Complexes. J. Pharm. Sci. 2004, 93, 1091–1099. [Google Scholar] [CrossRef] [PubMed]
- Muankaew, C.; Saokham, P.; Jansook, P.; Loftsson, T. Loftsson Self-Assembly of Cyclodextrin Complexes: Detection, Obstacles and Benefits. Pharmazie 2020, 75, 307–312. [Google Scholar]
- Rodrigues, L.N.C.; Tavares, A.C.M.; Ferreira, B.T.; Reis, A.K.C.A.; Katiki, L.M. Inclusion Complexes and Self-Assembled Cyclodextrin Aggregates for Increasing the Solubility of Benzimidazoles. Braz. J. Pharm. Sci. 2019, 55, e17776. [Google Scholar] [CrossRef]
- Musumeci, T.; Bonaccorso, A.; De Gaetano, F.; Larsen, K.L.; Pignatello, R.; Mazzaglia, A.; Puglisi, G.; Ventura, C.A. A Physico-Chemical Study on Amphiphilic Cyclodextrin/Liposomes Nanoassemblies with Drug Carrier Potential. J. Liposome Res. 2020, 30, 407–416. [Google Scholar] [CrossRef]
- Loftsson, T. Self-Assembled Cyclodextrin Nanoparticles and Drug Delivery. J. Incl. Phenom. Macrocycl. Chem. 2014, 80, 1–7. [Google Scholar] [CrossRef]
- Zidan, M.F.; Ibrahim, H.M.; Afouna, M.I.; Ibrahim, E.A. In Vitro and In Vivo Evaluation of Cyclodextrin-Based Nanosponges for Enhancing Oral Bioavailability of Atorvastatin Calcium. Drug Dev. Ind. Pharm. 2018, 44, 1243–1253. [Google Scholar] [CrossRef]
- Abou Taleb, S.; Moatasim, Y.; GabAllah, M.; Asfour, M.H. Quercitrin Loaded Cyclodextrin Based Nanosponge as a Promising Approach for Management of Lung Cancer and COVID-19. J. Drug Deliv. Sci. Technol. 2022, 77, 103921. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Li, W.; Zhao, J.; Liu, Y.; Zhu, X.; Liang, G. Physicochemical Characterisation of the Supramolecular Structure of Luteolin/Cyclodextrin Inclusion Complex. Food Chem. 2013, 141, 900–906. [Google Scholar] [CrossRef] [PubMed]
- Pan, J.; Ai, F.; Shao, P.; Chen, H.; Gao, H. Development of Polyvinyl Alcohol/β-Cyclodextrin Antimicrobial Nanofibers for Fresh Mushroom Packaging. Food Chem. 2019, 300, 125249. [Google Scholar] [CrossRef] [PubMed]
- Mura, P. Analytical Techniques for Characterization of Cyclodextrin Complexes in the Solid State: A Review. J. Pharm. Biomed. Anal. 2015, 113, 226–238. [Google Scholar] [CrossRef] [PubMed]
- Storgard, C.; Mikolon, D.; Stupack, D.G. Angiogenesis Assays in the Chick CAM. In Cell Migration; Humana Press: Totowa, NJ, USA, 2004; Volume 294, pp. 123–136. ISBN 978-1-59259-860-1. [Google Scholar]
- Ribatti, D. The Chick Embryo Chorioallantoic Membrane (CAM) Assay. Reprod. Toxicol. 2017, 70, 97–101. [Google Scholar] [CrossRef]
- Chimote, G.; Sreenivasan, J.; Pawar, N.; Subramanian, J.; Sharma, S.; Sivaramakrishnan, H. Comparison of Effects of Anti-Angiogenic Agents in the Zebrafish Efficacy-Toxicity Model for Translational Anti-Angiogenic Drug Discovery. DDDT 2014, 8, 1107–1123. [Google Scholar] [CrossRef] [PubMed]
- Wu, M.; Xu, H.; Shen, Y.; Qiu, W.; Yang, M. Oxidative Stress in Zebrafish Embryos Induced by Short-Term Exposure to Bisphenol A, Nonylphenol, and Their Mixture. Environ. Toxicol. Chem. 2011, 30, 2335–2341. [Google Scholar] [CrossRef]
- Zhang, J.; Gao, B.; Zhang, W.; Qian, Z.; Xiang, Y. Monitoring Antiangiogenesis of Bevacizumab in Zebrafish. DDDT 2018, 12, 2423–2430. [Google Scholar] [CrossRef]
- He, M.-F.; Liu, L.; Ge, W.; Shaw, P.-C.; Jiang, R.; Wu, L.-W.; But, P.P.-H. Antiangiogenic Activity of Tripterygium Wilfordii and Its Terpenoids. J. Ethnopharmacol. 2009, 121, 61–68. [Google Scholar] [CrossRef]
- Quezada, M.; Alvarez, M.; Peña, O.A.; Henríquez, S.; d’ Alençon, C.A.; Lange, S.; Oliva, B.; Owen, G.I.; Allende, M.L. Antiangiogenic, Antimigratory and Antiinflammatory Effects of 2-Methoxyestradiol in Zebrafish Larvae. Comp. Biochem. Physiol. C Toxicol. Pharm. 2013, 157, 141–149. [Google Scholar] [CrossRef]
Protons | MRN | MNR/SBE-β-CD | Δδ * | MRN/HP-β-CD | Δδ * |
---|---|---|---|---|---|
H-6 | 6.316 (d) | 6.338 | 0.022 | 6.311 | −0.005 |
H-8 | 6.466 (d) | 6.625 | 0.159 | 6.490 | 0.024 |
H-3′ | 6.535 (d) | 6.575 | 0.040 | 6.532 | −0.003 |
H-5′ | 6.601 (dd) | 6.624 | 0.023 | 6.600 | −0.001 |
H-6′ | 7.482 (dd) | 7.501 | 0.019 | 7.490 | 0.008 |
Sample | Size (nm) | PDI | ζ (mV) |
---|---|---|---|
HP-β-CD 1 mg/mL | 239.0 ± 33.76 | 0.35 | −31.3 ± 2.3 |
HP-β-CD 0.1 mg/mL | 221.2 ± 36.92 | 0.48 | −19.3 ± 2.4 |
HP-β-CD 0.01 mg/mL | 193.9 ± 20.27 | 0.59 | 2.3 |
MRN/HP-β-CD 1 mg/mL | 103.2 ± 11.00 | 0.51 | −23.9 ± 0.85 |
MRN/HP-β-CD 0.1 mg/mL | 130.1 ± 69.32 | 0.77 | −19.2 ± 3.61 |
MRN/HP-β-CD 0.01 mg/mL | 187.1 ± 26.62 | 0.59 | −16.3 ± 1.55 |
SBE-β-CD 1 mg/mL | 247 ± 25.07 | 0.63 | −19.1 ± 2.5 |
SBE-β-CD 0.1 mg/mL | 123.8 ± 4.987 | 0.88 | n.d. |
SBE-β-CD 0.01 mg/mL | 166.9 ± 13.28 | 0.77 | n.d. |
MRN/SBE-β-CD 1 mg/mL | 305.4 ± 83.12 | 0.41 | −28.4 ± 3.5 |
MRN/SBE-β-CD 0.1 mg/mL | 195.3 ± 27.55 | 0.43 | −26.9 ± 2.25 |
MRN/SBE-β-CD 0.01 mg/mL | 255.2 ± 43.28 | 0.53 | −26.1 ± 4.9 |
Sample | Mass Loss % | Residue | |||
---|---|---|---|---|---|
T < 150 °C | 150 °C < T < 550 °C | 550 °C < T < 900 °C | T > 900 °C | ||
MRN | 3.50 | 48.0 | 15.4 | 29.4 | 3.70 |
HP-β-CD | 0.50 | 91.0 | 2.40 | 2.90 | 3.20 |
MRN/HP-β-CD | 2.80 | 71.7 | 9.20 | 2.96 | 13.41 |
SBE-β-CD | 2.10 | 53.3 | 6.90 | 16.7 | 21.0 |
MRN/SBE-β-CD | 5.84 | 61.2 | 7.60 | 19.2 | 6.16 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
De Gaetano, F.; Margani, F.; Barbera, V.; D’Angelo, V.; Germanò, M.P.; Pistarà, V.; Ventura, C.A. Characterization and In Vivo Antiangiogenic Activity Evaluation of Morin-Based Cyclodextrin Inclusion Complexes. Pharmaceutics 2023, 15, 2209. https://doi.org/10.3390/pharmaceutics15092209
De Gaetano F, Margani F, Barbera V, D’Angelo V, Germanò MP, Pistarà V, Ventura CA. Characterization and In Vivo Antiangiogenic Activity Evaluation of Morin-Based Cyclodextrin Inclusion Complexes. Pharmaceutics. 2023; 15(9):2209. https://doi.org/10.3390/pharmaceutics15092209
Chicago/Turabian StyleDe Gaetano, Federica, Fatima Margani, Vincenzina Barbera, Valeria D’Angelo, Maria Paola Germanò, Venerando Pistarà, and Cinzia Anna Ventura. 2023. "Characterization and In Vivo Antiangiogenic Activity Evaluation of Morin-Based Cyclodextrin Inclusion Complexes" Pharmaceutics 15, no. 9: 2209. https://doi.org/10.3390/pharmaceutics15092209
APA StyleDe Gaetano, F., Margani, F., Barbera, V., D’Angelo, V., Germanò, M. P., Pistarà, V., & Ventura, C. A. (2023). Characterization and In Vivo Antiangiogenic Activity Evaluation of Morin-Based Cyclodextrin Inclusion Complexes. Pharmaceutics, 15(9), 2209. https://doi.org/10.3390/pharmaceutics15092209