How to Improve Solubility and Dissolution of Irbesartan by Fabricating Ternary Solid Dispersions: Optimization and In-Vitro Characterization
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Screening Study
2.3. Preparation of Solid Dispersion Formulations
2.4. Solubility Studies
2.5. Dissolution Studies
2.6. Drug Content and Yield
2.7. Kinetic Model Analysis
2.8. Scanning Electron Microscopy (SEM)
2.9. Powder X-ray Diffraction (PXRD)
2.10. FTIR Analysis
2.11. Differential Scanning Calorimetry (DSC)
3. Results and Discussion
3.1. Screening Study
3.2. Solubility Studies
3.3. Dissolution Studies
3.4. Drug Content and % Yield
3.5. Kinetic Modelling
3.6. SEM
3.7. PXRD Studies
3.8. FTIR Spectroscopy Studies
3.9. DSC Studies
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sharma, K.S.; Sahoo, J.; Agrawal, S.; Kumari, A. Solid dispersions: A technology for improving bioavailability. J. Anal. Pharm. Res. 2019, 8, 127–133. [Google Scholar] [CrossRef] [Green Version]
- Teodorescu, M.; Bercea, M. Poly(vinylpyrrolidone)—A Versatile Polymer for Biomedical and Beyond Medical Applications. Polym. Technol. Eng. 2015, 54, 923–943. [Google Scholar] [CrossRef]
- Arora, R.; Malhotra, P.; Sundriyal, S.; Yashavanth, H.S. Medicinal plants as remedies for gastrointestinal ailments and diseases: A review. In Bioactive Food as Dietary Interventions for Liver and Gastrointestinal Disease: Bioactive Foods in Chronic Disease States; Elsevier: Amsterdam, The Netherlands, 2012; pp. 301–311. [Google Scholar]
- Dhirendra, K. Solid dispersions: A review. Pak. J. Pharm. Sci. 2009, 22, 234–246. [Google Scholar] [PubMed]
- Khatri, P.; Shah, M.K.; Patel, N.; Jain, S.; Vora, N.; Lin, S. Preparation and characterization of pyrimethamine solid dispersions and an evaluation of the physical nature of pyrimethamine in solid dispersions. J. Drug Deliv. Sci. Technol. 2018, 45, 110–123. [Google Scholar] [CrossRef]
- Chaudhari, S.P.; Dave, R.H. Investigating the effect of molecular weight of polyvinylpyrrolidone and hydroxypropyl methyl cellulose as potential antiprecipitants on supersaturated drug solutions and formulations using weakly acidic drug: Indomethacin. Int. J. Pharm. Sci. Res. 2016, 7, 3931–3948. [Google Scholar]
- Janssens, S.; Van den Mooter, G. Physical chemistry of solid dispersions. J. Pharm. Pharmacol. 2009, 61, 1571–1586. [Google Scholar] [CrossRef]
- Guillot, A.J.; Petalas, D.; Skondra, P.; Rico, H.; Garrigues, T.M.; Melero, A. Ciprofloxacin self-dissolvable Soluplus based polymeric films: A novel proposal to improve the management of eye infections. Drug Deliv. Transl. Res. 2021, 11, 608–625. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, Y.; Luo, Y.; Yao, Q.; Zhong, Y.; Tian, B.; Tang, X. Extruded Soluplus/SIM as an oral delivery system: Characterization, interactions, in vitro and in vivo evaluations. Drug Deliv. 2014, 23, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Alopaeus, J.F.; Hagesæther, E.; Tho, I. Micellisation Mechanism and Behaviour of Soluplus®–Furosemide Micelles: Preformulation Studies of an Oral Nanocarrier-Based System. Pharmaceuticals 2019, 12, 15. [Google Scholar] [CrossRef] [Green Version]
- Song, Y. Acid-base interactions in amorphous solid dispersions: Formulation strategy for tyrosine kinase inhibitors. Ph.D. Thesis, Purdue University, West Lafayette, IN, USA, 2015. [Google Scholar]
- Strojewski, D.; Krupa, A. Kollidon® VA 64 and Soluplus® as modern polymeric carriers for amorphous solid dispersions. Polim. W Med. 2022, 52, 17–27. [Google Scholar] [CrossRef]
- Dong, L.; Mai, Y.; Liu, Q.; Zhang, W.; Yang, J. Mechanism and improved dissolution of glycyrrhetinic acid solid dispersion by alkalizers. Pharmaceutics 2020, 12, 82. [Google Scholar] [CrossRef]
- Alshafiee, M.; Aljammal, M.K.; Markl, D.; Ward, A.; Walton, K.; Blunt, L.; Korde, S.; Pagire, S.K.; Kelly, A.; Paradkar, A.; et al. Hot-melt extrusion process impact on polymer choice of glyburide solid dispersions: The effect of wettability and dissolution. Int. J. Pharm. 2019, 559, 245–254. [Google Scholar] [CrossRef] [Green Version]
- Fakhari, A.; Corcoran, M.; Schwarz, A. Thermogelling properties of purified poloxamer 407. Heliyon 2017, 3, e00390. [Google Scholar] [CrossRef]
- Altamimi, M.A.; Elzayat, E.M.; Qamar, W.; Alshehri, S.M.; Sherif, A.Y.; Haq, N.; Shakeel, F. Evaluation of the bioavailability of hydrocortisone when prepared as solid dispersion. Saudi Pharm. J. 2019, 27, 629–636. [Google Scholar] [CrossRef] [PubMed]
- Kurakula, M.; Rao, G.K. Pharmaceutical assessment of polyvinylpyrrolidone (PVP): As excipient from conventional to controlled delivery systems with a spotlight on COVID-19 inhibition. J. Drug Deliv. Sci. Technol. 2020, 60. [Google Scholar] [CrossRef] [PubMed]
- Burnier, M.; Forni, V.; Wuerzner, G.; Pruijm, M. Long-term use and tolerability of irbesartan for control of hypertension. Integr. Blood Press. Control 2011, 4, 17–26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adeli, E. Irbesartan-loaded electrospun nanofibers-based PVP K90 for the drug dissolution improvement: Fabrication, in vitro performance assessment, and in vivo evaluation. J. Appl. Polym. Sci. 2015, 132, 1–10. [Google Scholar] [CrossRef]
- Sinha, S.; Ali, M.; Baboota, S.; Ahuja, A.; Kumar, A.; Ali, J. Solid Dispersion as an Approach for Bioavailability Enhancement of Poorly Water-Soluble Drug Ritonavir. AAPS PharmSciTech 2010, 11, 518–527. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ganapuram, B.R.; Alle, M.; Dadigala, R.; Kotu, G.M.; Guttena, V. Development, evaluation and characterization of surface solid dispersion for solubility and dispersion enhancement of irbesartan. J. Pharm. Res. 2013, 7, 472–477. [Google Scholar] [CrossRef]
- Adeli, E. The use of supercritical anti-solvent (SAS) technique for preparation of Irbesartan-Pluronic® F-127 nanoparticles to improve the drug dissolution. Powder Technol. 2016, 298, 65–72. [Google Scholar] [CrossRef]
- Douroumis, D.; Bouropoulos, N.; Fahr, A. Physicochemical characterization of solid dispersions of three antiepileptic drugs prepared by solvent evaporation method. J. Pharm. Pharmacol. 2007, 59, 645–653. [Google Scholar] [CrossRef] [PubMed]
- Sekiguchi, K.; Obi, N. Studies on Absorption of Eutectic Mixture. I. A Comparison of the Behavior of Eutectic Mixture of Sulfathiazole and that of Ordinary Sulfathiazole in Man. Chem. Pharm. Bull. 1961, 9, 866–872. [Google Scholar] [CrossRef] [Green Version]
- Chawla, G.; Bansal, A.K. A comparative assessment of solubility advantage from glassy and crystalline forms of a water-insoluble drug. Eur. J. Pharm. Sci. 2007, 32, 45–57. [Google Scholar] [CrossRef]
- Zhai, X.; Li, C.G.; Lenon, G.B.; Xue, C.C.; Li, W. Preparation and characterisation of solid dispersions of tanshinone IIA, cryptotanshinone and total tanshinones. Asian J. Pharm. Sci. 2016, 12, 85–97. [Google Scholar] [CrossRef] [Green Version]
- Hirlekar, R.; Kadam, V. Preformulation Study of the Inclusion Complex Irbesartan-β-Cyclodextrin. AAPS PharmSciTech 2009, 10, 276–281. [Google Scholar] [CrossRef] [Green Version]
- Qin, Z.-y.; Jia, X.-w.; Liu, Q.; Kong, B.-h.; Wang, H. Fast dissolving oral films for drug delivery prepared from chitosan/pullulan electrospinning nanofibers. Int. J. Biol. Macromol. 2019, 137, 224–231. [Google Scholar] [CrossRef] [PubMed]
- Nair, A.R.; Lakshman, Y.D.; Anand, V.S.K.; Sree, K.S.N.; Bhat, K.; Dengale, S.J. Overview of Extensively Employed Polymeric Carriers in Solid Dispersion Technology. AAPS PharmSciTech 2020, 21, 1–20. [Google Scholar] [CrossRef]
- Slámová, M.; Školáková, T.; Školáková, A.; Patera, J.; Zámostný, P. Preparation of solid dispersions with respect to the dissolution rate of active substance. J. Drug Deliv. Sci. Technol. 2020, 56, 101518. [Google Scholar] [CrossRef]
- Bühler, V. Polyvinylpyrrolidone excipients for pharmaceuticals: Povidone, crospovidone and copovidone; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2005. [Google Scholar]
- Hadžiabdić, J. Kinetics and mechanism of diazepam release from solid dispersions. Bull. Chem. Technol. Bosnia Herzeg. 2014, 43, 21–28. [Google Scholar]
- Krishnamoorthy, V.; Prasad, V.P.R.; Sen, S. Studies on clozapine-mannitol solid dispersions, physicochemical characterization and evaluation. Turk. J. Pharm. Sci. 2013, 10, 109–124. [Google Scholar]
- Fouad, S.A.; Malaak, F.A.; El-Nabarawi, M.A.; Abu Zeid, K.; Ghoneim, A.M. Preparation of solid dispersion systems for enhanced dissolution of poorly water soluble diacerein: In-vitro evaluation, optimization and physiologically based pharmacokinetic modeling. PLoS ONE 2021, 16, e0245482. [Google Scholar] [CrossRef] [PubMed]
- Araya-Sibaja, A.M.; de Campos, C.E.M.; Fandaruff, C.; Vega-Baudrit, J.R.; Guillén-Girón, T.; Navarro-Hoyos, M.; Cuffini, S.L. Irbesartan desmotropes: Solid-state characterization, thermodynamic study and dissolution properties. J. Pharm. Anal. 2019, 9, 339–346. [Google Scholar] [CrossRef] [PubMed]
- Giri, B.; Kwon, J.; Vo, A.; Bhagurkar, A.; Bandari, S.; Kim, D. Hot-Melt Extruded Amorphous Solid Dispersion for Solubility, Stability, and Bioavailability Enhancement of Telmisartan. Pharmaceuticals 2021, 14, 73. [Google Scholar] [CrossRef]
- Alshehri, S.M.; Shakeel, F.; Ibrahim, M.A.; Elzayat, E.M.; Altamimi, M.; Mohsin, K.; Almeanazel, O.T.; Alkholief, M.; Alshetaili, A.; Alsulays, B.; et al. Dissolution and bioavailability improvement of bioactive apigenin using solid dispersions prepared by different techniques. Saudi Pharm. J. 2018, 27, 264–273. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S.S.; Solanki, N.; Serajuddin, A.T.M. Investigation of Thermal and Viscoelastic Properties of Polymers Relevant to Hot Melt Extrusion, IV: Affinisol™ HPMC HME Polymers. AAPS PharmSciTech 2015, 17, 148–157. [Google Scholar] [CrossRef]
- Wu, W.; Lei, Y.; Lu, Y.; Qi, J.; Nie, S.; Hu, F.; Pam, W. Solid self-nanoemulsifying cyclosporin A pellets prepared by fluid-bed coating: Preparation, characterization and in vitro redispersibility. Int. J. Nanomed. 2011, 6, 795–805. [Google Scholar] [CrossRef] [Green Version]
- Salman, A.; Nasrul, E.; Rivai, H.; Ben, E.; Zaini, E. Physicochemical characterization of amorphous solid dispersion of ketoprofen–Polyvinylpyrrolidone K-30. Int. J. Pharm. Pharm. Sci. 2015, 7, 209–212. [Google Scholar]
- Angeles, J.C.; Videa, M.; Martínez, L.M. Highly Soluble Glimepiride and Irbesartan Co-amorphous Formulation with Potential Application in Combination Therapy. AAPS PharmSciTech 2019, 20, 144. [Google Scholar] [CrossRef]
- Franca, C.A.; Etcheverry, S.B.; Diez, R.P.; Williams, P.A.M. Irbesartan: FTIR and Raman spectra. Density functional study on vibrational and NMR spectra. J. Raman Spectrosc. 2009, 40, 1296–1300. [Google Scholar] [CrossRef]
- Milovanovic, S.; Djuris, J.; Dapčević, A.; Medarevic, D.; Ibric, S.; Zizovic, I. Soluplus®, Eudragit®, HPMC-AS foams and solid dispersions for enhancement of Carvedilol dissolution rate prepared by a supercritical CO2 process. Polym. Test. 2019, 76, 54–64. [Google Scholar] [CrossRef]
- Pawar, J.N.; Shete, R.T.; Gangurde, A.B.; Moravkar, K.K.; Javeer, S.D.; Jaiswar, D.R.; Amin, P.D. Development of amorphous dispersions of artemether with hydrophilic polymers via spray drying: Physicochemical and in silico studies. Asian J. Pharm. Sci. 2016, 11, 385–395. [Google Scholar] [CrossRef] [Green Version]
- Chan, S.-Y.; Chung, Y.-Y.; Cheah, X.-Z.; Tan, E.Y.-L.; Quah, J. The characterization and dissolution performances of spray dried solid dispersion of ketoprofen in hydrophilic carriers. Asian J. Pharm. Sci. 2015, 10, 372–385. [Google Scholar] [CrossRef] [Green Version]
- Fule, R.; Paithankar, V.; Amin, P. Hot melt extrusion based solid solution approach: Exploring polymer comparison, physicochemical characterization and in-vivo evaluation. Int. J. Pharm. 2016, 499, 280–294. [Google Scholar] [CrossRef] [PubMed]
- Gurunath, S.; Nanjwade, B.K.; Patila, P. Enhanced solubility and intestinal absorption of candesartan cilexetil solid dispersions using everted rat intestinal sacs. Saudi Pharm. J. 2013, 22, 246–257. [Google Scholar] [CrossRef]
- Sui, X.; Chu, Y.; Zhang, J.; Zhang, H.; Wang, H.; Liu, T.; Han, C. The Effect of PVP Molecular Weight on Dissolution Behavior and Physicochemical Characterization of Glycyrrhetinic Acid Solid Dispersions. Adv. Polym. Technol. 2020, 2020, 1–13. [Google Scholar] [CrossRef]
- Garala, K.; Joshi, P.; Patel, J.; Ramkishan, A.; Shah, M. Formulation and evaluation of periodontal in situ gel. Int. J. Pharm. Investig. 2013, 3, 29–41. [Google Scholar] [CrossRef] [Green Version]
- Soma, D.; Attari, Z.; Reddy, M.S.; Damodaram, A.; Koteshwara, K.B.G. Solid lipid nanoparticles of irbesartan: Preparation, characterization, optimization and pharmacokinetic studies. Braz. J. Pharm. Sci. 2017, 53. [Google Scholar] [CrossRef] [Green Version]
- Saleem, M.A.; Nazar, M.F.; Siddique, M.Y.; Khan, A.M.; Ashfaq, M.; Hussain, S.Z.; Khalid, M.R.; Yameen, B. Soft-templated fabrication of antihypertensive nano-Irbesartan: Structural and dissolution evaluation. J. Mol. Liq. 2019, 292, 111388. [Google Scholar] [CrossRef]
- Reginald-Opara, J.N.; Attama, A.; Ofokansi, K.; Umeyor, C.; Kenechukwu, F. Molecular interaction between glimepiride and Soluplus®-PEG 4000 hybrid based solid dispersions: Characterisation and anti-diabetic studies. Int. J. Pharm. 2015, 496, 741–750. [Google Scholar] [CrossRef]
- El-Badry, M.; Hassan, M.A.; Ibrahim, M.A.; Elsaghir, H. Performance of poloxamer 407 as hydrophilic carrier on the binary mixtures with nimesulide. Farmacia 2013, 61, 1137–1150. [Google Scholar]
- Patel, G.V.; Patel, V.B.; Pathak, A.; Rajput, S.J. Nanosuspension of efavirenz for improved oral bioavailability: Formulation optimization, in vitro, in situ and in vivo evaluation. Drug Dev. Ind. Pharm. 2013, 40, 80–91. [Google Scholar] [CrossRef] [PubMed]
Formulation Code (Binary Solid Dispersions) | Composition (Drug: Polymer), w/w |
---|---|
S1 | 1:1 |
S2 | 1:2 |
S3 | 1:3 |
S4 | 1:4 |
K1 | 1:1 |
K2 | 1:2 |
K3 | 1:3 |
K4 | 1:4 |
Formulation code (Ternary solid dispersions) | Composition (Drug: Kollidon® VA 64: ternary polymer ), w/w/w |
KP407 (TD1) | 1:4:1 |
KP407 (TD2) | 1:4:2 |
KP407 (TD3) | 1:4:3 |
KPVP (TD1) | 1:4:1 |
KPVP (TD2) | 1:4:2 |
KPVP (TD3) | 1:4:3 |
N | Release Mechanism |
---|---|
0.45 or less | Fickian diffusion |
0.45–0.89 | Non Fickian or anomalous mechanism |
0.89 | Case II transport |
>0.89 | Super case II transport |
Carrier Concentration, % | 1a | 2a | 3a | 4a |
---|---|---|---|---|
Soluplus® | 162.24 ± 1.87 | 106.16 ± 1.87 | 67.53 ± 2.85 | 59.43 ± 1.87 |
Kollidon® VA 64 | 170.34 ± 1.079 | 190.90 ± 1.079 | 230.15 ± 1.079 | 282.49 ± 2.15 |
PVP-K30 | 110.52 ± 5.39 | 115.51 ± 1.86 | 134.20 ± 1.86 | 172.21 ± 2.85 |
Kolliphor® P 407 | 96.19 ± 3.89 | 109.90 ± 4.94 | 120.49 ± 4.31 | 169.71 ± 1.87 |
PEG 6000 | 70.03 ± 5.39 | 23.30 ± 3.89 | 25.79 ± 1.87 | 12.71 ± 1.87 |
HPMC E5 | 33.89 ± 4.70 | 50.09 ± 1.86 | 61.30 ± 1.86 | 77.50 ± 1.079 |
Gelucire® 50/13 | 30.77 ± 2.15 | 27.04 ± 1.079 | ------- b | -------- b |
Formulation | Drug Content, % | Yield, % |
---|---|---|
S1 | 92.89 | 92.00 |
S2 | 82.03 | 82.11 |
S3 | 87.88 | 84.55 |
S4 | 81.20 | 85.00 |
K1 | 86.21 | 90.00 |
K2 | 90.39 | 87.00 |
K3 | 86.21 | 88.00 |
K4 | 93.73 | 94.67 |
KP407 (TD1) | 91.22 | 88.22 |
KP407 (TD2) | 93.73 | 90.00 |
KP407 (TD3) | 94.56 | 94.00 |
KPVP (TD1) | 90.39 | 85.00 |
KPVP (TD2) | 92.89 | 90.00 |
KPVP (TD3) | 94.56 | 94.00 |
Formulaion Codes | Zero Order | First Order | Higuchi Model | Hixon-Crowell | Krosmeyer–Peppas | |
---|---|---|---|---|---|---|
(R2) | (R2) | (R2) | (R2) | (R2) | n | |
S1 | 0.44 | 0.29 | 0.61 | 0.10 | 1.00 | 0.18 |
S2 | 0.53 | 0.73 | 0.97 | 0.67 | 1.00 | 0.39 |
S3 | 0.43 | 0.63 | 0.94 | 0.57 | 0.99 | 0.36 |
S4 | 0.16 | 0.41 | 0.86 | 0.34 | 0.99 | 0.29 |
K1 | 0.70 | 0.04 | 0.57 | 0.13 | 0.97 | 0.17 |
K2 | 0.03 | 0.51 | 0.79 | 0.36 | 0.99 | 0.25 |
K3 | 0.10 | 0.46 | 0.76 | 0.31 | 0.99 | 0.23 |
K4 | 0.08 | 0.57 | 0.83 | 0.45 | 1.00 | 0.04 |
KP407 (TD1) | 0.51 | 0.33 | 0.03 | 0.67 | 1.00 | 0.04 |
KP407 (TD2) | 0.51 | 0.34 | 0.14 | 0.04 | 0.99 | 0.07 |
KP407 (TD3) | 0.51 | 0.60 | 0.03 | 0.01 | 1.00 | 0.04 |
KPVP (TD1) | 0.56 | 0.02 | 0.09 | 0.25 | 1.00 | 0.06 |
KPVP (TD2) | 0.55 | 0.50 | 0.07 | 0.06 | 1.00 | 0.06 |
KPVP (TD3) | 0.54 | 0.74 | 0.03 | 0.10 | 1.00 | 0.05 |
Formulaion Codes | Zero Order | First Order | Higuchi Model | Hixon-Crowell | Krosmeyer–Peppas | |
---|---|---|---|---|---|---|
(R2) | (R2) | (R2) | (R2) | (R2) | n | |
S1 | 0.92 | 0.30 | 0.37 | 0.10 | 0.99 | 0.12 |
S2 | 0.17 | 0.50 | 0.74 | 0.33 | 0.99 | 0.22 |
S3 | 0.11 | 0.54 | 0.84 | 0.42 | 0.98 | 0.27 |
S4 | 0.89 | 0.70 | 0.94 | 0.62 | 0.99 | 0.35 |
K1 | 0.56 | 0.13 | 0.56 | 0.07 | 0.99 | 0.16 |
K2 | 0.38 | 0.71 | 0.91 | 0.63 | 0.97 | 0.33 |
K3 | 0.50 | 0.78 | 0.93 | 0.72 | 0.97 | 0.37 |
K4 | 0.54 | 0.33 | 0.02 | 0.73 | 1.00 | 0.04 |
KP407 (TD1) | 0.67 | 0.34 | 0.71 | 0.74 | 1.00 | 0.05 |
KP407 (TD2) | 0.54 | 0.74 | 0.06 | 0.15 | 1.00 | 0.05 |
KP407 (TD3) | 0.51 | 0.93 | 0.71 | 0.08 | 1.00 | 0.04 |
KPVP (TD1) | 0.56 | 0.58 | 0.13 | 0.22 | 1.00 | 0.07 |
KPVP (TD2) | 0.48 | 0.93 | 0.12 | 0.70 | 1.00 | 0.02 |
KPVP (TD3) | 0.52 | 0.96 | 0.00 | 0.11 | 1.00 | 0.04 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akram, A.; Irfan, M.; Abualsunun, W.A.; Bukhary, D.M.; Alissa, M. How to Improve Solubility and Dissolution of Irbesartan by Fabricating Ternary Solid Dispersions: Optimization and In-Vitro Characterization. Pharmaceutics 2022, 14, 2264. https://doi.org/10.3390/pharmaceutics14112264
Akram A, Irfan M, Abualsunun WA, Bukhary DM, Alissa M. How to Improve Solubility and Dissolution of Irbesartan by Fabricating Ternary Solid Dispersions: Optimization and In-Vitro Characterization. Pharmaceutics. 2022; 14(11):2264. https://doi.org/10.3390/pharmaceutics14112264
Chicago/Turabian StyleAkram, Aasma, Muhammad Irfan, Walaa A. Abualsunun, Deena M. Bukhary, and Mohammed Alissa. 2022. "How to Improve Solubility and Dissolution of Irbesartan by Fabricating Ternary Solid Dispersions: Optimization and In-Vitro Characterization" Pharmaceutics 14, no. 11: 2264. https://doi.org/10.3390/pharmaceutics14112264
APA StyleAkram, A., Irfan, M., Abualsunun, W. A., Bukhary, D. M., & Alissa, M. (2022). How to Improve Solubility and Dissolution of Irbesartan by Fabricating Ternary Solid Dispersions: Optimization and In-Vitro Characterization. Pharmaceutics, 14(11), 2264. https://doi.org/10.3390/pharmaceutics14112264