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Abstract: The purpose of this study is to improve the solubility and dissolution of a poorly soluble
drug, Irbesartan, using solid dispersion techniques. For that purpose, different polymers such as
Soluplus®, Kollidon® VA 64, Kolliphor® P 407, and Polyinylpyrrolidone (PVP-K30) were used as
carriers at different concentrations to prepare solid dispersion formulations through the solvent
evaporation method. In order to prepare binary dispersion formulations, Soluplus® and Kollidon®

VA 64 were used at drug: polymer ratios of 1:1, 1:2, 1:3, and 1:4 (w/w). Saturation solubility of
the drug in the presence of used carriers was performed to investigate the quantitative increase
in solubility. Dissolution studies were performed to explore the drug release behavior from the
prepared dispersions. Additionally, the characterization of the prepared formulations was carried
out by performing DSC, SEM, XRD, and FTIR studies. The results revealed that among binary
systems, K4 formulation (Drug: Kollidon® VA 64 at ratio of 1:4 w/w) exhibited optimal performance in
terms of increased solubility, drug release, and other investigated parameters. Furthermore, ternary
dispersion formulations of the optimized binary formulation were prepared with two more polymers,
Kolliphor® P 407 and Polyvinylpyrrolidone (PVP-K30), at (Drug: Kollidon® VA 64:ternary polymer)
ratios of 1:4:1, 1:4:2, and 1:4:3 (w/w). The results showed that KPVP (TD3) exhibited the highest
increase in solubility, as well as dissolution rate, among ternary solid dispersion formulations. Results
of solubility enhancement by ternary solid dispersion formulations were also supported by FTIR,
DSC, XRD, and SEM analysis. Conclusively, it was found that the ternary solid dispersion-based
systems were more effective compared to the binary combinations in improving solubility as well as
dissolution of a poorly soluble drug (Irbesartan).

Keywords: health care; solid dispersion; Irbesartan; Soluplus®; Kollidon® VA 64; Kolliphor® P 407;
Polyinylpyrrolidone (PVP-K30); solubility; dissolution

1. Introduction

High-throughput screening techniques and combinatorial chemistry have discovered
many new compounds as therapeutic agents that possess poor solubility. In recent years,
40–70% of newly discovered drugs have been found to be poorly soluble [1]. A majority of
these newly discovered compounds are abandoned at the beginning of the drug develop-
ment process due to their very low solubility. Therefore, there is a need to overcome these
poor solubility issues in order to improve bioavailability and therapeutic effect [2].

A majority of drugs are administered orally as this route provides the easiest method of
administration and maximum patient compliance, however, this route also presents many
issues. Poor bioavailability due to low solubility of a drug is one of the major hurdles involved
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in drug administration through the oral route. There are a variety of factors that hinder
absorption of drugs into the gastrointestinal tract (GIT), with low water solubility and/or
low permeability of the substance as major factors. GIT is a long tubular tract representing
the set of organs that extends from mouth to anus, but usually refers to the stomach and
intestine [3]. For absorption through the oral route, drugs must first dissolve in GIT fluid
before permeating through GIT membranes to reach the blood. Therefore, a drug with low
solubility will show a dissolution rate with limited absorption. Consequently, there is a need
to enhance the solubility of such compounds/substances to increase their bioavailability [4].

Commonly available methods for solubility enhancement are formation of salt, use
of solubilizers, reduction in particle size, complex formation, and solid dispersion. All of
these techniques have their own advantages and disadvantages. The effect of common ions,
instability of the salt form, or not achieving the targeted solubility are the major possible
disadvantages of the salt formation method, whereas the limitations of the particle size
reduction technique include agglomeration of particles. In contrast, solid dispersion has
great potential for increasing solubility as this inhibits aggregation of particles. In addition to
inhibition of particle aggregation, solid dispersion also reduces solid liquid surface tension [5].

Amorphous solid dispersions are defined as the dispersion of one or more APIs (hy-
drophobic) in a polymeric matrix (hydrophilic) at a solid state [6]. Improved wettability,
decreased particle size, inhibition of aggregation, and conversion of the drug from crys-
talline to amorphous phase are important mechanisms involved in enhancing solubility [7].

Polymers selected for this study are hydrophilic and commonly used for improving
solubility. Soluplus® is a biodegradable and biocompatible polymer [8] composed of
polyethylene glycol, polyvinyl acetate, and polyvinyl caprolactam and is amphiphilic
in nature having Tg of 70 ◦C [9]. The molecular weight of Soluplus® is in the range of
90–140,000 g/mol. It contains PEG 6000 as a backbone linked with one or two side chains
composed of vinyl acetate, which is randomly copolymerized with vinyl caprolactam [10].
This polymer possess a hydrogen bond acceptor group (1-methyl-2-pyrrolidone) which is
responsible for hydrogen bonding [11]. Kollidon® VA 64 is another hydrophilic polymer
composed of two monomers, N-vinylpyrrolidone and vinyl acetate, linked in a ratio of
6:4 by free radical polymerization. This molar ratio is represented as 64 in the trade name
of this polymer [12]. Kollidon® VA 64 has two hydrogen bond acceptor groups (from
the carbonyl group of the pyrrolidone ring and vinyl acetate) [13]. Kolliphor® P 407 is a
triblock polymer composed of a central block of hydrophobic polypropylene oxide (PPO)
surrounded by two hydrophilic blocks of polyethyleneoxide (PEO). The molecular weight
of this polymer is in the range of 9840–14600 daltons [14,15]. It shows the phenomena
of micellization due to its amphiphilic nature [16]. PVP, also named as povidone, is a
water-soluble, nontoxic, biocompatible polymer made up of linear 1-vinyl-2-pyrrolidone
groups [2]. The approximate molecular weight of this polymer is 50,000 daltons [17]. This
polymer also possess a hydrogen bond acceptor group which is a pyrrolidone ring [11].
The structures of the polymers are given in Figure 1B–E.

Irbesartan (Irb) is an angiotensin II (AT1 receptor) inhibitor which is used to treat hy-
pertension alone or in combination with other drugs. The initial dose to treat hypertension
is 150 mg once daily, but in cases of severe disease this dose can be raised to 300 mg once
daily [18]. The molecular weight of Irbesartan is 428.5 g/mol. The log P value of this drug
is 10.1 and its quantitative solubility in water is 5.9 × 10−2 mg/L at 25 ◦C. Its structure is
provided in Figure 1A. This low solubility is a challenge in the drug development process
as it leads to a poor drug release profile and low therapeutic effect [19]. The solid dispersion
technique is used to overcome these challenges of poor solubility and bioavailability. In this
work, binary and ternary solid dispersion-based formulations of Irbesartan were fabricated
through the solvent evaporation method to investigate the effect on solubility as well as
dissolution. The prepared solid dispersion formulations were further characterized for
FTIR, DSC, XRD, and SEM studies.
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2. Materials and Methods
2.1. Materials

Irbesartan was generously given by Barrett Hodgson Pvt., Ltd., Karachi, Pakistan.
Soluplus®, Kollidon® VA 64, and Kolliphor® P 407 were gifted by BASF Pharma., Lud-
wigshafen, Germany. Polyvinylpyrrolidone (PVP-K30) and methanol were bought from
Daejung Chemicals and Metals Co., Ltd., Korea. The remaining chemicals used were of
analytical grade.

2.2. Screening Study

A phase solubility, or screening study, was conducted to select the most suitable carrier
for solid dispersions. Polymers included in the phase solubility study were Soluplus®,
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Kollidon® VA 64, Kolliphor® P 407, Polyinylpyrrolidone (PVP-K30), PEG 6000, HPMC E5,
and Gelucire® 50/13.

Polymeric solutions of various concentrations (1%, 2%, 3%, and 4% w/v) were for-
mulated in distilled water and supersaturated solutions of these solutes were prepared
by adding an excess amount of drug to each falcon tube. These falcon tubes containing
supersaturated solutions were positioned in a shaker at 37 ◦C for 72 h. After centrifugation
(4000 rpm for 20 min), these samples were filtered using a 0.45 µm syringe filter. After
appropriate dilution, absorbance of each sample was taken at 253 nm using a UV spec-
trophotometer. Gelucire® 50/13 solubility was taken at lower concentrations due to its
insolubility in water at higher concentration [20].

2.3. Preparation of Solid Dispersion Formulations

Solid dispersion-based formulations were prepared using the solvent evaporation
method. For binary solid dispersions, two hydrophilic polymers, Soluplus® and Kollidon®

VA 64, were used at ratios (Drug: Polymer) of 1:1, 1:2, 1:3, and 1:4 (w/w). Ternary solid
dispersions of optimized binary formulation were prepared with two more polymers,
Kolliphor® P 407 and Polyvinylpyrrolidone (PVPK-30). Ternary dispersions were prepared
at ratios (Drug: Kollidon® VA 64: ternary polymer) of 1:4:1,1:4:2,1:4:3 (w/w/w). Formulae
of binary and ternary solid dispersions are given in Table 1.

The appropriate quantity of Irbesartan (approx. 1 g) was dissolved in adequate volume
(20 mL) of methanol. The selected carrier was also dissolved in 20 mL methanol separately
under constant stirring. These two solutions were mixed together by sonication for 10 min
in order to have uniform mixing. Solvent evaporation was carried out using a rotary
evaporating apparatus (RE-100 Pro, Scilogex, CT, USA) at 45 ◦C. The product obtained
was dried at 40 ◦C for 24 h. After pulverization, the dried product was passed through
a sieve of mesh No. 80. The dried powder was stored in a tightly closed bottle with
desiccating agents for future use [21]. For ternary solid dispersion, prepared binary solid
dispersion was dissolved in methanol (30 mL) and the selected carrier was also dissolved
in 20 mL methanol separately. These two solutions were mixed together with the help
of sonication. Further preparation steps were the same as for binary solid dispersion
preparation. Steps involved in preparation of binary and ternary solid dispersions are
presented diagrammatically in Figure 2.

Table 1. Composition of binary and ternary solid dispersions.

Formulation Code (Binary Solid Dispersions) Composition (Drug: Polymer), w/w

S1 1:1
S2 1:2
S3 1:3
S4 1:4
K1 1:1
K2 1:2
K3 1:3
K4 1:4

Formulation code (Ternary solid dispersions) Composition (Drug: Kollidon®VA 64:
ternary polymer ), w/w/w

KP407 (TD1) 1:4:1
KP407 (TD2) 1:4:2
KP407 (TD3) 1:4:3
KPVP (TD1) 1:4:1
KPVP (TD2) 1:4:2
KPVP (TD3) 1:4:3
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Figure 2. (A) Preparation of binary solid dispersions, (B) Preparation of ternary solid dispersions.

2.4. Solubility Studies

Solubility was determined by adding pure drug and solid dispersion formulations
separately in falcon tubes containing either 0.1 N HCl (1.2 pH) or a phosphate buffer
of pH 6.8. These samples were vortexed to prepare supersaturated solution and then
placed in a shaker (SWB 15, Thermo-scientific, Waltham, MA, USA) for 72 h at 37 ◦C. Then,
centrifugation was performed at speed of 5000 rpm for 20 min. After proper dilution
and filtration of supernatant, analysis was carried out with the help of a UV–visible
spectrophotometer (CE-7400S, Cecil, Cambridge, UK) at 253 nm [22].

2.5. Dissolution Studies

Dissolution behavior of pure drug and solid dispersion formulations were studied us-
ing USP apparatus II (DT 70, Pharma Test, Hainburg, Germany). This study was conducted
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using 900 mL of 0.1 N HCl (pH 1.2) and a phosphate buffer of pH 6.8 at 37 ◦C with stirring
speed 100 rpm. Solid dispersion containing 10 mg of API was placed in each dissolution
vessel. A 5.0 mL sample aliquot was taken at different time intervals (0, 5, 15, 30, 45, 60,
90, and 120 min through a 0.45 µm Millipore filter. After withdrawal of a sample aliquot,
an equivalent amount of freshly prepared dissolution medium was added to maintain
sink conditions. Analysis was carried out with a UV–visible spectrophotometer (CE-7400S,
Cecil, Cambridge, UK) at 253 nm [21].

2.6. Drug Content and Yield

To determine drug content, an amount of solid dispersion containing 10 mg of drug
substance was added to 10 mL of solvent (methanol) and sonicated until the formulation
was completely dissolved. After filtration, the UV–visible spectrophotometry technique
was used at 253 nm (lambda max) and the amount of drug was determined from the
calibration curve.

The following formula was used to calculate % drug contents:

% Drug content = calculated drug content/theoretical drug content × 100

In order to determine % yield, there was need to determine the weight of dried
solid dispersions (W1) obtained from prepared batches and the initial weight of drug
and polymer/s (W2).

The following formula was used to calculate % yield:

% Yield = W1/W2 × 100

2.7. Kinetic Model Analysis

Drug release data was fitted into various release models in order to understand the
release mechanism using DD solver software.

The equation for zero order is given below. This equation is used to describe concen-
tration independent drug release.

C = ko·t

where, ko = zero-order rate constant and t = time.
The equation for first order is

Log C = LogCo − Kt/2.303

where, Co = initial concentration of drug and K = first order constant. The first order
describes concentration-dependent drug release.

The equation for Higuchi model is

Q = kt1/2

where Q = percentage of drug released at time (t) and k = Higuchi coefficient
The Hixson–Crowell model equation is

Qo1/3 − Qt1/3 = kHC·t

where is Qt = Amount of drug released in time t, Qo = Initial concentration of drug in any
dosage form, kHC = Hixson–Crowell rate constant.

The equation for Korsmeyer–peppas model is

Q = kptn

where Q = percent of the drug released at time (t), kp is Peppas constant, and n is the release
exponent which is used to understand the release mechanism [23] (Table 2).
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Table 2. Relationship of n value with release mechanism.

N Release Mechanism

0.45 or less Fickian diffusion
0.45–0.89 Non Fickian or anomalous mechanism

0.89 Case II transport
>0.89 Super case II transport

2.8. Scanning Electron Microscopy (SEM)

SEM was performed to reveal the surface characteristics of pure Irbesartan and solid
dispersion samples by using an electron microscope (Nova-Nano-450, FEI, Hillsboro, OR,
USA). Adhesive tape was used to mount the prepared samples onto the carbon tail ends,
after which they were coated with an alloy made up of gold and palladium. Atmospheric
pressure was maintained at 0.25 Torr using an ion sputter coater and finally the samples
were placed in the scanning chamber [24].

2.9. Powder X-ray Diffraction (PXRD)

Changes in drug crystalline structure were determined using an X-ray Diffractometer
(JDX3522, Japan). PXRD was carried out by placing samples in an X-ray diffraction device and
exposing them to varied angles (4◦ to 50◦) 2θ with scanning speed maintained at 1◦/min [25].

2.10. FTIR Analysis

FTIR spectroscopy studies were performed using an FTIR spectrophotometer (Agilent
scientific Instruments, Santa Clara, CA, USA) to identify drug substance and to characterize
major interactions between API and polymers. Samples were mixed with potassium
bromide in a glass mortar and then pressed to prepare potassium bromide discs. Scans
were run from 500 to 4000 cm−1 with a resolution power of 1 cm−1 [26].

2.11. Differential Scanning Calorimetry (DSC)

DSC thermograms of drug, polymers, and formulations were obtained using a thermal
analyzer (SDT Q600, V20.9 Build 20, TA instruments, New Castle, DE, USA). An amount of
5 mg of test substance was kept on a DSC pan made up of aluminum. The temperature to
start the test was 25 ◦C. The temperature was raised by maintaining a speed of 10 ◦C/min,
with a temperature upper limit of 350 ◦C or Tm of the substance. Nitrogen gas flow was
maintained at a speed of 30 mL/min [27].

3. Results and Discussion
3.1. Screening Study

All hydrophilic polymers showed an increase in solubility compared to pure drug in
the screening study. The results of the screening study are shown in Table 3. Based on these
results, two polymers, namely Soluplus® and Kollidon® VA 64, were selected to prepare
binary solid dispersions, as these polymers showed the highest increase in solubility.

Table 3. Screening data of Irbesartan with different polymers at various concentrations.

Carrier Concentration, % 1a 2a 3a 4a

Soluplus® 162.24 ± 1.87 106.16 ± 1.87 67.53 ± 2.85 59.43 ± 1.87
Kollidon® VA 64 170.34 ± 1.079 190.90 ± 1.079 230.15 ± 1.079 282.49 ± 2.15

PVP-K30 110.52 ± 5.39 115.51 ± 1.86 134.20 ± 1.86 172.21 ± 2.85
Kolliphor® P 407 96.19 ± 3.89 109.90 ± 4.94 120.49 ± 4.31 169.71 ± 1.87

PEG 6000 70.03 ± 5.39 23.30 ± 3.89 25.79 ± 1.87 12.71 ± 1.87
HPMC E5 33.89 ± 4.70 50.09 ± 1.86 61.30 ± 1.86 77.50 ± 1.079

Gelucire® 50/13 30.77 ± 2.15 27.04 ± 1.079 ——- b ——– b

a: Solubility (µg/mL) in respective carrier concentration. b: Insoluble in water.
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3.2. Solubility Studies

The solubility of pure drug in distilled water, pH 6.8 phosphate buffer, and 0.1 N HCl
(pH 1.2) was 10.84 ± 1.079 µg/mL, 19.78 ± 1.56 µg/mL, and 30.72 ± 2.59 µg/mL, respec-
tively. The results of the solubility studies of the prepared formulations are represented in
Figure 3. They revealed that the K4 formulation exhibited the highest saturation solubility
(754.08 ± 1.70 µg/mL in 0.1 N HCl and 540.97 ± 1.57 µg/mL in pH 6.8 phosphate buffer)
in the case of binary solid dispersions. However, KPVP (TD3) ternary solid dispersion was
found to have a saturation solubility of 820.93 ± 3.26 µg/mL and 924.71 ± 0.98 µg/mL in
pH 6.8 phosphate buffer and 0.1 N HCl, respectively, which was the maximum increase
in solubility among all the prepared ternary solid dispersions. This maximum increase in
solubility could be linked to the complete transformation of the crystalline form of the drug
into its amorphous form in KPVP (TD3) formulation.
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3.3. Dissolution Studies

The results revealed that the pure drug showed 46.03 ± 0.141% release in 0.1 N HCl and
22.31 ± 0.169% release in pH 6.8 phosphate buffer after 2 h. It was noticed that during first
30 min, the drug release was 11.00 ± 1.49% in 6.8 pH phosphate buffer and 36.55 ± 0.915%
in 0.1 N HCl. Overall, all the prepared formulations showed an increase in drug release
compared to pure drug. This could be attributed to the transformation of the crystalline
drug into its amorphous form, reduced particle size, and increased wetting [22,28]. In addi-
tion, Soluplus®-based binary solid dispersions showed increased drug release, probably
due to the maintenance of supersaturation which might result from intermolecular bonding
between API and Soluplus® (Figure 4). Noticeably, Soluplus®-based solid dispersions
provided decreased drug release with increasing Soluplus® concentration. This may be
due to the fact that Soluplus® possesses swelling properties, which may decrease drug
release due to the limited diffusion of drug through the swelled polymer [29,30]. The binary
system prepared with Kollidon® VA 64 (K4) was further selected for the preparation of
ternary system as it provided the highest drug release of 71.21 ± 0.364% and 79.75 ± 0.094%
in pH 6.8 phosphate buffer and 0.1 N HCl (pH 1.2) after 120 min, respectively (Figure 5).
This maximum increase in solubility and dissolution rate might be associated with sus-
tained supersaturation, formation of nanoparticles during dissolution, crystal nucleation,
and growth inhibition by Kollidon® VA 64 (polymer shows adsorption on drug particles).
Another possible mechanism involved in enhancing the solubility of this polymer could be
the formation of intermolecular bonding, especially hydrogen bonding between carbonyl
functional group of pyrrolidone and vinyl acetate [29]
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In the case of ternary systems, the formulation KP407 (TD3) exhibited drug release of
82.46 ± 0.082% and 93.20 ± 0.076% in pH 6.8 phosphate buffer and 0.1 N HCl (pH 1.2), respec-
tively, after 120 min, and the formulation KPVP (TD3) showed drug release of 87.31 ± 0.805%
and 97.60 ± 0.887% in pH 6.8 phosphate buffer and 0.1 N HCl, respectively, after 120 min.
The increase in solubility and drug release in the case of Kolliphor® P 407-based ternary
dispersion might be linked to the surfactant nature of this polymer (Figure 6). Kolliphor®

P 407 is composed of ethylene oxide and propylene oxide blocks, which are responsible for
self-assembly into micelles in aqueous media, thus leading to solubilization of the drug.
The mechanism by which PVP-K30 increased drug release is most likely the maintenance
of supersaturation resulting from the crystal growth inhibition potential of PVP. Hydrogen
bonding between PVP and the weakly basic drug may be another reason for the increased
solubility as well as dissolution [29,31].

Based on the results of solubility and dissolution studies, KPVP (TD3) ternary solid
dispersion formulation was considered as the optimized formulation (Figure 7).
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3.4. Drug Content and % Yield

The results for drug content and percent yield are presented in Table 4. All the formula-
tions provided more than 80% drug content and yield. Drug content and yield of all formula-
tions ranged from 81.20 ± 0.011% to 94.56 ± 0.005% and 81.20 ± 1.085% to 94.33 ± 1.258%,
respectively. Importantly, the optimized formulation KPVP (TD3) revealed 94.56 ± 0.005%
drug content and 94.33 ± 1.258% yield.

3.5. Kinetic Modelling

The results of kinetic modelling analysis are shown in Tables 5 and 6. All solid
dispersion formulations followed the Korsmeyer–Peppas model, as the values of R2 for this
model were higher compared to other models. Moreover, the values of n obtained from
the slope of the Korsemeyer–Peppas model for all solid dispersions were less than 0.45
which shows that the drug release mechanism followed Fickian diffusion [32]. A possible
explanation for this mechanism may be that the hydrophilic polymer formed a diffusion
layer surrounding the drug particles leading to an alteration in the hydrophobicity of drug,
increased wetting, and reduced particle size and crystallinity. Therefore, the drug had to
pass through this diffusion layer in order to come in contact with dissolution medium. It is
also reported from the literature that formation of such a diffusion layer by hydrophilic
polymers supports this type of release behavior [33].
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Table 4. Drug content and % yield data of binary and ternary solid dispersion formulations.

Formulation Drug Content, % Yield, %

S1 92.89 92.00
S2 82.03 82.11
S3 87.88 84.55
S4 81.20 85.00
K1 86.21 90.00
K2 90.39 87.00
K3 86.21 88.00
K4 93.73 94.67

KP407 (TD1) 91.22 88.22
KP407 (TD2) 93.73 90.00
KP407 (TD3) 94.56 94.00
KPVP (TD1) 90.39 85.00
KPVP (TD2) 92.89 90.00
KPVP (TD3) 94.56 94.00

Table 5. Kinetic modelling data of prepared solid dispersion formulations from drug release in pH 6.8
phosphate buffer.

Formulaion
Codes

Zero Order First Order Higuchi Model Hixon-Crowell Krosmeyer–Peppas

(R2) (R2) (R2) (R2) (R2) n

S1 0.44 0.29 0.61 0.10 1.00 0.18
S2 0.53 0.73 0.97 0.67 1.00 0.39
S3 0.43 0.63 0.94 0.57 0.99 0.36
S4 0.16 0.41 0.86 0.34 0.99 0.29
K1 0.70 0.04 0.57 0.13 0.97 0.17
K2 0.03 0.51 0.79 0.36 0.99 0.25
K3 0.10 0.46 0.76 0.31 0.99 0.23
K4 0.08 0.57 0.83 0.45 1.00 0.04

KP407 (TD1) 0.51 0.33 0.03 0.67 1.00 0.04
KP407 (TD2) 0.51 0.34 0.14 0.04 0.99 0.07
KP407 (TD3) 0.51 0.60 0.03 0.01 1.00 0.04
KPVP (TD1) 0.56 0.02 0.09 0.25 1.00 0.06
KPVP (TD2) 0.55 0.50 0.07 0.06 1.00 0.06
KPVP (TD3) 0.54 0.74 0.03 0.10 1.00 0.05

Table 6. Kinetic modelling data of prepared solid dispersion formulations from drug release data in
0.1 N HCl.

Formulaion
Codes

Zero Order First Order Higuchi Model Hixon-Crowell Krosmeyer–Peppas

(R2) (R2) (R2) (R2) (R2) n

S1 0.92 0.30 0.37 0.10 0.99 0.12
S2 0.17 0.50 0.74 0.33 0.99 0.22
S3 0.11 0.54 0.84 0.42 0.98 0.27
S4 0.89 0.70 0.94 0.62 0.99 0.35
K1 0.56 0.13 0.56 0.07 0.99 0.16
K2 0.38 0.71 0.91 0.63 0.97 0.33
K3 0.50 0.78 0.93 0.72 0.97 0.37
K4 0.54 0.33 0.02 0.73 1.00 0.04

KP407 (TD1) 0.67 0.34 0.71 0.74 1.00 0.05
KP407 (TD2) 0.54 0.74 0.06 0.15 1.00 0.05
KP407 (TD3) 0.51 0.93 0.71 0.08 1.00 0.04
KPVP (TD1) 0.56 0.58 0.13 0.22 1.00 0.07
KPVP (TD2) 0.48 0.93 0.12 0.70 1.00 0.02
KPVP (TD3) 0.52 0.96 0.00 0.11 1.00 0.04
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3.6. SEM

The SEM micrographs of pure Irbesartan and of the prepared formulations S1, K4,
KP407 (TD3), and KPVP (TD3) are shown in Figure 8. It was found that the SEM micrograph
of Irbesartan clearly exhibited needle type lumps or crystals of pure drug, thus confirming
its crystalline nature [22].
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S1 and K4 formulations showed irregular amorphous forms of the drug with few
needles. However, the SEM analysis of ternary dispersion KP407 (TD3) confirmed almost
complete transformation of crystalline API into amorphous form. In addition, the SEM
micrographs of ternary dispersion KPVP (TD3) showed disappearance of crystals of drug
due to its masking by the polymeric carriers. These SEM results were also supported by the
PXRD finding confirming the presence of the amorphous form of the drug in the optimized
solid dispersion formulation [34].

3.7. PXRD Studies

The PXRD data of pure Irbesartan and other samples are provided in Figure 9. The
PXRD of Irbesartan showed intense peaks at 12.5◦, 13.3◦, 17.1◦, 19.4◦, 21.2◦, 22.6◦, 23.2◦,
23.6◦, and 27.3◦ [22] corresponding to crystalline form A of Irbesartan [35], whereas the
Soluplus® did not show any intense peaks due to its amorphous nature [36]. In comparison,
the PXRD of solid dispersion (S1) with 1:1 ratio (drug: polymer) exhibited drug peaks with
less intensity, reflecting its partial transformation into amorphous form [37]. Kollidon® VA
64 showed two halos near 12 and 22 2θ [38]. The PXRD of formulation (K4) with 1:4 ratio
(drug: polymer) exhibited only a few drug peaks with much less intensity, thus supporting
more conversion into its amorphous form [16].

Kolliphor® P 407 showed two peaks at 19.346◦ and 23.472◦ angles (2 θ) [16]. Polyvinylpyrrolidone-
K30 did not show these typical diffraction peaks due to its amorphous nature [39], indi-
cating a broad and diffused pattern as its molecules are randomly arranged in a crystal
lattice [40]. Furthermore, the PXRD of formulation KP407 (TD3) with 1:4:3 ratio (drug:
binary polymer:ternary polymer) revealed only one small peak, reflecting a high conversion
of crystalline drug into amorphous form. Also, the PXRD of formulation KPVP (TD3) with
1:4:3 ratio (drug: binary polymer:ternary polymer) exhibited complete transformation of
the drug into amorphous form, showing no peak.
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VA 64, (c) binary solid dispersion of drug and Kollidon® VA 64 at ratio 1:4 [K4], (d) Soluplus®,
(e) binary dispersion of drug and Soluplus® at ratio 1:1 [S1]. (B) Irbesartan and ternary solid
dispersions: (a) pure Irbesartan, (b) Kollidon® VA 64, (c) Kolliphor® P 407, (d) Polyvinylpyrrolide-
K30, (e) ternary solid dispersion KP407 (TD3), (f) ternary solid dispersion KPVP (TD3).

3.8. FTIR Spectroscopy Studies

The FTIR spectra of pure Irbesartan provided peaks at 1610 cm−1 due to C-N stretch,
1727 cm−1 due to C-O stretch, 2900 cm−1 and 2964 cm– 1 due to N-H stretches, 1436 cm– 1

and 1409 due to NNH bending, and 778 cm−1 due to NH out of plane bending of the CNH
group, which are in accordance with the previous literature [22,35,41] (Figure 10A). Peaks
at 1727 cm−1, 1610 cm−1, 778 cm−1, 1517 cm−1, and 756 cm−1 corresponds to crystalline form
A of Irbesartan [35,42]. The FTIR spectra of Soluplus® showed peaks similar to those previ-
ously reported in the literature. Peaks seemingly due to O-H stretch appeared at 3460 cm−1,
C-H stretch (aromatic) at 2915 cm−1, C=O stretch due to vinyl acetate at 1730 cm−1, C=O
stretch due to vinyl caprolactam carbonyl at 1630 cm−1, and C-O-C stretch at 1470 cm−1 [43].

The prominent peaks of the API and the carrier were present in solid dispersion (S1)
with lower intensity, which is indicative of no major interaction between drug and polymer.
The presence of less intense and broadened peaks of drug at 2900 cm−1 and 2964 cm– 1

might be due to possible bonding between the N-H group of the drug and the carbonyl
(C=O) group of Soluplus® [43].

The peak of drug at 1727 cm−1 appears with less intensity and the peak at 1610 cm−1 is
broadened in S1 formulation. This may be due to overlapping of the drug with the polymer.

Kollidon® VA 64 possess two hydrogen bond acceptor groups which are from the
carbonyl group of the pyrrolidone ring (at 1660 cm−1) and vinyl acetate (at 1737 cm−1) [13]
(Figure 10B). Kollidon® VA 64 also showed peaks at 3500 cm−1 and 2900 cm−1, probably
due to a higher number of O-H groups [44]. Moreover, the major peaks of Irbesartan
and Kollidon® VA 64 were retained in formulation (K4), showing the compatibility of
the drug and polymers. Peaks that appeared at 2900 cm−1 and 2964 cm– 1 were present
in the formulation with less intensity. The drug peak at 1727 cm−1 in the formulation
(K4) was less intense compared to its appearance in the spectrum of pure drug. The
drug peak that appeared at 1610 cm−1 in FTIR was shifted to the higher frequency of
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1666 cm– 1. Shifting towards higher wavelengths may be due to the presence of weak Van
der Waal forces between the drug and polymer [22]. This broadening of peaks was also
linked to the change of drug form (crystalline to amorphous) [45]. Proton donors, such as
OH, and proton acceptors are present in Kollidon® VA 64, which might have facilitated
intermolecular interaction at these sites resulting in broadening of the peaks [46]. Major
peaks of PVP-K30 appeared at 2940 (C–H), 1650 (C=O stretch), 1506 (C=C stretch), and
1273 cm–1 (C–N stretch) [47]. In optimized formulation KPVP (TD3), drug peaks appeared
at 1610 cm−1 and 1727 cm−1 with less intensity, and peaks were broadened at 2900 cm−1

and 2964 with much less intensity, which could be due to hydrogen bonding between the
carbonyl functional group of PVP and the N-H functional group of the drug [48].

In addition, Kolliphor® P 407 showed peaks at 2893.02 cm–1 (C-H aliphatic stretching),
1342 cm–1 (O-H bending), and 1110 cm–1 (C-O stretching) [49]. In optimized KP407 (TD3)
formulation, drug peaks were broadened at 1610 cm–1, 1732 cm–1, 2900 cm–1, and 2964 cm–1,
with less intensity in ternary dispersion. This broadening and reduction in intensity clearly
reflected reduced crystallinity of the drug in the formulation [50] (Figure 11).
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Figure 10. FTIR data of (A) Soluplus®-based solid dispersion formulation: (a) pure Irbesartan,
(b) Soluplus®, (c) binary system of drug and Soluplus® at ratio 1:1 [S1]. (B) Kollidon® VA 64-based
solid dispersion formulation: (a) pure Irbesartan, (b) Kollidon® VA 64, (c) binary solid dispersion
of drug and Kollidon® VA 64 at ratio 1:4 [K4]. Note: Background noise may be present along with
signals of compounds in FTIR display.
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Figure 11. FTIR data of (A) Kolliphor® P 407-based ternary solid dispersions formulation:
(a) pure Irbesartan, (b) Kolliphor® P 407, (c) Kollidon® VA 64, (d) ternary system KP407 (TD3).
(B) Polyvinylpyrrolidone-K30-based ternary solid dispersions formulation: (a) pure Irbesartan,
(b) Polyvinylpyrrolidone-K30, (c) Kollidon® VA 64, (d) ternary solid dispersion KPVP (TD3). Note:
Background noise may be present along with signals of compounds in FTIR display.

3.9. DSC Studies

The DSC thermograms of pure drug, polymers, and formulations are shown in
Figure 12. Pure Irbesartan depicted an intense endothermic peak at 190 ◦C due to its
melting point which was shifted in solid dispersion formulations, indicating reduced
crystallinity of pure drug in formulations [50,51]. The presence of a broader peak, or
the complete absence of a melting peak, is a clear indication that a drug is partially or
completely dispersed in polymeric carriers [52]. In contrary, Soluplus® did not show any
melting endothermic peak due to its amorphous nature [9]. It was noticed that the drug
peak was broadened (170–184 ◦C) in the DSC curve of solid dispersion (S1) reflecting its
partial dispersion in polymeric carrier. Furthermore, Kollidon® VA 64 did not reveal any
sharp melting endothermic peak due to its amorphous nature [44]. In the DSC curve of
formulation (K4), the drug peak was shifted towards lower temperature (110–140 ◦C),
supporting the partial conversion of the drug into its amorphous form. These results are in
accordance with FTIR and XRD results.
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Kolliphor® P 407 exhibited an endothermic peak at 56 ◦C [53]. The thermogram of
KP407 (TD3) formulation showed complete absence of a drug melting peak. PVP K30
provided a broad endothermic peak (70–130 ◦C) due to its amorphous nature. However,
the DSC curve of KPVP (TD3) revealed a complete disappearance of drug peak, supporting
its conversion into amorphous form [54].

Pharmaceutics 2022, 14, x FOR PEER REVIEW 18 of 21 
 

 

persion in polymeric carrier. Furthermore, Kollidon® VA 64 did not reveal any sharp melt-
ing endothermic peak due to its amorphous nature [44]. In the DSC curve of formulation 
(K4), the drug peak was shifted towards lower temperature (110–140 °C), supporting the 
partial conversion of the drug into its amorphous form. These results are in accordance 
with FTIR and XRD results. 

Kolliphor® P 407 exhibited an endothermic peak at 56 °C [53]. The thermogram of 
KP407 (TD3) formulation showed complete absence of a drug melting peak. PVP K30 pro-
vided a broad endothermic peak (70–130 °C) due to its amorphous nature. However, the 
DSC curve of KPVP (TD3) revealed a complete disappearance of drug peak, supporting 
its conversion into amorphous form [54]. 

Figure 12. DSC curves of (A) Irbesartan and binary solid dispersions: (a) pure Irbesartan, (b) Solup-
lus®, (c) Kollidon® VA 64, (d) binary dispersion of drug and Soluplus® at ratio 1:1 [S1], (e) binary 
solid dispersion of drug and Kollidon® VA 64 at ratio 1:4 [K4]. (B) Irbesartan and ternary solid dis-
persions: (a) pure Irbesartan, (b) Kollidon® VA 64, (c) Kolliphor® P 407, (d) Polyvinylpyrrolide- K30 
(PVP-K30), (e) ternary solid dispersion KP407 (TD3), (f) ternary solid dispersion KPVP (TD3). 

Figure 12. DSC curves of (A) Irbesartan and binary solid dispersions: (a) pure Irbesartan,
(b) Soluplus®, (c) Kollidon® VA 64, (d) binary dispersion of drug and Soluplus® at ratio 1:1 [S1], (e) bi-
nary solid dispersion of drug and Kollidon® VA 64 at ratio 1:4 [K4]. (B) Irbesartan and ternary solid
dispersions: (a) pure Irbesartan, (b) Kollidon® VA 64, (c) Kolliphor® P 407, (d) Polyvinylpyrrolide-
K30 (PVP-K30), (e) ternary solid dispersion KP407 (TD3), (f) ternary solid dispersion KPVP (TD3).

4. Conclusions

In this research, binary and ternary solid dispersion-based formulations of Irbesartan
were successfully formulated and evaluated. Clearly, the results showed that all the prepared
formulations provided a significant increase in solubility as well as dissolution, however, the
performance of ternary solid dispersions were potentially more effective when compared to
binary solid dispersions. Moreover, the characterization data of FTIR, DSC, SEM, and XRD
studies revealed the amorphous nature of the drug in the prepared solid dispersions. Finally,



Pharmaceutics 2022, 14, 2264 18 of 20

it was concluded that the prepared solid dispersion formulations could be potentially used to
increase the solubility as well as dissolution of poorly soluble Irbesartan.
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