From Systemic Inflammation to Vascular Remodeling: Investigating Carotid IMT in COVID-19 Survivors
Abstract
1. Background
2. Materials and Methods
2.1. Study Design and Participants
2.2. Clinical Data Collection
2.3. Intima–Media Thickness (IMT) Assessment
2.4. Follow-Up
2.5. Statistical Analysis
3. Results
3.1. Studied Population
3.2. IMT Measurements
3.3. The Relationship Between IMT at the First Measurement and Clinical and Demographic Parameters
3.4. Association Between IMT Changes Across Measurements and Clinical and Demographic Parameters
3.5. Changes in IMT Between Second and First Measurements Based on Baseline IMT Levels
3.6. The Estimation of the Adjusted Effects of Demographic and Clinical Parameters on the Change in IMT
4. Discussion
4.1. Limitations
4.2. Strengths
4.3. Future Research Directions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Harrison, D.G.; Griendling, K.K. Pathophysiology of Hypertension. Hypertension 2016, 67, 1203–1210. [Google Scholar] [CrossRef]
- Odden, M.C.; Coxson, P.G.; Moran, A.; Lightwood, J.M.; Goldman, L.; Bibbins-Domingo, K. The Impact of the Aging Population on Coronary Heart Disease in the United States. Am. J. Med. 2011, 124, 827–833.e5. [Google Scholar] [CrossRef]
- Garrett, N.; Martini, E.M. The Boomers Are Coming: A Total Cost of Care Model of the Impact of Population Aging on the Cost of Chronic Conditions in the United States. Dis. Manag. 2007, 10, 51–60. [Google Scholar] [CrossRef]
- Lozano, R.; Naghavi, M.; Foreman, K.; Lim, S.; Shibuya, K.; Aboyans, V.; Abraham, J.; Adair, T.; Aggarwal, R.; Ahn, S.Y.; et al. Global and Regional Mortality from 235 Causes of Death for 20 Age Groups in 1990 and 2010: A Systematic Analysis for the Global Burden of Disease Study 2010. Lancet 2012, 380, 2095–2128. [Google Scholar] [CrossRef] [PubMed]
- Burton, W.N.; Schultz, A.B.; Chen, C.; Edington, D.W. The Association of Worker Productivity and Mental Health: A Review of the Literature. Int. J. Workplace Health Manag. 2008, 1, 78–94. [Google Scholar] [CrossRef]
- Frontiers|Smooth Muscle Cell—Macrophage Interactions Leading to Foam Cell Formation in Atherosclerosis: Location, Location, Location. Available online: https://www.frontiersin.org/journals/physiology/articles/10.3389/fphys.2022.921597/full (accessed on 6 November 2024).
- Malekmohammad, K.; Bezsonov, E.E.; Rafieian-Kopaei, M. Role of Lipid Accumulation and Inflammation in Atherosclerosis: Focus on Molecular and Cellular Mechanisms. Front. Cardiovasc. Med. 2021, 8, 707529. [Google Scholar] [CrossRef] [PubMed]
- Fularski, P.; Czarnik, W.; Dąbek, B.; Lisińska, W.; Radzioch, E.; Witkowska, A.; Młynarska, E.; Rysz, J.; Franczyk, B. Broader Perspective on Atherosclerosis—Selected Risk Factors, Biomarkers, and Therapeutic Approach. Int. J. Mol. Sci. 2024, 25, 5212. [Google Scholar] [CrossRef]
- Poznyak, A.V.; Sadykhov, N.K.; Kartuesov, A.G.; Borisov, E.E.; Melnichenko, A.A.; Grechko, A.V.; Orekhov, A.N. Hypertension as a Risk Factor for Atherosclerosis: Cardiovascular Risk Assessment. Front. Cardiovasc. Med. 2022, 9, 959285. [Google Scholar] [CrossRef]
- Nahmias, A.; Stahel, P.; Xiao, C.; Lewis, G.F. Glycemia and Atherosclerotic Cardiovascular Disease: Exploring the Gap Between Risk Marker and Risk Factor. Front. Cardiovasc. Med. 2020, 7, 100. [Google Scholar] [CrossRef]
- Libby, P.; Ridker, P.M.; Hansson, G.K. Progress and Challenges in Translating the Biology of Atherosclerosis. Nature 2011, 473, 317–325. [Google Scholar] [CrossRef]
- Bäck, M.; Yurdagul, A.; Tabas, I.; Öörni, K.; Kovanen, P.T. Inflammation and Its Resolution in Atherosclerosis: Mediators and Therapeutic Opportunities. Nat. Rev. Cardiol. 2019, 16, 389–406. [Google Scholar] [CrossRef]
- Bailey, A.L.; Al-Adwan, S.; Sneij, E.; Campbell, N.; Wiisanen, M.E. Atherosclerotic Cardiovascular Disease in Individuals with Hepatitis C Viral Infection. Curr. Cardiol. Rep. 2021, 23, 52. [Google Scholar] [CrossRef]
- Post, W.S.; Budoff, M.; Kingsley, L.; Palella, F.J.; Witt, M.D.; Li, X.; George, R.T.; Brown, T.T.; Jacobson, L.P. Associations Between HIV Infection and Subclinical Coronary Atherosclerosis. Ann. Intern. Med. 2014, 160, 458–467. [Google Scholar] [CrossRef]
- Latent Tuberculosis Infection and Subclinical Coronary Atherosclerosis in Peru and Uganda|Clinical Infectious Diseases|Oxford Academic. Available online: https://academic.oup.com/cid/article/73/9/e3384/6060062 (accessed on 6 November 2024).
- Yamanashi, H.; Koyamatsu, J.; Nagayoshi, M.; Shimizu, Y.; Kawashiri, S.-Y.; Kondo, H.; Fukui, S.; Tamai, M.; Sato, S.; Yanagihara, K.; et al. Human T-Cell Leukemia Virus-1 Infection Is Associated With Atherosclerosis as Measured by Carotid Intima-Media Thickness in Japanese Community-Dwelling Older People. Clin. Infect. Dis. 2018, 67, 291–294. [Google Scholar] [CrossRef] [PubMed]
- Ludwig, M.; von Petzinger-Kruthoff, A.; von Buquoy, M.; Stumpe, K.O. Intima media thickness of the carotid arteries: Early pointer to arteriosclerosis and therapeutic endpoint. Ultraschall Med. 2003, 24, 162–174. [Google Scholar] [CrossRef] [PubMed]
- Nezu, T.; Hosomi, N.; Aoki, S.; Matsumoto, M. Carotid Intima-Media Thickness for Atherosclerosis. J. Atheroscler. Thromb. 2016, 23, 18–31. [Google Scholar] [CrossRef]
- Naqvi, T.Z.; Lee, M.-S. Carotid Intima-Media Thickness and Plaque in Cardiovascular Risk Assessment. JACC Cardiovasc. Imaging 2014, 7, 1025–1038. [Google Scholar] [CrossRef]
- Jäger, K.A. Early detection of arteriosclerosis. Ultraschall Med. 2003, 24, 151–152. [Google Scholar] [CrossRef]
- Coronavirus Disease (COVID-19)—World Health Organization. Available online: https://www.who.int/emergencies/diseases/novel-coronavirus-2019 (accessed on 6 November 2024).
- Al-Aly, Z.; Xie, Y.; Bowe, B. High-Dimensional Characterization of Post-Acute Sequelae of COVID-19. Nature 2021, 594, 259–264. [Google Scholar] [CrossRef] [PubMed]
- Al-Aly, Z.; Topol, E. Solving the Puzzle of Long Covid. Science 2024, 383, 830–832. [Google Scholar] [CrossRef]
- Davis, H.E.; McCorkell, L.; Vogel, J.M.; Topol, E.J. Long COVID: Major Findings, Mechanisms and Recommendations. Nat. Rev. Microbiol. 2023, 21, 133–146. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; Xu, E.; Bowe, B.; Al-Aly, Z. Long-Term Cardiovascular Outcomes of COVID-19. Nat. Med. 2022, 28, 583–590. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; Al-Aly, Z. Risks and Burdens of Incident Diabetes in Long COVID: A Cohort Study. Lancet Diabetes Endocrinol. 2022, 10, 311–321. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; Xu, E.; Al-Aly, Z. Risks of Mental Health Outcomes in People with Covid-19: Cohort Study. BMJ 2022, 376, e068993. [Google Scholar] [CrossRef]
- Al-Aly, Z.; Bowe, B.; Xie, Y. Long COVID after Breakthrough SARS-CoV-2 Infection. Nat. Med. 2022, 28, 1461–1467. [Google Scholar] [CrossRef]
- Xu, E.; Xie, Y.; Al-Aly, Z. Long-Term Neurologic Outcomes of COVID-19. Nat. Med. 2022, 28, 2406–2415. [Google Scholar] [CrossRef]
- Bowe, B.; Xie, Y.; Xu, E.; Al-Aly, Z. Kidney Outcomes in Long COVID. J. Am. Soc. Nephrol. 2021, 32, 2851–2862. [Google Scholar] [CrossRef]
- Xie, Y.; Bowe, B.; Al-Aly, Z. Burdens of Post-Acute Sequelae of COVID-19 by Severity of Acute Infection, Demographics and Health Status. Nat. Commun. 2021, 12, 6571. [Google Scholar] [CrossRef]
- Xu, E.; Xie, Y.; Al-Aly, Z. Risks and Burdens of Incident Dyslipidaemia in Long COVID: A Cohort Study. Lancet Diabetes Endocrinol. 2023, 11, 120–128. [Google Scholar] [CrossRef]
- Xu, E.; Xie, Y.; Al-Aly, Z. Long-Term Gastrointestinal Outcomes of COVID-19. Nat. Commun. 2023, 14, 983. [Google Scholar] [CrossRef]
- Taquet, M.; Dercon, Q.; Luciano, S.; Geddes, J.R.; Husain, M.; Harrison, P.J. Incidence, Co-Occurrence, and Evolution of Long-COVID Features: A 6-Month Retrospective Cohort Study of 273,618 Survivors of COVID-19. PLoS Med. 2021, 18, e1003773. [Google Scholar] [CrossRef]
- Carlile, O.; Briggs, A.; Henderson, A.D.; Butler-Cole, B.F.C.; Tazare, J.; Tomlinson, L.A.; Marks, M.; Jit, M.; Lin, L.-Y.; Bates, C.; et al. Impact of Long COVID on Health-Related Quality-of-Life: An OpenSAFELY Population Cohort Study Using Patient-Reported Outcome Measures (OpenPROMPT). Lancet Reg. Health–Eur. 2024, 40, 100908. [Google Scholar] [CrossRef]
- Farshidfar, F.; Koleini, N.; Ardehali, H. Cardiovascular Complications of COVID-19. JCI Insight 2021, 6, e148980. [Google Scholar] [CrossRef] [PubMed]
- Palazzuoli, A.; Giustozzi, M.; Ruocco, G.; Tramonte, F.; Gronda, E.; Agnelli, G. Thromboembolic Complications in Covid-19: From Clinical Scenario to Laboratory Evidence. Life 2021, 11, 395. [Google Scholar] [CrossRef] [PubMed]
- Łoboda, D.; Sarecka-Hujar, B.; Wilczek, J.; Gibiński, M.; Zielińska-Danch, W.; Szołtysek-Bołdys, I.; Paradowska-Nowakowska, E.; Nowacka-Chmielewska, M.; Grabowski, M.; Lejawa, M.; et al. Cardiac Status and Atherosclerotic Cardiovascular Risk of Convalescents after COVID-19 in Poland. Pol. Arch. Intern. Med. 2023, 133, 16449. [Google Scholar] [CrossRef]
- Guo, T.; Fan, Y.; Chen, M.; Wu, X.; Zhang, L.; He, T.; Wang, H.; Wan, J.; Wang, X.; Lu, Z. Cardiovascular Implications of Fatal Outcomes of Patients with Coronavirus Disease 2019 (COVID-19). JAMA Cardiol. 2020, 5, 811–818. [Google Scholar] [CrossRef]
- Koleva, D.I.; Orbetzova, M.M.; Nikolova, J.G.; Deneva, T.I. Pathophysiological Role of Adiponectin, Leptin and Asymmetric Dimethylarginine in the Process of Atherosclerosis. Folia Med. 2016, 58, 234–240. [Google Scholar] [CrossRef]
- Freitas Lima, L.C.; Braga, V.d.A.; do Socorro de França Silva, M.; Cruz, J.d.C.; Sousa Santos, S.H.; de Oliveira Monteiro, M.M.; Balarini, C.d.M. Adipokines, Diabetes and Atherosclerosis: An Inflammatory Association. Front. Physiol. 2015, 6, 304. [Google Scholar] [CrossRef]
- Montezano, A.C.; Nguyen Dinh Cat, A.; Rios, F.J.; Touyz, R.M. Angiotensin II and Vascular Injury. Curr. Hypertens. Rep. 2014, 16, 431. [Google Scholar] [CrossRef] [PubMed]
- Varga, Z.; Flammer, A.J.; Steiger, P.; Haberecker, M.; Andermatt, R.; Zinkernagel, A.S.; Mehra, M.R.; Schuepbach, R.A.; Ruschitzka, F.; Moch, H. Endothelial Cell Infection and Endotheliitis in COVID-19. Lancet 2020, 395, 1417–1418. [Google Scholar] [CrossRef]
- Panigada, M.; Bottino, N.; Tagliabue, P.; Grasselli, G.; Novembrino, C.; Chantarangkul, V.; Pesenti, A.; Peyvandi, F.; Tripodi, A. Hypercoagulability of COVID-19 Patients in Intensive Care Unit: A Report of Thromboelastography Findings and Other Parameters of Hemostasis. J. Thromb. Haemost. 2020, 18, 1738–1742. [Google Scholar] [CrossRef]
- Pine, A.B.; Meizlish, M.L.; Goshua, G.; Chang, C.-H.; Zhang, H.; Bishai, J.; Bahel, P.; Patel, A.; Gbyli, R.; Kwan, J.M.; et al. Circulating Markers of Angiogenesis and Endotheliopathy in COVID-19. Pulm. Circ. 2020, 10, 1–4. [Google Scholar] [CrossRef]
- Verdecchia, P.; Cavallini, C.; Spanevello, A.; Angeli, F. The Pivotal Link between ACE2 Deficiency and SARS-CoV-2 Infection. Eur. J. Intern. Med. 2020, 76, 14–20. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Horke, S.; Förstermann, U. Vascular Oxidative Stress, Nitric Oxide and Atherosclerosis. Atherosclerosis 2014, 237, 208–219. [Google Scholar] [CrossRef]
- Wu, Q.; Zhou, L.; Sun, X.; Yan, Z.; Hu, C.; Wu, J.; Xu, L.; Li, X.; Liu, H.; Yin, P.; et al. Altered Lipid Metabolism in Recovered SARS Patients Twelve Years after Infection. Sci. Rep. 2017, 7, 9110. [Google Scholar] [CrossRef]
- Kimura, L.F.; Sant’Anna, M.B.; Andrade, S.A.; Ebram, M.C.; Lima, C.F.G.; Celano, R.M.G.; Viégas, R.F.M.; Picolo, G. COVID-19 Induces Proatherogenic Alterations in Moderate to Severe Non-Comorbid Patients: A Single-Center Observational Study. Blood Cells Mol. Dis. 2021, 92, 102604. [Google Scholar] [CrossRef] [PubMed]
- Emiroglu, C.; Dicle, M.; Yesiloglu, C.; Gorpelioglu, S.; Aypak, C. Association between Newly Diagnosed Hyperglycemia/Diabetes Mellitus, Atherogenic Index of Plasma and Obesity in Post-COVID-19 Syndrome Patients. Endocrine 2024, 84, 470–480. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, S.J.; Feigen, C.M.; Vazquez, J.P.; Kobets, A.J.; Altschul, D.J. Neurological Sequelae of COVID-19. J. Integr. Neurosci. 2022, 21, 77. [Google Scholar] [CrossRef]
- Zhang, X.; Yao, S.; Sun, G.; Yu, S.; Sun, Z.; Zheng, L.; Xu, C.; Li, J.; Sun, Y. Total and Abdominal Obesity among Rural Chinese Women and the Association with Hypertension. Nutrition 2012, 28, 46–52. [Google Scholar] [CrossRef]
- Collins, S.P.; Chappell, M.C.; Files, D.C. The Renin–Angiotensin–Aldosterone System in COVID-19–Related and Non–COVID-19–Related Acute Respiratory Distress Syndrome: Not So Different after All? Am. J. Respir. Crit. Care Med. 2021, 204, 1007–1008. [Google Scholar] [CrossRef]
- COVID-19 in the Initiation and Progression of Atherosclerosis: Pathophysiology During and Beyond the Acute Phase|JACC: Advances. Available online: https://www.jacc.org/doi/10.1016/j.jacadv.2024.101107 (accessed on 14 August 2025).
- Riyaz Tramboo, S.; Elkhalifa, A.M.E.; Quibtiya, S.; Ali, S.I.; Nazir Shah, N.; Taifa, S.; Rakhshan, R.; Hussain Shah, I.; Ahmad Mir, M.; Malik, M.; et al. The Critical Impacts of Cytokine Storms in Respiratory Disorders. Heliyon 2024, 10, e29769. [Google Scholar] [CrossRef]
- Ngai, J.C.; Ko, F.W.; Ng, S.S.; To, K.; Tong, M.; Hui, D.S. The Long-term Impact of Severe Acute Respiratory Syndrome on Pulmonary Function, Exercise Capacity and Health Status. Respirology 2010, 15, 543–550. [Google Scholar] [CrossRef]
- Kamdar, A.; Sykes, R.; Thomson, C.R.; Mangion, K.; Ang, D.; Lee, M.A.; Van Agtmael, T.; Berry, C. Vascular Fibrosis and Extracellular Matrix Remodelling in Post-COVID 19 Conditions. Infect. Med. 2024, 3, 100147. [Google Scholar] [CrossRef] [PubMed]
- Desai, A.D.; Lavelle, M.; Boursiquot, B.C.; Wan, E.Y. Long-Term Complications of COVID-19. Am. J. Physiol. Cell Physiol. 2022, 322, C1–C11. [Google Scholar] [CrossRef]
- Carfì, A.; Bernabei, R.; Landi, F. Persistent Symptoms in Patients After Acute COVID-19. JAMA 2020, 324, 603–605. [Google Scholar] [CrossRef]
- Shang, J.; Ye, G.; Shi, K.; Wan, Y.; Luo, C.; Aihara, H.; Geng, Q.; Auerbach, A.; Li, F. Structural Basis of Receptor Recognition by SARS-CoV-2. Nature 2020, 581, 221–224. [Google Scholar] [CrossRef]
- Park, S.; Lakatta, E.G. Role of Inflammation in the Pathogenesis of Arterial Stiffness. Yonsei Med. J. 2012, 53, 258. [Google Scholar] [CrossRef]
- Gao, Y.-P.; Zhou, W.; Huang, P.-N.; Liu, H.-Y.; Bi, X.-J.; Zhu, Y.; Sun, J.; Tang, Q.-Y.; Li, L.; Zhang, J.; et al. Persistent Endothelial Dysfunction in Coronavirus Disease-2019 Survivors Late After Recovery. Front. Med. 2022, 9, 809033. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.C.; Bennett, M. Aging and Atherosclerosis. Circ. Res. 2012, 111, 245–259. [Google Scholar] [CrossRef] [PubMed]
- Bampi, A.B.A.; Rochitte, C.E.; Favarato, D.; Lemos, P.A.; da Luz, P.L. Comparison of Non-Invasive Methods for the Detection of Coronary Atherosclerosis. Clinics 2009, 64, 675. [Google Scholar] [CrossRef]
- Gordon, T.; Castelli, W.P.; Hjortland, M.C.; Kannel, W.B.; Dawber, T.R. High Density Lipoprotein as a Protective Factor against Coronary Heart Disease. The Framingham Study. Am. J. Med. 1977, 62, 707–714. [Google Scholar] [CrossRef] [PubMed]
- Saeed, S.; Mancia, G. Arterial Stiffness and COVID-19: A Bidirectional Cause-effect Relationship. J. Clin. Hypertens. 2021, 23, 1099–1103. Available online: https://onlinelibrary.wiley.com/doi/10.1111/jch.14259 (accessed on 6 November 2024). [CrossRef]
- Cai, M.; Xie, Y.; Topol, E.J.; Al-Aly, Z. Three-Year Outcomes of Post-Acute Sequelae of COVID-19. Nat. Med. 2024, 30, 1564. [Google Scholar] [CrossRef]
- Mahmoud, E.O.; Elsabagh, Y.A.; Abd El Ghaffar, N.; Fawzy, M.W.; Hussein, M.A. Atherosclerosis Associated With COVID-19: Acute, Tends to Severely Involve Peripheral Arteries, and May Be Reversible. Angiology 2025, 76, 77–84. [Google Scholar] [CrossRef] [PubMed]
- Jalili, M.; Sayehmiri, K.; Ansari, N.; Pourhossein, B.; Fazeli, M.; Azizi Jalilian, F. Association between Influenza and COVID-19 Viruses and the Risk of Atherosclerosis: Meta-Analysis Study and Systematic Review. Adv. Respir. Med. 2022, 90, 338–348. [Google Scholar] [CrossRef] [PubMed]
- Das, D.; Podder, S. Unraveling the Molecular Crosstalk between Atherosclerosis and COVID-19 Comorbidity. Comput. Biol. Med. 2021, 134, 104459. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, L. Bioinformatics Approach to Identify the Influences of SARS-COV2 Infections on Atherosclerosis. Front. Cardiovasc. Med. 2022, 9, 907665. [Google Scholar] [CrossRef] [PubMed]
- Ratchford, S.M.; Stickford, J.L.; Province, V.M.; Stute, N.; Augenreich, M.A.; Koontz, L.K.; Bobo, L.K.; Stickford, A.S. Vascular Alterations among Young Adults with SARS-CoV-2. Am. J. Physiol.—Heart Circ. Physiol. 2020, 320, H404–H410. [Google Scholar] [CrossRef] [PubMed]
- Evans, P.C.; Rainger, G.E.; Mason, J.C.; Guzik, T.J.; Osto, E.; Stamataki, Z.; Neil, D.; Hoefer, I.E.; Fragiadaki, M.; Waltenberger, J.; et al. Endothelial Dysfunction in COVID-19: A Position Paper of the ESC Working Group for Atherosclerosis and Vascular Biology, and the ESC Council of Basic Cardiovascular Science. Cardiovasc. Res. 2020, 116, 2177–2184. [Google Scholar] [CrossRef]
- Thijssen, D.H.J.; Bruno, R.M.; van Mil, A.C.C.M.; Holder, S.M.; Faita, F.; Greyling, A.; Zock, P.L.; Taddei, S.; Deanfield, J.E.; Luscher, T.; et al. Expert Consensus and Evidence-Based Recommendations for the Assessment of Flow-Mediated Dilation in Humans. Eur. Heart J. 2019, 40, 2534–2547. [Google Scholar] [CrossRef]
- Xu, Y.; Arora, R.C.; Hiebert, B.M.; Lerner, B.; Szwajcer, A.; McDonald, K.; Rigatto, C.; Komenda, P.; Sood, M.M.; Tangri, N. Non-Invasive Endothelial Function Testing and the Risk of Adverse Outcomes: A Systematic Review and Meta-Analysis. Eur. Heart J. Cardiovasc. Imaging 2014, 15, 736–746. [Google Scholar] [CrossRef] [PubMed]
- Loboda, D.; Sarecka-Hujar, B.; Nowacka-Chmielewska, M.; Szoltysek-Boldys, I.; Zielinska-Danch, W.; Gibinski, M.; Wilczek, J.; Gardas, R.; Grabowski, M.; Lejawa, M.; et al. Relationship of Non-Invasive Arterial Stiffness Parameters with 10-Year Atherosclerotic Cardiovascular Disease Risk Score in Post-COVID-19 Patients-The Results of a Cross-Sectional Study. Life 2024, 14, 1105. [Google Scholar] [CrossRef]
- Podrug, M.; Koren, P.; Maras, E.D.; Podrug, J.; Čulić, V.; Perissiou, M.; Bruno, R.M.; Mudnić, I.; Boban, M.; Jerončić, A. Long-Term Adverse Effects of Mild COVID-19 Disease on Arterial Stiffness, and Systemic and Central Hemodynamics: A Pre-Post Study. J. Clin. Med. 2023, 12, 2123. [Google Scholar] [CrossRef]
- Jud, P.; Gressenberger, P.; Muster, V.; Avian, A.; Meinitzer, A.; Strohmaier, H.; Sourij, H.; Raggam, R.B.; Stradner, M.H.; Demel, U.; et al. Evaluation of Endothelial Dysfunction and Inflammatory Vasculopathy After SARS-CoV-2 Infection—A Cross-Sectional Study. Front. Cardiovasc. Med. 2021, 8, 750887. [Google Scholar] [CrossRef] [PubMed]
- Szeghy, R.E.; Province, V.M.; Stute, N.L.; Augenreich, M.A.; Koontz, L.K.; Stickford, J.L.; Stickford, A.S.L.; Ratchford, S.M. Carotid Stiffness, Intima-Media Thickness and Aortic Augmentation Index among Adults with SARS-CoV-2. Exp. Physiol. 2022, 107, 694–707. [Google Scholar] [CrossRef]
- Szeghy, R.E.; Stute, N.L.; Province, V.M.; Augenreich, M.A.; Stickford, J.L.; Stickford, A.S.L.; Ratchford, S.M. Six-Month Longitudinal Tracking of Arterial Stiffness and Blood Pressure in Young Adults Following SARS-CoV-2 Infection. J. Appl. Physiol. 2022, 132, 1297–1309. [Google Scholar] [CrossRef]
- Bezerra, C.S.; Leite, A.A.; da Costa, T.R.; Lins, E.M.; Godoi, E.T.A.M.; Cordeiro, L.H.d.O.; Raposo, M.C.F.; Brandão, S.C.S. Ultrasound Findings in Severe COVID-19: A Deeper Look through the Carotid Arteries. Radiol. Bras. 2022, 55, 329–336. [Google Scholar] [CrossRef]
- Chen, J.; Smith, K.; Xu, Q.; Ali, T.; Cavallazzi, R.; Ghafghazi, S.; Clifford, S.P.; Arnold, F.W.; Kong, M.; Huang, J. Long-Term Effects of COVID-19 on Vascular Parameters—A Prospective Longitudinal Ultrasound Clinical Study. J. Vasc. Ultrasound 2024, 48, 95–102. [Google Scholar] [CrossRef]
- Rehberger Likozar, A.; Zavrtanik, M.; Šebeštjen, M. Lipoprotein(a) in Atherosclerosis: From Pathophysiology to Clinical Relevance and Treatment Options. Ann. Med. 2020, 52, 162–177. [Google Scholar] [CrossRef]
- Dahl, T.B.; Aftab, F.; Prebensen, C.; Berdal, J.-E.; Ueland, T.; Barratt-Due, A.; Riise, A.M.D.; Ueland, P.M.; Hov, J.R.; Trøseid, M.; et al. Imidazole Propionate Is Increased in Severe COVID-19 and Correlates with Cardiac Involvement. J. Infect. 2025, 90, 106494. [Google Scholar] [CrossRef] [PubMed]
- Grzegorz Juszczyk, A.Z. Ogólnopolskie Badanie Seroepidemiologiczne COVID-19: OBSER-CO Raport Końcowy z Badania; Narodowy Instytut Zdrowia Publicznego–Państwowy Zakład Higieny (PZH–PIB): Warszawa, Poland, 2022. Available online: https://www.pzh.gov.pl/wp-content/uploads/2023/02/OBSERCO-Raport-koncowy-z-badania.pdf (accessed on 12 March 2023).
- Madycki, G.; Gabriel, M.; Hawro, P.; Pawlaczyk, K.; Kuczmik, W.; Urbanek, T. Duplex Doppler Ultrasound Examination of Carotid and Vertebral Arteries: Guidelines of the Polish Society for Vascular Surgery. Pol. Heart J. (Kardiol. Pol.) 2014, 72, 288–309. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Macias, K.A.; Lind, L.; Naessen, T. Thicker Carotid Intima Layer and Thinner Media Layer in Subjects with Cardiovascular Diseases: An Investigation Using Noninvasive High-Frequency Ultrasound. Atherosclerosis 2006, 189, 393–400. [Google Scholar] [CrossRef] [PubMed]
- Bruno, R.M.; Spronck, B.; Hametner, B.; Hughes, A.; Lacolley, P.; Mayer, C.C.; Muiesan, M.L.; Rajkumar, C.; Terentes-Printzios, D.; Weber, T.; et al. Covid-19 Effects on ARTErial StIffness and Vascular AgeiNg: CARTESIAN Study Rationale and Protocol. Artery Res. 2020, 27, 59–68. [Google Scholar] [CrossRef] [PubMed]
Characteristic | COVID-19 Group n1 = 47 a | Control Group n2 = 45 a | p c |
---|---|---|---|
BMI, kg/m2 | 29.30 (25.93, 31.24) b | 28.69 (26.45, 30.63) b | 0.761 |
Smoking status | 5 (10.64%) | 8 (17.78%) | 0.326 |
SBP, mmHg | 130.00 (119.50,145.50) b | 129.00 (117.00, 140.00) b | 0.628 e |
DBP, mmHg | 82.00 (73.50, 85.00) b | 80.00 (74.00, 85.00) b | 0.821 e |
HR, bpm | 73.00 (69.00, 80.00) b | 70.00 (60.00, 76.00) b | 0.047 e |
Comorbidities | |||
DM2 | 11 (23.40%) | 9 (20%) | 0.692 |
HT | 30 (63.83%) | 33 (73.33%) | 0.327 |
Heart failure | 21 (44.68%) | 13 (28.89%) | 0.117 |
Vascular incident in the past (heart attack, stroke) | 11 (23.40%) | 4 (8.89%) | 0.060 d |
Laboratory parameters | |||
CRP | 8.45 (1.53, 37.13) b | 1.08 (0.00, 9.00) b | 0.003 e |
Creatinine | 0.86 (0.69, 0.98) b | 0.90 (0.77, 1.05) b | 0.271 e |
Total Cholesterol [mg/dL] | 157.00 (129.00, 189.00) b | 165.50 (135.00, 197.25) b | 0.311 e |
LDL | 85.00 (55.00, 108.00) b | 86.00 (65.00, 116.25) b | 0.275 e |
HDL | 46.00 (36.00, 55.00) b | 50.00 (42.00, 61.00) b | 0.100 e |
TG | 105.00 (80.00, 155.00) b | 95.00 (81.75, 129.50) b | 0.282 e |
TG/HDL | 2.59 (1.67, 3.48) b | 1.82 (1.27, 2.84) b | 0.045 e |
CHOL/HDL | 3.34 (2.73, 4.32) b | 2.94 (2.52, 3.80) b | 0.208 e |
LDL/HDL | 1.67 (1.35, 2.44) b | 1.57 (1.22, 2.04) b | 0.568 e |
Medication Intake | COVID-19 Group n1 = 47 a | Control Group n2 = 45 a | p b |
---|---|---|---|
Statin | 25 (53.19%) | 22 (48.89%) | 0.680 |
ACEI | 20 (42.55%) | 21 (46.67%) | 0.692 |
ARB | 7 (14.89%) | 9 (20%) | 0.518 |
Beta-blocker | 28 (59.57%) | 20 (44.44%) | 0.146 |
Digoxin | 0 (0%) | 2 (4.55%) | 0.231 c |
Calcium Channel Blocker | 13 (27.66%) | 20 (44.44%) | 0.093 |
Alpha-blocker | 3 (6.38%) | 6 (13.33%) | 0.311 c |
Diuretic | 20 (42.55%) | 20 (44.44%) | 0.855 |
Aldosterone Antagonist | 5 (10.64%) | 10 (22.22%) | 0.133 |
Sedatives/Hypnotics | 11 (23.40%) | 13 (28.89%) | 0.549 |
Anticoagulants | 14 (29.79%) | 10 (22.22%) | 0.409 |
Hypoglycemic Agents | 11 (23.40%) | 9 (20%) | 0.692 |
Acetylsalicylic Acid | 9 (19.15%) | 7 (15.56%) | 0.649 |
Parameters | Overall Sample (n = 92) | COVID-19 Group | Control Group | ||||||
---|---|---|---|---|---|---|---|---|---|
Rho | 95% CI | p | Rho | 95% CI | p | Rho | 95% CI | p | |
Age | 0.53 | 0.36–0.67 | <0.001 | 0.49 | 0.22–0.68 | <0.001 | 0.58 | 0.33–0.75 | <0.001 |
BMI | −0.11 | −0.31–0.11 | 0.314 | −0.14 | −0.42–0.16 | 0.351 | −0.06 | −0.36–0.25 | 0.716 |
Time between first and second measurement | −0.12 | −0.39–0.17 | 0.395 | 0.07 | −0.34–0.45 | 0.739 | −0.43 | −0.71–−0.03 | 0.031 |
IMT at second measurement | 0.73 | 0.56–0.84 | <0.001 | 0.51 | 0.16–0.76 | 0.006 | 0.87 | 0.72–0.94 | <0.001 |
Change in IMT between measurements | 0.06 | −0.23–0.34 | 0.675 | −0.09 | −0.47–0.32 | 0.678 | 0.13 | −0.29–0.51 | 0.531 |
SBP | 0.12 | −0.09–0.32 | 0.259 | 0.27 | −0.03–0.52 | 0.070 | −0.05 | −0.34–0.26 | 0.760 |
DBP | −0.09 | −0.29–0.13 | 0.409 | 0.01 | −0.28–0.31 | 0.937 | −0.17 | −0.45–0.14 | 0.268 |
HR | −0.14 | −0.34–0.07 | 0.186 | −0.18 | −0.45–0.13 | 0.238 | −0.15 | −0.43–0.16 | 0.337 |
CRP | −0.08 | −0.29–0.13 | 0.453 | 0.01 | −0.29–0.31 | 0.933 | −0.20 | −0.47–0.11 | 0.197 |
Creatinine | 0.12 | −0.09–0.33 | 0.245 | 0.12 | −0.18–0.40 | 0.414 | 0.15 | −0.16–0.43 | 0.336 |
Total cholesterol | −0.09 | −0.30–0.13 | 0.421 | −0.30 | −0.55–0.00 | 0.044 | 0.09 | −0.22–0.39 | 0.544 |
LDL | −0.08 | −0.29–0.13 | 0.441 | −0.31 | −0.56–−0.01 | 0.039 | 0.11 | −0.21–0.40 | 0.494 |
HDL | −0.20 | −0.39–0.02 | 0.066 | −0.33 | −0.57–−0.03 | 0.029 | −0.14 | −0.43–0.17 | 0.363 |
TG | 0.20 | −0.01–0.40 | 0.059 | 0.29 | −0.02–0.54 | 0.055 | 0.11 | −0.20–0.40 | 0.470 |
TG/HDL | 0.22 | 0.01–0.41 | 0.038 | 0.34 | 0.04–0.58 | 0.022 | 0.12 | −0.20–0.41 | 0.453 |
Chol/HDL | 0.14 | −0.07–0.35 | 0.177 | 0.06 | −0.24–0.36 | 0.687 | 0.21 | −0.10–0.48 | 0.178 |
LDL/HDL | 0.08 | −0.13–0.29 | 0.444 | −0.03 | −0.33–0.27 | 0.827 | 0.16 | -0.15–0.45 | 0.291 |
Parameters | Overall Sample (n = 92) | COVID-19 Group | Control Group | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Npair | Rho | 95%CI | p | Npair | Rho | 95%CI | p | Npair | Rho | 95%CI | p | |
Age | 51 | 0.14 | −0.15–0.14 | 0.316 | 26 | 0.07 | −0.34–0.45 | 0.750 | 25 | 0.19 | −0.24–0.55 | 0.373 |
BMI | 51 | 0.05 | −0.24–0.33 | 0.736 | 26 | −0.14 | −0.51–0.27 | 0.485 | 25 | 0.10 | −0.32–0.49 | 0.627 |
t2–t1 | 51 | −0.15 | −0.41–0.14 | 0.308 | 26 | −0.07 | −0.46–0.33 | 0.721 | 25 | −0.21 | −0.57–0.21 | 0.317 |
SBP | 51 | 0.01 | −0.28–0.29 | 0.966 | 26 | −0.28 | −0.61–0.13 | 0.160 | 25 | 0.34 | −0.08–0.66 | 0.096 |
DBP | 51 | 0.06 | −0.22–0.34 | 0.656 | 26 | −0.11 | −0.49–0.30 | 0.591 | 25 | 0.21 | −0.22–0.57 | 0.318 |
HR | 51 | 0.35 | 0.07–0.57 | 0.013 | 26 | 0.39 | −0.01–0.68 | 0.049 | 25 | 0.14 | −0.28–0.52 | 0.493 |
CRP | 50 | 0.26 | −0.03–0.51 | 0.066 | 25 | 0.09 | −0.32–0.48 | 0.654 | 25 | 0.12 | −0.30–0.50 | 0.552 |
Creatinine | 50 | −0.10 | −0.37–0.19 | 0.499 | 26 | 0.02 | −0.38–0.41 | 0.925 | 24 | 0.08 | −0.48–0.43 | 0.699 |
Total cholesterol | 50 | 0.05 | −0.24–0.33 | 0.733 | 25 | −0.02 | −0.43–0.39 | 0.910 | 24 | 0.21 | −0.21–0.57 | 0.309 |
LDL | 50 | 0.08 | −0.21–0.36 | 0.590 | 25 | 0.07 | −0.34–0.47 | 0.723 | 24 | 0.20 | −0.22–0.56 | 0.326 |
HDL | 50 | −0.32 | −0.56–−0.04 | 0.022 | 25 | −0.43 | −0.71–−0.03 | 0.032 | 24 | −0.28 | −0.62–0.14 | 0.169 |
TG | 50 | 0.05 | −0.24–0.33 | 0.737 | 25 | −0.01 | −0.41–0.40 | 0.980 | 24 | 0.11 | −0.31–0.49 | 0.596 |
TG/HDL | 50 | 0.21 | −0.08–0.47 | 0.135 | 25 | 0.23 | −0.19–0.58 | 0.259 | 24 | 0.20 | −0.22–0.56 | 0.329 |
Chol/HDL | 50 | 0.28 | −0.01–0.52 | 0.052 | 25 | 0.28 | −0.14–0.61 | 0.179 | 24 | 0.29 | −0.13–0.62 | 0.160 |
LDL/HDL | 50 | 0.24 | −0.05–0.49 | 0.097 | 25 | 0.24 | −0.18–0.59 | 0.247 | 24 | 0.30 | −0.12–0.63 | 0.140 |
Parameter | IMT at First Measurement (mm) | ||||||||
---|---|---|---|---|---|---|---|---|---|
Overall Sample (n = 51) | COVID-19 Group (n = 26) | Control Group (n = 25) | |||||||
Group 1 a | Group 2 a | p b | Group 1 a | Group 2 a | p b | Group 1 a | Group 2 a | p b | |
Sex (female vs. male) | 0.07 (0.02, 0.19) | 0.13 (0.05, 0.37) | 0.289 | 0.11 (0.06, 0.49) | 0.15 (0.08, 0.34) | 0.677 | 0.03 (0.01, 0.09) | 0.06 (0.04, 0.37) | 0.294 |
COVID (yes vs. no) | 0.13 (0.06, 0.50) | 0.05 (0.01, 0.20) | 0.018 | - | - | - | - | - | - |
COVID-19 stage (acute vs. non-acute) | - | - | - | 0.19 (0.06, 0.69) | 0.10 (0.06, 0.13) | 0.106 | - | - | - |
COVID-19 severity (mild vs. moderate/severe) | - | - | - | 0.08 (0.05, 0.12) | 0.19 (0.09, 0.63) | 0.087 | - | - | - |
Smoking status (yes vs. no 1) | 0.14 (0.05, 0.29) | 0.08 (0.04, 0.22) | 0.726 | 0.46 (0.33, 0.59) | 0.11 (0.05, 0.31) | 0.194 | 0.06 (0.03, 0.14) | 0.04 (0.01, 0.20) | 0.970 |
DM | 0.10 (0.05, 0.55) | 0.08 (0.03, 0.21) | 0.505 | 0.14 (0.05, 0.63) | 0.13 (0.07, 0.21) | 0.978 | 0.07 (0.04, 0.21) | 0.04 (0.01, 0.20) | 0.481 |
HT | 0.07 (0.04, 0.29) | 0.12 (0.05, 0.21) | 0.702 | 0.10 (0.06, 0.61) | 0.19 (0.12, 0.22) | 0.590 | 0.05 (0.01, 0.24) | 0.05 (0.03, 0.09) | 1.000 |
Heart failure | 0.09 (0.04, 0.40) | 0.08 (0.04, 0.20) | 0.643 | 0.10 (0.07, 0.50) | 0.14 (0.05, 0.31) | 0.937 | 0.05 (0.02, 0.35) | 0.05 (0.01, 0.10) | 0.579 |
Vascular incident in the past | 0.39 (0.05, 0.78) | 0.08 (0.03, 0.21) | 0.255 | 0.39 (0.05, 0.78) | 0.13 (0.07, 0.21) | 0.644 | - | - | - |
Medications | Changes in IMT Between Second and First Measurement [mm] | ||||||||
---|---|---|---|---|---|---|---|---|---|
Overall Sample (n = 51) | COVID-19 Group (n = 26) | Control Group (n = 25) | |||||||
Group 1 a | Group 2 a | p b | Group 1 a | Group 2 a | pb | Group 1 a | Group 2 a | p b | |
Statin | 0.09 (0.03, 0.38) | 0.07 (0.04, 0.20) | 0.769 | 0.10 (0.06, 0.61) | 0.13 (0.06, 0.22) | 0.758 | 0.03 (0.01, 0.29) | 0.06 (0.02, 0.09) | 0.890 |
ACEI | 0.08 (0.02, 0.30) | 0.09 (0.04, 0.20) | 0.891 | 0.09 (0.05, 0.61) | 0.13 (0.06, 0.22) | 0.706 | 0.04 (0.01, 0.26) | 0.05 (0.02, 0.09) | 1.000 |
ARB | 0.06 (0.05, 0.10) | 0.10 (0.04, 0.28) | 0.434 | 0.06 (0.06, 0.11) | 0.15 (0.08, 0.59) | 0.397 | 0.05 (0.00, 0.07) | 0.05 (0.01, 0.22) | 0.610 |
Beta-blocker | 0.08 (0.05, 0.26) | 0.09 (0.01, 0.23) | 0.260 | 0.10 (0.06, 0.65) | 0.13 (0.08, 0.21) | 0.959 | 0.06 (0.04, 0.10) | 0.04 (0.01, 0.28) | 0.705 |
Calcium channel blocker | 0.07 (0.02, 0.43) | 0.10 (0.04, 0.22) | 0.653 | 0.12 (0.07, 0.57) | 0.13 (0.05, 0.31) | 0.927 | 0.05 (0.01, 0.26) | 0.05 (0.01, 0.18) | 0.722 |
Alpha-blocker | 0.11 (0.06, 0.54) | 0.08 (0.04, 0.22) | 0.476 | 0.41 (0.26, 0.56) | 0.13 (0.05, 0.31) | 0.470 | 0.06 (0.04, 0.30) | 0.04 (0.01, 0.18) | 0.530 |
Diuretic | 0.10 (0.05, 0.51) | 0.06 (0.02, 0.20) | 0.199 | 0.16 (0.09, 0.69) | 0.11 (0.05, 0.19) | 0.247 | 0,05 (0,30, 0,23) | 0,04 (0,01, 0,15) | 0,420 |
Aldosterone antagonist | 0.06 (0.03, 0.42) | 0.09 (0.04, 0.22) | 0.815 | 0.34 (0.20, 0.47) | 0,13 (0,05, 0.3!) | 0.885 | 0.04 (0.02, 0.18) | 0.05 (0.01, 0.20) | 0.911 |
Sedatives/Hypnotics | 0.09 (0.05, 0.40) | 0.08 (0.04, 0.21) | 0.408 | 0.14 (0.08, 0.68) | 0.12 (0.05, 0.21) | 0.331 | 0.04 (0.02, 0.17) | 0.05 (0.01, 0.18) | 0.832 |
Anticoagulants | 0.06 (0.05, 0.26) | 0.09 (0.03, 0.25) | 0.850 | 0.11 (0.05, 0.39) | 0.13 (0.07, 0.41) | 0.729 | 0.06 (0.02, 0.07) | 0.04 (0.01, 0.22) | 0.759 |
Hypoglycemic agents | 0.08 (0.05, 0.15) | 0.08 (0.04, 0.28) | 0.776 | 0.08 (0.05, 0.15) | 0.14 (0.08, 0.60) | 0.377 | 0.07 (0.04, 0.18) | 0.04 (0.01, 0.20) | 0.578 |
Acetylsalicylic Acid | 0.20 (0.05, 0.43) | 0.07 (0.04, 0.19) | 0.408 | 0.40 (0.04, 0.78) | 0.13 (0.06, 0.21) | 0.696 | 0.20 (0.05, 0.33) | 0.04 (0.01, 0.09) | 0.324 |
Predictor | Overall Sample (nobs = 51) | COVID-19 Group (nobs = 26) | Control Group (nobs = 25) | ||||||
---|---|---|---|---|---|---|---|---|---|
β | 95% CI | p | β | 95% CI | p | β | 95% CI | p | |
BMI, kg/m2 | −1.40 × 10−3 | −0.01–0.01 | 0.806 | −0.01 | −0.03–0.01 | 0.317 | 2.67 × 10−3 | −0.02–0.02 | 0.770 |
COVID-19 [yes, with non-occurrence as ref.] | 0.06 | −0.03–0.15 | 0.216 | - | - | - | - | - | - |
COVID-19 stage during first measurement [acute with non-acute as ref.] | - | - | - | −0.27 | −0.54–1.30 × 10−3 | 0.049 | - | - | - |
COVID-19 severity [mod./severe, with mild as ref.] | - | - | - | 0.24 | −0.04–0.51 | 0.092 | - | - | - |
IMT at first measurement, mm | 0.05 | −0.22–0.31 | 0.733 | −0.14 | −1.25–0.97 | 0.800 | 0.09 | −0.18–0.36 | 0.501 |
Days between first and second measurement | −2.94 × 10−4 | −1.1 × 10−3–0.50 × 10−3 | 0.438 | −5.16 × 10−4 | −2.0 × 10−3–0.90 × 10−3 | 0.464 | −1.54 × 10−5 | −1.8 × 10−3–1.70 × 10−3 | 0.986 |
SBP, mmHg | −4.74 × 10−4 | −4.00 × 10−3–3.00 × 10−3 | 0.786 | −0.01 | −0.01–0.00 | 0.234 | 2.09 × 10−3 | −1.9 × 10−3–0.61 × 10−3 | 0.293 |
DBP, mmHg | 1.40 × 10−3 | −3.90 × 10−3–6.70 × 10−3 | 0.599 | −2.80 × 10−3 | −0.02–0.01 | 0.724 | 4.11 × 10−3 | −1.7 × 10−3–9.90 × 10−3 | 0.157 |
HR | 5.90 × 10−3 | 2.50 × 10−3–9.30 × 10−3 | 0.001 | 0.01 | 0.07 × 10−3–0.01 | 0.033 | 3.51 × 10−3 | −2.1 × 10−3–9.10 × 10−3 | 0.205 |
Smoking status [yes, with no occurrence intake as ref.] | 0.08 | −0.08–0.24 | 0.335 | 0.29 | −0.12–0.69 | 0.152 | 0.06 | −0.12–0.25 | 0.486 |
DM2 [yes, with no occurrence intake as ref.] | 0.04 | −0.08–0.17 | 0.486 | 0.07 | −0.26–0.40 | 0.681 | 0.04 | −0.17–0.24 | 0.712 |
HT [yes, with no occurrence intake as ref.] | −0.03 | −0.16–0.09 | 0.593 | −0.02 | −0.26–0.22 | 0.842 | −0.02 | −0.20–0.16 | 0.806 |
Heart failure [yes, with no occurrence intake as ref.] | 1.89 × 10−3 | −0.12–0.12 | 0.975 | −0.01 | −0.22–0.20 | 0.904 | −0.03 | −0.22–0.15 | 0.708 |
Vascular incident in the past [yes, with no as ref.] | 0.28 | 0.07–0.49 | 0.011 | 0.24 | −0.10–0.58 | - | - | - | |
CRP | 4.26 × 10−4 | −0.60 × 10−3–1.50 × 10−3 | 0.427 | 1.51 × 10−3 | −0.8 × 10−3–3.80 × 10−3 | 0.191 | 7.41 × 10−6 | −2.1 × 10−3–2.10 × 10−3 | 0.994 |
Creatinine | −0.13 | −0.32–0.07 | 0.193 | 0.23 | −0.46–0.92 | 0.494 | −0.17 | −0.42–0.09 | 0.184 |
Total cholesterol | 6.81 × 10−5 | −1.1 × 10−3–1.20 × 10−3 | 0.907 | 1.51 × 10−3 | −2.5 × 10−3–1.50 × 10−3 | 0.625 | 5.58 × 10−4 | −1.5 × 10−3–2.60 × 10−3 | 0.570 |
LDL | 3.05 × 10−4 | −0.90 × 10−3–1.60 × 10−3 | 0.625 | −1.84 × 10−4 | −2.1 × 10−3–1.70 × 10−3 | 0.836 | 1.02 × 10−3 | −1.00 × 10−3–3.10 × 10−3 | 0.306 |
HDL | −2.01 × 10−3 | −5.10 × 10−3–1.10 × 10−3 | 0.198 | −3.81 × 10−4 | −9.4 × 10−3–1.80 × 10−3 | 0.174 | −5.35 × 10−4 | −6.00 × 10−3–4.90 × 10−3 | 0.839 |
TG | −1.58 × 10−5 | −0.90 × 10−3–0.90 × 10−3 | 0.971 | −1.83 × 10−4 | −1.0 × 10−3–1.40 × 10−3 | 0.761 | −2.70 × 10−4 | −1.70 × 10−3–1.20 × 10−3 | 0.700 |
TG-to-HDL ratio | 2.09 × 10−3 | −0.02–0.03 | 0.866 | 4.91 × 10−3 | −0.03–0.04 | 0.750 | −4.89 × 10−3 | −0.05–0.04 | 0.823 |
Chol.-to-HDL ratio | 0.01 | −0.02–0.05 | 0.488 | 0.01 | −0.04–0.06 | 0.727 | 0.01 | −0.05–0.07 | 0.685 |
LDL-to-HDL ratio | 0.01 | −0.03–0.05 | 0.547 | 4.59 × 10−3 | −0.04–0.05 | 0.843 | 0.02 | −0.05–0.09 | 0.559 |
Medications Predictor [Yes, with No Intake as Ref.] | Overall Sample (nobs = 51) | COVID-19 Group (nobs = 26) | Control Group (nobs = 25) | ||||||
---|---|---|---|---|---|---|---|---|---|
β | 95% CI | p | β | 95% CI | p | β | 95% CI | p | |
ACEI | −0.02 | −0.13–0.10 | 0.737 | - | - | - | 4.65 × 10−3 | −0.17–0.18 | 0.956 |
Beta-blockers | 2.20 × 10−3 | −0.11–0.11 | 0.969 | 0.12 | −0.19–0.44 | 0.431 | −0.06 | −0.21–0.08 | 0.361 |
Calcium channel blockers | −0.01 | −0.12–0.10 | 0.819 | 3.81 × 10−3 | −0.24–0.25 | 0.974 | 1.55 × 10−3 | −0.15–0.15 | 0.983 |
Alpha blockers | −0.06 | −0.12–0.24 | 0.523 | 0.24 | −0.17–0.65 | 0.240 | −0.06 | −0.30–0.18 | 0.601 |
Diuretics | 0.05 | −0.06–0.17 | 0.324 | 0.21 | −0.09–0.50 | 0.156 | 2.82×10−3 | −0.15–0.16 | 0.970 |
Aldosterone antagonists | −0.03 | −0.16–0.11 | 0.674 | 0.18 | −0.28–0.63 | 0.427 | −0.17 | −0.37–0.02 | 0.074 |
Sedative/Hypnotics | 0.04 | −0.08–0.15 | 0.497 | 0.11 | −0.17–0.39 | 0.424 | 0.05 | −0.12–0.22 | 0.537 |
Anticoagulants | −0.09 | −0.26–0.09 | 0.310 | −3.31 × 10−3 | −0.23–0.22 | 0.976 | −0.09 | −0.26–0.09 | 0.310 |
Hypoglycemic Agents | −0.03 | −0.17–0.10 | 0.630 | −0.14 | −0.47–0.18 | 0.371 | 0.04 | −0.17–0.24 | 0.710 |
Acetylsalicylic Acid | 0.07 | −0.06–0.20 | 0.276 | 0.27 | −0.02–0.55 | 0.065 | 0.10 | −0.06–0.26 | 0.205 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bielecka, E.; Sielatycki, P.; Pietraszko, P.; Frankowska, S.A.; Zbroch, E. From Systemic Inflammation to Vascular Remodeling: Investigating Carotid IMT in COVID-19 Survivors. Viruses 2025, 17, 1196. https://doi.org/10.3390/v17091196
Bielecka E, Sielatycki P, Pietraszko P, Frankowska SA, Zbroch E. From Systemic Inflammation to Vascular Remodeling: Investigating Carotid IMT in COVID-19 Survivors. Viruses. 2025; 17(9):1196. https://doi.org/10.3390/v17091196
Chicago/Turabian StyleBielecka, Emilia, Piotr Sielatycki, Paulina Pietraszko, Sara Anna Frankowska, and Edyta Zbroch. 2025. "From Systemic Inflammation to Vascular Remodeling: Investigating Carotid IMT in COVID-19 Survivors" Viruses 17, no. 9: 1196. https://doi.org/10.3390/v17091196
APA StyleBielecka, E., Sielatycki, P., Pietraszko, P., Frankowska, S. A., & Zbroch, E. (2025). From Systemic Inflammation to Vascular Remodeling: Investigating Carotid IMT in COVID-19 Survivors. Viruses, 17(9), 1196. https://doi.org/10.3390/v17091196