Viral Threats to Australian Fish and Prawns: Economic Impacts and Biosecurity Solutions—A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Information Sources and Search Strategy
2.2. Inclusion and Exclusion Criteria
2.2.1. Inclusion Criteria
- Investigated viral pathogens affecting fish and prawns in Australia.
- Focused on biosecurity practices and/or the economic impacts of viral diseases in Australian aquaculture.
- Included research conducted through in vivo, in vitro, or epidemiological studies, whether or not the mechanism of action was elucidated.
2.2.2. Exclusion Criteria
- Were duplicated or did not meet inclusion criteria upon title/abstract screening.
- Focused on non-viral pathogens or unrelated aquaculture animals.
- Addressed topics outside the scope of biosecurity and economic impacts in terms of Australian fish and prawn farming.
2.3. Risk of Bias in Individual Studies
2.4. Study Selection Process
2.5. Data Extraction and Characteristics of Sources
3. Results and Discussion
3.1. Pathogenic Viruses in Fish
3.1.1. Epizootic Haematopoietic Necrosis Virus (EHNV)
3.1.2. Cyprinid Herpesvirus (CyHV)
3.1.3. Tasmanian Atlantic Salmon Reovirus (TSRV)
3.1.4. Pilchard Orthomyxovirus (POMV)
3.1.5. Nervous Necrosis Virus (NNV)
3.1.6. Infectious Spleen and Kidney Necrosis Virus (ISKNV)
3.1.7. Bohle Iridovirus (BIV)
3.1.8. Wamena Virus (WV)
3.2. Pathogenic Viruses in Prawn
3.2.1. Infectious Hypodermal and Haematopoietic Necrosis Virus (IHHNV)
3.2.2. Gill-Associated Virus (GAV)
3.2.3. Macrobrachium Rosenbergii Nodavirus (MrNV)
3.2.4. White Spot Syndrome Virus (WSSV)
3.2.5. Whenzhou (Syn. Wenzhou) Shrimp Virus-2 (When-2)
3.2.6. Monodon Baculovirus (MBV)
3.2.7. Mourilyan Virus (MoV)
3.2.8. Hepatopancreatic Parvovirus (HPV)
3.2.9. Yellow Head Virus Genotype 7 (YHV7)
3.3. Comparative Insights on Viruses in Fish and Prawn
3.4. Impacts of Viral Diseases
3.4.1. Direct Economic Losses
3.4.2. Indirect Economic Costs
3.4.3. Impacts on Trade and Market Access
3.4.4. Socioeconomic Implications
3.5. Biosecurity Policies and Solutions for Managing Viral Diseases
3.5.1. Mitigation Strategies
3.5.2. Quarantine and Import Controls
3.5.3. Surveillance and Early Detection
3.5.4. Farm-Level Biosecurity Measures
3.5.5. Emergency Response and Contingency Planning
3.5.6. Research and Innovation
3.5.7. Building Resilience Through Education and Training
3.6. Knowledge Gaps and Recommendations
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Trebilco, R.; Fischer, M.; Hunter, C.; Hobday, A.; Thomas, L.; Evans, K. Australia state of the environment 2021: Marine, independent report to the Australian Government Minister for the Environment. Commonw. Aust. Canberra 2021, 10. [Google Scholar] [CrossRef]
- Fisheries, F. Aquaculture Division; Food and Agriculture Organization of the United Nations: Rome, Italy, 2022. [Google Scholar]
- Ritchie, H. The World Now Produces More Seafood from Fish Farms Than Wild Catch. Our-WorldinData.org. 2019. Available online: https://ourworldindata.org/rise-of-aquaculture (accessed on 9 September 2024).
- Gui, J.-F. Chinese wisdom and modern innovation of aquaculture. Water Biol. Secur. 2024, 3, 100271. [Google Scholar] [CrossRef]
- Garlock, T.; Asche, F.; Anderson, J.; Bjørndal, T.; Kumar, G.; Lorenzen, K.; Ropicki, A.; Smith, M.D.; Tveterås, R. A global blue revolution: Aquaculture growth across regions, species, and countries. Rev. Fish. Sci. Aquac. 2020, 28, 107–116. [Google Scholar] [CrossRef]
- CSIRO. Protecting Marine Biodiversity. Available online: https://www.csiro.au/en/about/facilities-collections/Collections/ANFC/Marine-biodiversity (accessed on 9 September 2024).
- Henriksson, P.J.G.; Troell, M.; Banks, L.K.; Belton, B.; Beveridge, M.C.M.; Klinger, D.H.; Pelletier, N.; Phillips, M.J.; Tran, N. Interventions for improving the productivity and environmental performance of global aquaculture for future food security. One Earth 2021, 4, 1220–1232. [Google Scholar] [CrossRef]
- Patterson, A.D.; Gonzalez, F.J.; Idle, J.R. Xenobiotic metabolism: A view through the metabolometer. Chem. Res. Toxicol. 2010, 23, 851–860. [Google Scholar] [CrossRef]
- Crane, M.; Hyatt, A. Viruses of fish: An overview of significant pathogens. Viruses 2011, 3, 2025–2046. [Google Scholar] [CrossRef]
- Saravanan, K.; Praveenraj, J.; Kiruba-Sankar, R.; Devi, V.; Biswas, U.; Kumar, T.S.; Sudhagar, A.; El-Matbouli, M.; Kumar, G. Co-Infection of infectious hypodermal and hematopoietic necrosis virus (IHHNV) and white spot syndrome virus (WSSV) in the wild crustaceans of Andaman and Nicobar Archipelago, India. Viruses 2021, 13, 1378. [Google Scholar] [CrossRef]
- Vallejos-Vidal, E.; Reyes-López, F.E.; Sandino, A.M.; Imarai, M. Sleeping with the enemy? The current knowledge of piscine Orthoreovirus (PRV) immune response elicited to counteract infection. Front. Immunol. 2022, 13, 768621. [Google Scholar] [CrossRef]
- Gui, J.-F.; Tang, Q.; Li, Z.; Liu, J.; De Silva, S.S. Aquaculture in China: Success Stories and Modern Trends; John Wiley & Sons: Hoboken, NJ, USA, 2018. [Google Scholar]
- Zhang, Q.-Y.; Ke, F.; Gui, L.; Zhao, Z. Recent insights into aquatic viruses: Emerging and reemerging pathogens, molecular features, biological effects, and novel investigative approaches. Water Biol. Secur. 2022, 1, 100062. [Google Scholar] [CrossRef]
- Arbon, P.; Martinez, M.A.; Garrett, M.; Jerry, D.; Condon, K. Determining patterns of tissue tropism for IHHNV, GAV and YHV-7 infection in giant black tiger shrimp (Penaeus monodon) using real-time RT-qPCR. Aquaculture 2024, 584, 740680. [Google Scholar] [CrossRef]
- Kralik, P.; Ricchi, M. A basic guide to real time PCR in microbial diagnostics: Definitions, parameters, and everything. Front. Microbiol. 2017, 8, 108. [Google Scholar] [CrossRef] [PubMed]
- Kibenge, F.; Kibenge, M.; Montes de Oca, M.; Godoy, M. Parvoviruses of Aquatic Animals. Pathogens 2024, 13, 625. [Google Scholar] [CrossRef] [PubMed]
- Mugimba, K.K.; Byarugaba, D.K.; Mutoloki, S.; Evensen, Ø.; Munang’andu, H.M. Challenges and solutions to viral diseases of finfish in marine aquaculture. Pathogens 2021, 10, 673. [Google Scholar] [CrossRef] [PubMed]
- Mondal, H.; Chandrasekaran, N.; Mukherjee, A.; Thomas, J. Viral infections in cultured fish and shrimps: Current status and treatment methods. Aquac. Int. 2022, 30, 227–262. [Google Scholar] [CrossRef]
- Subasinghe, R.; Alday-Sanz, V.; Bondad-Reantaso, M.G.; Jie, H.; Shinn, A.P.; Sorgeloos, P. Biosecurity: Reducing the burden of disease. J. World Aquac. Soc. 2023, 54, 397–426. [Google Scholar] [CrossRef]
- Arbon, P.; Condon, K.; Martinez, M.A.; Jerry, D. Molecular detection of six viral pathogens from Australian wild sourced giant black tiger shrimp (Penaeus monodon) broodstock. Aquaculture 2022, 548, 737651. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Viswanathan, M.; Ansari, M.; Berkman, N.; Chang, S.; Hartling, L.; McPheeters, M.; Treadwell, J. Assessing the Risk of Bias of Individual Studies in Systematic Reviews of Health Care Interventions. Agency for Healthcare Research and Quality Methods Guide for Comparative Effectiveness Reviews; AHRQ Methods for Effective Health Care; AHRQ: Rockville, MD, USA, 2012. [Google Scholar]
- Becker, J.A.; Gilligan, D.; Asmus, M.; Tweedie, A.; Whittington, R.J. Geographic distribution of epizootic haematopoietic necrosis virus (EHNV) in freshwater fish in south eastern Australia: Lost opportunity for a notifiable pathogen to expand its geographic range. Viruses 2019, 11, 315. [Google Scholar] [CrossRef]
- Becker, J.A.; Tweedie, A.; Rimmer, A.; Landos, M.; Lintermans, M.; Whittington, R.J. Incursions of Cyprinid herpesvirus 2 in goldfish populations in Australia despite quarantine practices. Aquaculture 2014, 432, 53–59. [Google Scholar] [CrossRef]
- Carlile, G.A. Epidemiological, Molecular and Pathogenesis Studies of Atlantic Salmon Aquareovirus (TSRV); School of Veterinary Science, University of Melbourne: Melbourne, Australia, 2013. [Google Scholar]
- Zainathan, S.C.; Knowles, G. Tasmanian Atlantic salmon reovirus. In Aquaculture Pathophysiology; Elsevier: Amsterdam, The Netherlands, 2022; pp. 277–283. [Google Scholar]
- Costa, V.A.; Holmes, E.C. Diversity, evolution, and emergence of fish viruses. J. Virol. 2024, 98, e00118–e00124. [Google Scholar] [CrossRef]
- Toffan, A.N.N.A. Viral Encephalopathy and Retinopathy (VER). In Fish Viruses and Bacteria: Pathobiology and Protection; CABI: Wallingford, UK, 2017; pp. 128–146. [Google Scholar]
- Rimmer, A.E.; Becker, J.A.; Tweedie, A.; Lintermans, M.; Landos, M.; Stephens, F.; Whittington, R.J. Detection of dwarf gourami iridovirus (Infectious spleen and kidney necrosis virus) in populations of ornamental fish prior to and after importation into Australia, with the first evidence of infection in domestically farmed Platy (Xiphophorus maculatus). Prev. Vet. Med. 2015, 122, 181–194. [Google Scholar] [CrossRef] [PubMed]
- Ariel, E.; Owens, L.; Moody, N. A barramundi bioassay for iridovirus refractory to cell culture. In Diseases in Asian Aquaculture II; Fish Health Section, Asian Fisheries Society: Manila, PH, USA, 1995; pp. 355–367. [Google Scholar]
- Faheem, M.; Azmat, H.; Swar, S.O.; Khaliq, S.; Hoseinifar, S.H. Some important viral diseases of farmed fish. Vet. Pathobiol. Public Health 2021, 472–480. [Google Scholar] [CrossRef]
- Langdon, J. Experimental transmission and pathogenicity of epizootic haematopoietic necrosis virus (EHNV) in redfin perch, Perca fluviatilis L., and 11 other teleosts. J. Fish Dis. 1989, 12, 295–310. [Google Scholar] [CrossRef]
- Sahoo, P.; Goodwin, A. Viruses of freshwater finfish in the Asian–Pacific region. Indian J. Virol. 2012, 23, 99–105. [Google Scholar] [CrossRef]
- Becker, J.A.; Tweedie, A.; Gilligan, D.; Asmus, M.; Whittington, R.J. Experimental infection of Australian freshwater fish with epizootic haematopoietic necrosis virus (EHNV). J. Aquat. Anim. Health 2013, 25, 66–76. [Google Scholar] [CrossRef]
- Whittington, R.; Becker, J.; Dennis, M. Iridovirus infections in finfish–critical review with emphasis on ranaviruses. J. Fish Dis. 2010, 33, 95–122. [Google Scholar] [CrossRef]
- Tandanus, T.; Schmida, G. Redfin Perch and the EHN Virus. Available online: https://www.finterest.au/stories/redfin-perch-and-the-ehn-virus (accessed on 10 September 2024).
- Hyatt, A. Diagnosis and Classification of Epizootic Haematopoietic Necrosis Virus (EHNV). Available online: https://www.frdc.com.au/sites/default/files/products/1989-086-DLD.pdf (accessed on 10 September 2024).
- Schipp, M. Aquatic Animal Diseases Significant to Australia: Identification Field Guide, 5th ed. Available online: https://www.agriculture.gov.au/sites/default/files/documents/field-guide-5th-edition.pdf (accessed on 10 September 2024).
- Nagata, J.; Takita, K.; Kasai, H. Long-term detection of cyprinid herpesvirus 1 genome and tumorous transcriptome in common carp (Cyprinus carpio) infected with the virus. Aquaculture 2024, 592, 741158. [Google Scholar] [CrossRef]
- Aoki, T.; Hirono, I.; Kurokawa, K.; Fukuda, H.; Nahary, R.; Eldar, A.; Davison, A.J.; Waltzek, T.B.; Bercovier, H.; Hedrick, R.P. Genome Sequences of Three Koi Herpesvirus Isolates Representing the Expanding Distribution of an Emerging Disease Threatening Koi and Common Carp Worldwide. J. Virol. 2007, 81, 5058–5065. [Google Scholar] [CrossRef]
- Davison, A.J.; Kurobe, T.; Gatherer, D.; Cunningham, C.; Korf, I.; Fukuda, H.; Hedrick, R.P.; Waltzek, T.B. Comparative Genomics of Carp Herpesviruses. J. Virol. 2013, 87, 2908–2922. [Google Scholar] [CrossRef]
- Kurita, J.; Nakajima, K. Megalocytiviruses. Viruses 2012, 4, 521–538. [Google Scholar] [CrossRef]
- Hedrick, R.P.; Gilad, O.; Yun, S.C.; McDowell, T.S.; Waltzek, T.B.; Kelley, G.O.; Adkison, M.A. Initial isolation and characterization of a herpes-like virus (KHV) from koi and common carp. Bull. Fish. Res. Agency 2005, 2, V7. [Google Scholar]
- El-Matbouli, M.; Saleh, M.; Soliman, H. Detection of cyprinid herpesvirus type 3 in goldfish cohabiting with CyHV-3-infected koi carp (Cyprinus carpio koi). Vet. Rec. 2007, 161, 792. [Google Scholar]
- Hedrick, R.P.; Waltzek, T.B.; McDowell, T.S. Susceptibility of koi carp, common carp, goldfish, and goldfish× common carp hybrids to cyprinid herpesvirus-2 and herpesvirus-3. J. Aquat. Anim. Health 2006, 18, 26–34. [Google Scholar] [CrossRef]
- Sadler, J.; Marecaux, E.; Goodwin, A. Detection of koi herpes virus (CyHV-3) in goldfish, Carassius auratus (L.), exposed to infected koi. J. Fish Dis. 2008, 31, 71. [Google Scholar] [CrossRef] [PubMed]
- Omori, R.; Adams, B. Disrupting seasonality to control disease outbreaks: The case of koi herpes virus. J. Theor. Biol. 2011, 271, 159–165. [Google Scholar] [CrossRef]
- McColl, K.A. Review of the Literature on Cyprinid Herpesvirus 3 (CyHV-3) and Its Disease. 2013. Available online: https://pestsmart.org.au/wp-content/uploads/sites/3/2020/06/McColl_KHVLitReview.pdf (accessed on 20 September 2024).
- Zainathan, S.C.; Carson, J.; Crane, M.S.J.; Williams, L.M.; Hoad, J.; Moody, N.J.; Gudkovs, N.; Crameri, S.; Hyatt, A.D.; Young, J. Preliminary characterization of Tasmanian aquareovirus (TSRV) isolates. Arch. Virol. 2017, 162, 625–634. [Google Scholar] [CrossRef]
- Zainathan, S.C. Detection of Aquareovirus in Farmed Tasmanian Atlantic Salmon (Salmo salar); University of Tasmania: Hobart, Australia, 2012. [Google Scholar]
- Carlile, G.; East, I.; McColl, K.; Ellard, K.; Browning, G.; Crane, M.S.J. The spatial and temporal variation of the distribution and prevalence of Atlantic salmon reovirus (TSRV) infection in Tasmania, Australia. Prev. Vet. Med. 2014, 116, 214–219. [Google Scholar] [CrossRef]
- Zainathan, S.; Carlile, G.; Carson, J.; McColl, K.; Crane, M.S.J.; Williams, L.; Hoad, J.; Moody, N.; Aiken, H.; Browning, G. Development and application of molecular methods (PCR) for detection of Tasmanian Atlantic salmon reovirus. J. Fish Dis. 2015, 38, 739–754. [Google Scholar] [CrossRef]
- Samsing, F.; Alexandre, P.; Rigby, M.; Taylor, R.S.; Chong, R.; Wynne, J.W. Transcriptome response of atlantic salmon (Salmo salar) to a new piscine orthomyxovirus. Pathogens 2020, 9, 807. [Google Scholar] [CrossRef]
- Mohr, P.G.; Crane, M.S.J.; Hoad, J.; Williams, L.M.; Cummins, D.; Neave, M.J.; Shiell, B.; Beddome, G.; Michalski, W.P.; Peck, G.R. Pilchard orthomyxovirus (POMV). I. Characterisation of an emerging virus isolated from pilchards Sardinops sagax and Atlantic salmon Salmo salar. Dis. Aquat. Org. 2020, 139, 35–50. [Google Scholar] [CrossRef]
- Godwin, S.E.; Morrison, R.N.; Knowles, G.; Cornish, M.C.; Hayes, D.; Carson, J. Pilchard orthomyxovirus (POMV). II. Causative agent of salmon orthomyxoviral necrosis, a new disease of farmed Atlantic salmon Salmo salar. Dis. Aquat. Org. 2020, 139, 51–68. [Google Scholar] [CrossRef] [PubMed]
- Samsing, F.; Rigby, M.; Tengesdal, H.K.; Taylor, R.S.; Farias, D.; Morrison, R.N.; Godwin, S.; Giles, C.; Carson, J.; English, C.J. Seawater transmission and infection dynamics of pilchard orthomyxovirus (POMV) in Atlantic salmon (Salmo salar). J. Fish Dis. 2021, 44, 73–88. [Google Scholar] [CrossRef] [PubMed]
- Peducasse, S.; Castric, J.; Thiery, R.; Jeffroy, J.; Le Ven, A.; Laurencin, F.B. Comparative study of viral encephalopathy and retinopathy in juvenile sea bass Dicentrarchus labrax infected in different ways. Dis. Aquat. Org. 1999, 36, 11–20. [Google Scholar] [CrossRef] [PubMed]
- Mu, Y.; Lin, K.; Chen, X.; Ao, J. Diagnosis of nervous necrosis virus in orange-spotted grouper, Epinephelus coioides, by a rapid and convenient RT-PCR method. Acta Oceanol. Sin. 2013, 32, 88–92. [Google Scholar] [CrossRef]
- Jia, P.; Jia, K.-T.; Yi, M.-S. Complete genome sequence of a fish nervous necrosis virus isolated from sea perch (Lateolabrax japonicus) in China. Genome Announc. 2015, 3, e00048-15. [Google Scholar] [CrossRef]
- Pascoli, F.; Serra, M.; Toson, M.; Pretto, T.; Toffan, A. Betanodavirus ability to infect juvenile European sea bass, Dicentrarchus labrax, at different water salinity. J. Fish Dis. 2016, 39, 1061–1068. [Google Scholar] [CrossRef]
- Zhang, Y.; Dong, F.; Xing, J.; Tang, X.; Sheng, X.; Chi, H.; Zhan, W. Characterization of Nervous Necrosis Virus (NNV) Nonstructural Protein B2 and Its Enhancement on Virus Proliferation. Viruses 2022, 14, 2818. [Google Scholar] [CrossRef]
- Bandín, I.; Souto, S. Betanodavirus and VER disease: A 30-year research review. Pathogens 2020, 9, 106. [Google Scholar] [CrossRef]
- Nakai, T.; Sugaya, T.; Nishioka, T.; Mushiake, K.; Yamashita, H. Current knowledge on viral nervous necrosis (VNN) and its causative betanodaviruses. Isr. J. Aquac.-Bamidgeh 2009, 61, 198–207. [Google Scholar] [CrossRef]
- Guo, C.-J.; Wu, Y.-Y.; Yang, L.-S.; Yang, X.-B.; He, J.; Mi, S.; Jia, K.-T.; Weng, S.-P.; Yu, X.-Q.; He, J.-G. Infectious spleen and kidney necrosis virus (a fish iridovirus) enters Mandarin fish fry cells via caveola-dependent endocytosis. J. Virol. 2012, 86, 2621–2631. [Google Scholar] [CrossRef]
- Jancovich, J. Family iridoviridae. Virus taxonomy: Ninth report of the international committee on taxonomy of viruses. J. Gen. Virol. 2012, 98, 193–210. [Google Scholar]
- Whittington, R.; Chong, R. Global trade in ornamental fish from an Australian perspective: The case for revised import risk analysis and management strategies. Prev. Vet. Med. 2007, 81, 92–116. [Google Scholar] [CrossRef] [PubMed]
- Jeong, J.B.; Kim, H.Y.; Jun, L.J.; Lyu, J.H.; Park, N.G.; Kim, J.K.; Do Jeong, H. Outbreaks and risks of infectious spleen and kidney necrosis virus disease in freshwater ornamental fishes. Dis. Aquat. Org. 2008, 78, 209–215. [Google Scholar] [CrossRef]
- Mohr, P.G.; Moody, N.J.; Williams, L.M.; Hoad, J.; Cummins, D.M.; Davies, K.R.; Crane, M.S. Molecular confirmation of infectious spleen and kidney necrosis virus (ISKNV) in farmed and imported ornamental fish in Australia. Dis. Aquat. Org. 2015, 116, 103–110. [Google Scholar] [CrossRef]
- Go, J.; Lancaster, M.; Deece, K.; Dhungyel, O.; Whittington, R. The molecular epidemiology of iridovirus in Murray cod (Maccullochella peelii peelii) and dwarf gourami (Colisa lalia) from distant biogeographical regions suggests a link between trade in ornamental fish and emerging iridoviral diseases. Mol. Cell. Probes 2006, 20, 212–222. [Google Scholar] [CrossRef]
- Sudthongkong, C.; Miyata, M.; Miyazaki, T. Iridovirus disease in two ornamental tropical fresh-water fishes: African lampeye and dwarf gourami. Dis. Aquat. Org. 2002, 48, 163–173. [Google Scholar] [CrossRef]
- Anderson, I.; Prior, H.; Rodwell, B.; Harris, G. Iridovirus-like virions in imported dwarf gourami (Colisa lalia) with systemic amoebiasis. Aust. Vet. J. 1993, 70, 66–67. [Google Scholar] [CrossRef]
- Becker, J.R.A.; Tweedie, A.; Landos, M.; Lintermans, M.; Whittington, R. Aquatic Animal Health Subprogram: Surveys of Ornamental Fish for Pathogens of Quarantine Significance; Fisheries Research and Development Corporation: Canberra, Australia, 2013; Project Number 2009/044. [Google Scholar]
- Nolan, D.; Stephens, F.; Crockford, M.; Jones, J.; Snow, M. Detection and characterization of viruses of the genus Megalocytivirus in ornamental fish imported into an Australian border quarantine premises: An emerging risk to national biosecurity. J. Fish Dis. 2015, 38, 187–195. [Google Scholar] [CrossRef]
- Hick, P.M.; Subramaniam, K.; Thompson, P.; Whittington, R.J.; Waltzek, T.B. Complete genome sequence of a Bohle iridovirus isolate from ornate burrowing frogs (Limnodynastes ornatus) in Australia. Genome Announc. 2016, 4, e00632-16. [Google Scholar] [CrossRef]
- Chinchar, V.G.; Hick, P.; Ince, I.A.; Jancovich, J.K.; Marschang, R.; Qin, Q.; Subramaniam, K.; Waltzek, T.B.; Whittington, R.; Williams, T. ICTV virus taxonomy profile: Iridoviridae. J. Gen. Virol. 2017, 98, 890–891. [Google Scholar] [CrossRef]
- Sunarto, A.; Grimm, J.; McColl, K.A.; Ariel, E.; Nair, K.K.; Corbeil, S.; Hardaker, T.; Tizard, M.; Strive, T.; Holmes, B. Bioprospecting for biological control agents for invasive tilapia in Australia. Biol. Control 2022, 174, 105020. [Google Scholar] [CrossRef]
- Machimbirike, V.I.; Jansen, M.D.; Senapin, S.; Khunrae, P.; Rattanarojpong, T.; Dong, H.T. Viral infections in tilapines: More than just tilapia lake virus. Aquaculture 2019, 503, 508–518. [Google Scholar] [CrossRef]
- Shin, Y.; Kwon, T.; Seo, J.; Kim, T. Oral immunization of fish against iridovirus infection using recombinant antigen produced from rice callus. Vaccine 2013, 31, 5210–5215. [Google Scholar] [CrossRef]
- Marsh, I.; Whittington, R.; Hyatt, A.; Chisholm, O. Rapid differentiation of Australian, European and American ranaviruses based on variation in major capsid protein gene sequence. Mol. Cell. Probes 2002, 16, 137–151. [Google Scholar] [CrossRef]
- Hyatt, A.; Williamson, M.; Coupar, B.; Middleton, D.; Hengstberger, S.; Gould, A.; Selleck, P.; Wise, T.; Kattenbelt, J.; Cunningham, A. First identification of a ranavirus from green pythons (Chondropython viridis). J. Wildl. Dis. 2002, 38, 239–252. [Google Scholar] [CrossRef]
- Costa, V.A.; Geoghegan, J.L.; Holmes, E.C.; Harvey, E. Genetic Reassortment between Endemic and Introduced Macrobrachium rosenbergii Nodaviruses in the Murray-Darling Basin, Australia. Viruses 2022, 14, 2186. [Google Scholar] [CrossRef]
- Oakey, H.J.; Smith, C.S. Complete genome sequence of a white spot syndrome virus associated with a disease incursion in Australia. Aquaculture 2018, 484, 152–159. [Google Scholar] [CrossRef]
- Rajendran, K.; Makesh, M.; Karunasagar, I. Monodon baculovirus of shrimp. Indian J. Virol. 2012, 23, 149–160. [Google Scholar] [CrossRef]
- Cowley, J.A. Mourilyan virus pathogenicity in kuruma shrimp (Penaeus japonicus). J. Fish Dis. 2020, 43, 1401–1407. [Google Scholar] [CrossRef]
- La Fauce, K.A.; Layton, R.; Owens, L. TaqMan real-time PCR for detection of hepatopancreatic parvovirus from Australia. J. Virol. Methods 2007, 140, 10–16. [Google Scholar] [CrossRef]
- Mohr, P.G.; Moody, N.J.; Hoad, J.; Williams, L.M.; Bowater, R.O.; Cummins, D.M.; Cowley, J.A.; Crane, M.S. New yellow head virus genotype (YHV7) in giant tiger shrimp Penaeus monodon indigenous to northern Australia. Dis. Aquat. Org. 2015, 115, 263–268. [Google Scholar] [CrossRef] [PubMed]
- Stanley, J.; Bisaro, D.; Briddon, R.; Brown, J.; Fauquet, C.; Harrison, B.; Rybicki, E.; Stenger, D. Geminivridae: Eighth Report of the ICTV on Virus Taxonomy. In Virus Taxonomy-Eighth Report of the International Committee on Taxonomy of Viruses; Elsevier: San Diego, CA, USA, 2005; pp. 301–306. [Google Scholar]
- ICTV. Taxon Name: Penstylhamaparvovirus decapod1. Available online: https://ictv.global/taxonomy/taxondetails?taxnode_id=202304232&taxon_name=Penstylhamaparvovirus%20decapod1 (accessed on 16 October 2024).
- Kim, J.; Kim, H.; Nguyen, V.; Park, B.; Choresca, C.; Shin, S.; Han, J.; Jun, J.; Park, S. Genomic sequence of infectious hypodermal and hematopoietic necrosis virus (IHHNV) KLV-2010-01 originating from the first Korean outbreak in cultured Litopenaeus vannamei. Arch. Virol. 2012, 157, 369–373. [Google Scholar] [CrossRef] [PubMed]
- Mari, J.; Bonami, J.-R.; Lightner, D. Partial cloning of the genome of infectious hypodermal and haematopoietic necrosis virus, an unusual parvovirus pathogenic for penaeid shrimps; diagnosis of the disease using a specific probe. J. Gen. Virol. 1993, 74, 2637–2643. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, C.Y.; Chuang, P.C.; Chen, L.C.; Tu, C.; Chien, M.S.; Huang, K.C.; Kao, H.F.; Tung, M.C.; Tsai, S.S. Infectious hypodermal and haematopoietic necrosis virus (IHHNV) infections in giant freshwater prawn, Macrobrachium rosenbergii. Aquaculture 2006, 258, 73–79. [Google Scholar] [CrossRef]
- Infectious Hypodermal and Haematopoietic Necrosis (IHHN) (Also Known as Infection with Penaeus Stylirostris Densovirus [PstDNV]). Aquatic Animal Diseases Significant to Australia: Identification Field Guide 4th Edition. Available online: https://www.agriculture.gov.au/sites/default/files/sitecollectiondocuments/animal-plant/aquatic/field-guide/4th-edition/crustaceans/ihhn.pdf? (accessed on 20 October 2024).
- Rai, P.; Safeena, M.P.; Krabsetsve, K.; La Fauce, K.; Owens, L.; Karunasagar, I. Genomics, molecular epidemiology and diagnostics of infectious hypodermal and hematopoietic necrosis virus. Indian J. Virol. 2012, 23, 203–214. [Google Scholar] [CrossRef]
- Cowley, J.A.; Rao, M.; Coman, G.J. Real-time PCR tests to specifically detect IHHNV lineages and an IHHNV EVE integrated in the genome of Penaeus monodon. Dis. Aquat. Org. 2018, 129, 145–158. [Google Scholar] [CrossRef]
- Lightner, D.V.; Redman, R.M.; Pantoja, C.R.; Tang, K.; Noble, B.; Schofield, P.; Mohney, L.; Nunan, L.; Navarro, S. Historic emergence, impact and current status of shrimp pathogens in the Americas. J. Invertebr. Pathol. 2012, 110, 174–183. [Google Scholar] [CrossRef]
- Pechenik, J. Invertebrates; McGraw Hill: Singapore, 2000; Volume 193. [Google Scholar]
- Wongteerasupaya, C.; Sriurairatana, S.; Vickers, J.E.; Akrajamorn, A.; Boonsaeng, V.; Panyim, S.; Tassanakajon, A.; Withyachumnarnkul, B.; Flegel, T. Yellow-head virus of Penaeus monodon is an RNA virus. Dis. Aquat. Org. 1995, 22, 45–50. [Google Scholar] [CrossRef]
- Nadala, E.C.B., Jr.; Tapay, L.M.; Loh, P.C. Yellow-head virus: A rhabdovirus-like pathogen of penaeid shrimp. Dis. Aquat. Org. 1997, 31, 141–146. [Google Scholar] [CrossRef]
- Spann, K.; Cowley, J.; Walker, P.; Lester, R. A yellow-head-like virus from Penaeus monodon cultured in Australia. Dis. Aquat. Org. 1997, 31, 169–179. [Google Scholar] [CrossRef]
- Walker, P.J.; Winton, J.R. Emerging viral diseases of fish and shrimp. Vet. Res. 2010, 41, 51. [Google Scholar] [CrossRef] [PubMed]
- Wijegoonawardane, P.K.; Cowley, J.A.; Phan, T.; Hodgson, R.A.; Nielsen, L.; Kiatpathomchai, W.; Walker, P.J. Genetic diversity in the yellow head nidovirus complex. Virology 2008, 380, 213–225. [Google Scholar] [CrossRef] [PubMed]
- Australian Government Department of Agriculture. Infection with Gill-Associated Virus (GAV). 2019. Available online: https://www.agriculture.gov.au/sites/default/files/documents/gill_associated_virus_disease.pdf (accessed on 12 November 2024).
- Noble, T.H.; Coman, G.J.; Wade, N.M.; Thomson, P.C.; Raadsma, H.W.; Khatkar, M.S.; Guppy, J.L.; Jerry, D.R. Genetic parameters of Gill-associated virus infection and body weight under commercial conditions in black tiger shrimp, Penaeus monodon. Aquaculture 2020, 528, 735580. [Google Scholar] [CrossRef]
- Cowley, J.A.; Cadogan, L.C.; Wongteerasupaya, C.; Hodgson, R.A.; Boonsaeng, V.; Walker, P.J. Multiplex RT-nested PCR differentiation of gill-associated virus (Australia) from yellow head virus (Thailand) of Penaeus monodon. J. Virol. Methods 2004, 117, 49–59. [Google Scholar] [CrossRef]
- Cowley, J.A.; Dimmock, C.M.; Spann, K.M.; Walker, P.J. Detection of Australian gill-associated virus (GAV) and lymphoid organ virus (LOV) of Penaeus monodon by RT-nested PCR. Dis. Aquat. Org. 2000, 39, 159–167. [Google Scholar] [CrossRef]
- Tang, K.F.-J.; Spann, K.M.; Owens, L.; Lightner, D.V. In situ detection of Australian gill-associated virus with a yellow head virus gene probe. Aquaculture 2002, 205, 1–5. [Google Scholar] [CrossRef]
- Noble, T.; Stratford, C.; Wade, N.; Cowley, J.; Sellars, M.; Coman, G.; Jerry, D. PCR testing of single tissue samples can result in misleading data on gill-associated virus infection loads in shrimp. Aquaculture 2018, 492, 91–96. [Google Scholar] [CrossRef]
- Low, C.F.; Md Yusoff, M.R.; Kuppusamy, G.; Ahmad Nadzri, N.F. Molecular biology of Macrobrachium rosenbergii nodavirus infection in giant freshwater prawn. J. Fish Dis. 2018, 41, 1771–1781. [Google Scholar] [CrossRef]
- Senapin, S.; Jaengsanong, C.; Phiwsaiya, K.; Prasertsri, S.; Laisutisan, K.; Chuchird, N.; Limsuwan, C.; Flegel, T.W. Infections of MrNV (Macrobrachium rosenbergii nodavirus) in cultivated whiteleg shrimp Penaeus vannamei in Asia. Aquaculture 2012, 338, 41–46. [Google Scholar] [CrossRef]
- Arcier, J.-M.; Herman, F.; Lightner, D.V.; Redman, R.M.; Mari, J.; Bonami, J.-R. A viral disease associated with mortalities in hatchery-reared postlarvae of the giant freshwater prawn Macrobrachium rosenbergii. Dis. Aquat. Org. 1999, 38, 177–181. [Google Scholar] [CrossRef]
- Owens, L.; La Fauce, K.; Juntunen, K.; Hayakijkosol, O.; Zeng, C. Macrobrachium rosenbergii nodavirus disease (white tail disease) in Australia. Dis. Aquat. Org. 2009, 85, 175–180. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.F.; Tan, W.S.; Ong, L.K.; Zainal Abidin, S.A.; Othman, I.; Tey, B.T.; Lee, R.F.S. The Macrobrachium rosenbergii nodavirus: A detailed review of structure, infectivity, host immunity, diagnosis and prevention. Rev. Aquac. 2021, 13, 2117–2141. [Google Scholar] [CrossRef]
- Hayakijkosol, O.; Burgess, G.; La Fauce, K.; Owens, L. The complete sequence of the Australia recognizate of Macrobrachium rosenbergii nodavirus which causes white tail disease. Aquaculture 2012, 366, 98–104. [Google Scholar] [CrossRef]
- Mayo, M. Virus taxonomy-houston 2002. Arch. Virol. 2002, 147, 1071–1076. [Google Scholar]
- Mayo, M. A summary of taxonomic changes recently approved by ICTV. Arch. Virol. 2002, 147, 1655–1656. [Google Scholar] [CrossRef]
- Vlak, J.M.; Bonami, J.-R.; Flegel, T.W.; Kou, G.-H.; Lightner, D.V.; Lo, C.-F.; Loh, P.C.; Walker, P.J. Nimaviridae, a new virus family infecting aquatic invertebrates. In Proceedings of the XII International Congress of Virology, Paris, France, 27 July–1 August 2002. [Google Scholar]
- Pradeep, B.; Rai, P.; Mohan, S.A.; Shekhar, M.S.; Karunasagar, I. Biology, host range, pathogenesis and diagnosis of white spot syndrome virus. Indian J. Virol. 2012, 23, 161–174. [Google Scholar] [CrossRef]
- Department of Agriculture, Water and the Environment. Infection with White Spot Syndrome Virus (WSSV). 2019. Available online: https://www.agriculture.gov.au/sites/default/files/documents/infection-white-spot-syndrome-virus.pdf (accessed on 15 November 2024).
- CSIRO. White Spot Syndrome Virus Diagnostic Test Validation. Available online: https://www.csiro.au/en/about/facilities-collections/acdp/white-spot-test-validation (accessed on 25 November 2024).
- Li, C.-X.; Shi, M.; Tian, J.-H.; Lin, X.-D.; Kang, Y.-J.; Chen, L.-J.; Qin, X.-C.; Xu, J.; Holmes, E.C.; Zhang, Y.-Z. Unprecedented genomic diversity of RNA viruses in arthropods reveals the ancestry of negative-sense RNA viruses. eLife 2015, 4, e05378. [Google Scholar] [CrossRef]
- Huerlimann, R.; Wade, N.M.; Gordon, L.; Montenegro, J.D.; Goodall, J.; McWilliam, S.; Tinning, M.; Siemering, K.; Giardina, E.; Donovan, D. De novo assembly, characterization, functional annotation and expression patterns of the black tiger shrimp (Penaeus monodon) transcriptome. Sci. Rep. 2018, 8, 13553. [Google Scholar] [CrossRef]
- Lightner, D.V.; Redman, R.M. A baculovirus-caused disease of the penaeid shrimp, Penaeus monodon. J. Invertebr. Pathol. 1981, 38, 299–302. [Google Scholar] [CrossRef]
- Ahamed, A.S.; Haq, M.; Banu, M.N.; Tiwary, C.; Sedhuraman, R. An update of major DNA shrimp viruses-White Spot Syndrome virus (WSSV), Monodon Baculovius (MBV), Infectious Hypodermal and Hematopoietic Necrosis virus (IHHNV) and Hepatopancreatic Parvovirus (HPV): A Review. Imp. J. Interdiscip. Res. 2016, 3, 1–15. [Google Scholar]
- Doubrovsky, A.; Paynter, J.; Sambhi, S.; Atherton, J.; Lester, R. Observations on the Ultrastracture of Baculovirus in Australian Penaeus monodon and Penaeus merguiensis. Mar. Freshw. Res. 1988, 39, 743–749. [Google Scholar] [CrossRef]
- Lightner, D.; Redman, R.; Bell, T.; Brock, J. Detection of IHHN virus in Penaeus stylirostris and P. vannamei imported into Hawaii. J. World Maric. Soc. 1983, 14, 212–225. [Google Scholar] [CrossRef]
- Government of Canada. Monodon Baculovirus (MBV) Disease of Penaeid Shrimp. 2018. Available online: https://www.dfo-mpo.gc.ca/science/aah-saa/diseases-maladies/mbvsp-eng.html (accessed on 5 December 2024).
- NSW Government. NSW Government Invests $21 Million in the Future for Clarence Prawn Fishers and Farmers. 2023. Available online: https://www.dpi.nsw.gov.au/about-us/media-centre/releases/2023/general2/nsw-government-invests-%2421-million-in-the-future-for-clarence-prawn-fishers-and-farmers (accessed on 22 December 2024).
- Belcher, C.R.; Young, P.R. Colourimetric PCR-based detection of monodon baculovirus in whole Penaeus monodon postlarvae. J. Virol. Methods 1998, 74, 21–29. [Google Scholar] [CrossRef] [PubMed]
- Vickers, J.; Paynter, J.; Spradbrow, P.; Lester, R. An impression smear method for rapid detection of Penaeus monodon-type baculovirus (MBV) in Australian prawns. J. Fish Dis. 1993, 16, 507. [Google Scholar] [CrossRef]
- Poulos, B.T.; Mari, J.; Bonami, J.-R.; Redman, R.; Lightner, D.V. Use of non-radioactively labeled DNA probes for the detection of a baculovirus from Penaeus monodon by in situ hybridization on fixed tissue. J. Virol. Methods 1994, 49, 187–193. [Google Scholar] [CrossRef]
- Abudurexiti, A.; Adkins, S.; Alioto, D.; Alkhovsky, S.V.; Avšič-Županc, T.; Ballinger, M.J.; Bente, D.A.; Beer, M.; Bergeron, É.; Blair, C.D. Taxonomy of the order Bunyavirales: Update 2019. Arch. Virol. 2019, 164, 1949–1965. [Google Scholar] [CrossRef]
- Cowley, J. Bunyaviruses of crustaceans. In Aquaculture Virology; Elsevier: Amsterdam, The Netherlands, 2016; pp. 489–503. [Google Scholar]
- Cowley, J.A.; McCulloch, R.J.; Rajendran, K.; Cadogan, L.C.; Spann, K.M.; Walker, P.J. RT-nested PCR detection of Mourilyan virus in Australian Penaeus monodon and its tissue distribution in healthy and moribund prawns. Dis. Aquat. Org. 2005, 66, 91–104. [Google Scholar] [CrossRef]
- Cowley, J.A.; McCulloch, R.J.; Spann, K.M.; Cadogan, L.; Walker, P.J. Preliminary molecular and biological characterisation of Mourilyan virus (MoV): A new bunya-related virus of penaeid prawns. In Diseases in Asian Aquaculture V, Proceedings of the 5th Symposium on Diseases in Asian Aquaculture, Gold Coast, Australia, 24–28 November 2002; Asian Fisheries Society: Manila, PH, USA, 2005; pp. 113–124. [Google Scholar]
- Sellars, M.J.; Keys, S.J.; Cowley, J.A.; McCulloch, R.J.; Preston, N.P. Association of Mourilyan virus with mortalities in farm pond-reared Penaeus (Marsupenaeus) japonicus transferred to maturation tank systems. Aquaculture 2006, 252, 242–247. [Google Scholar] [CrossRef]
- Rajendran, K.; Cowley, J.A.; McCulloch, R.J.; Walker, P.J. A TaqMan real-time RT-PCR for quantifying Mourilyan virus infection levels in penaeid shrimp tissues. J. Virol. Methods 2006, 137, 265–271. [Google Scholar] [CrossRef]
- Bonami, J.-R.; Mari, J.; Poulos, B.T.; Lightner, D.V. Characterization of hepatopancreatic parvo-like virus, a second unusual parvovirus pathogenic for penaeid shrimps. J. Gen. Virol. 1995, 76, 813–817. [Google Scholar] [CrossRef]
- Safeena, M.P.; Rai, P.; Karunasagar, I. Molecular biology and epidemiology of hepatopancreatic parvovirus of penaeid shrimp. Indian J. Virol. 2012, 23, 191–202. [Google Scholar] [CrossRef] [PubMed]
- Chong, Y.; Loh, H. Hepatopancreas chlamydial and parvoviral infections of farmed marine prawns in Singapore. Singap. Vet. J. 1984, 8/9, 51–56. [Google Scholar]
- Paynter, J. Prawn virus from juvenile Penaeus esculentus. Second. Aust. Prawn Semin. 1985, 1985. Available online: https://cir.nii.ac.jp/crid/1570291225526464256 (accessed on 27 March 2025).
- Roubal, F.; Paynter, J.; Lester, R. Electron microscopic observation of hepatopancreatic parvo-like virus (HPV) in the penaeid prawn, Penaeus merguiensis de Man, from Australia. J. Fish Dis. 1989, 12, 199. [Google Scholar] [CrossRef]
- Lightner, D. A Handbook of Pathology and Diagnostic Procedures for Diseases of Penaeid Shrimp; World Aquaculture Society: Baton Rouge, LA, USA, 1996. [Google Scholar]
- Spann, K.; Adlard, R.; Hudson, D.; Pyecroft, S.; Jones, T.; Voigt, M. Hepatopancreatic parvo-like virus (HPV) of Penaeus japonicus cultured in Australia. Dis. Aquat. Org. 1997, 31, 239–241. [Google Scholar] [CrossRef]
- Flegel, T.; Thamavit, V.; Pasharawipas, T.; Alday-Sanz, V. Statistical correlation between severity of hepatopancreatic parvovirus infection and stunting of farmed black tiger shrimp (Penaeus monodon). Aquaculture 1999, 174, 197–206. [Google Scholar] [CrossRef]
- Lightner, D.; Redman, R. A parvo-like virus disease of penaeid shrimp. J. Invertebr. Pathol. 1985, 45, 47–53. [Google Scholar] [CrossRef]
- Pollak, N.M.; Fais, O.; Kristoffersen, J.; Phuthaworn, C.; Knibb, W.; Macdonald, J. Rapid sample preparation and low-resource molecular detection of hepatopancreatic parvoviruses (HPV) by recombinase polymerase amplification lateral flow detection assay in shrimps (Fenneropenaeus merguiensis). PLoS ONE 2022, 17, e0276164. [Google Scholar] [CrossRef]
- Moody, N.J.G.; Crane, M. Aquatic Animal Health Subprogram: Determining the Susceptibility of Australian Penaeus Monodon and P. Merguiensis to Newly Identified Enzootic (YHV7) and Exotic (YHV8 and YHV10) Yellow Head Virus (YHV) Genotypes. 2016. Available online: https://www.frdc.com.au/sites/default/files/products/2015-005-DLD.pdf (accessed on 24 December 2024).
- Cowley, J.A.; Rao, M.; Mohr, P.; Moody, N.J.; Sellars, M.J.; Crane, M.S. TaqMan real-time and conventional nested PCR tests specific to yellow head virus genotype 7 (YHV7) identified in giant tiger shrimp in Australia. J. Virol. Methods 2019, 273, 113689. [Google Scholar] [CrossRef]
- White Spot Disease of Prawns Queensland Response 2016-17 Scenario Planning Advisory Panel Report. Available online: https://www.daf.qld.gov.au/__data/assets/pdf_file/0010/1237285/wssv-advisory-panel-report.pdf (accessed on 27 March 2025).
- Aquatic Biosecurity Risk Review: Prohibited Matter Listing of Infectious Hypodermal and Haematopoietic Necrosis Virus (IHHNV). Available online: https://www.dpi.nsw.gov.au/biosecurity/aquatic-biosecurity-risk-review-prohibited-matter-listing-of-infectious-hypodermal-and-haematopoietic-necrosis-virus-ihhnv (accessed on 27 March 2025).
- Sellars, M.J.; Rao, M.; O’Leary, Z.; Wood, A.; Degnan, B.M.; Cowley, J.A. Reduced loads of pre-existing Gill-associated virus (GAV) infection in juvenile Penaeus monodon injected with single or multiple GAV-specific dsRNAs. Aquaculture 2014, 434, 272–276. [Google Scholar] [CrossRef]
- Glanville, R.; Neville, P.; Walker, P. White Spot Disease of Prawns Queensland Response 2016–17 Scenario Planning Advisory Panel Report. Available online: https://www.agriculture.gov.au/sites/default/files/documents/infection-macrobrachium-rosenbergii-nodavirus.pdf (accessed on 1 January 2025).
- Knibb, W.; Le, C.; Katouli, M.; Bar, I.; Lloyd, C. Assessment of the origin of white spot syndrome virus DNA sequences in farmed Penaeus monodon in Australia. Aquaculture 2018, 494, 26–29. [Google Scholar] [CrossRef]
- FRDC. Economic Impact of 2016 White Spot Disease Outbreak. Available online: https://www.frdc.com.au/sites/default/files/2021-07/2016-267-Project-Summary-Economic-Impact.pdf (accessed on 1 January 2025).
- ABC. Prawn White Spot Disease: What Is It? Available online: https://www.abc.net.au/news/rural/2017-03-16/what-is-white-spot-disease-in-prawns/8359476 (accessed on 2 January 2025).
- ABC. White Spot Disease: Emergency Funding for Farmers and Wider Industry. Available online: https://www.abc.net.au/news/2017-01-26/white-spot-emergency-funding-compensation-barnaby-joyce/8214548 (accessed on 4 January 2025).
- Bondad-Reantaso, M.G.; Subasinghe, R.P.; Arthur, J.R.; Ogawa, K.; Chinabut, S.; Adlard, R.; Tan, Z.; Shariff, M. Disease and health management in Asian aquaculture. Vet. Parasitol. 2005, 132, 249–272. [Google Scholar] [CrossRef]
- ACIL-Allen Consulting. Case Study: Aquaculture Feed and Prawn Breeding. Available online: https://www.csiro.au/-/media/About/Files/Impact-case-studies/Full-Reports/ACIL-Allen_CSIROs-Impact-and-Value_Aquaculture-and-Prawn-Breeding_2014.pdf (accessed on 12 December 2024).
- Department of Agriculture, Fisheries and Forestry. Implementation of Changes to Import Conditions for Prawns and Prawn Products (Excluding Dried Prawns and Shelf Stable Prawns) for Human Consumption. 2023. Available online: https://www.agriculture.gov.au/biosecurity-trade/import/industry-advice/2023/177-2023 (accessed on 15 December 2024).
- Diggles, B. Identifying and Addressing the Biosecurity Risks to Australia Associated with Imported Prawns and Seafood Products. Available online: https://www.aph.gov.au/DocumentStore.ashx?id=bbdb978d-5ddd-4499-b540-eb1ea2499e45&subId=510046 (accessed on 17 October 2024).
- FRDC. An Impact Assessment of FRDC Investment in 2016-266: A plan for the Australian Prawn Farming Industry’s Initial Response to the White Spot Disease Incident in Summer 2016–17. Available online: https://www.frdc.com.au/sites/default/files/inline-files/BCA%2016-17%20FRDC%20Project%202016-266%20White%20Spot%20Final_0.pdf (accessed on 13 September 2024).
- Department of Primary Industries. White Spot Disease. Available online: https://www.daf.qld.gov.au/business-priorities/biosecurity/animal-biosecurity-welfare/animal-health-pests-diseases/list-animal-pest-disease/white-spot-disease (accessed on 13 October 2024).
- BL, M.; Owens, L. Viral diseases of fish and shellfish in Australian mariculture. Fish Pathol. 1998, 33, 193–200. [Google Scholar]
- Lightner, D. Virus diseases of farmed shrimp in the Western Hemisphere (the Americas): A review. J. Invertebr. Pathol. 2011, 106, 110–130. [Google Scholar] [CrossRef]
- Fish Health Management. Fisheries Victoria Research Report Series-No. 32 December 2005. Available online: https://vfa.vic.gov.au/aquaculture/murray-cod-aquaculture/fish-health-management?utm_source.com (accessed on 23 August 2024).
- Department of Agriculture, Fisheries and Forestry. Biosecurity Conditions for Imported Prawns. Available online: https://www.agriculture.gov.au/about/news/biosecurity-imported-prawns (accessed on 12 June 2024).
- Moody, N.; Mohr, P. Australian and New Zealand Standard Diagnostic Procedure (ANZSDP) for White Spot Syndrome Virus. 2022. Available online: https://www.agriculture.gov.au/sites/default/files/sitecollectiondocuments/animal/ahl/ANZSDP-White-spot-syndrome-virus.pdf (accessed on 30 December 2024).
- Animal and Plant Pests and Disease. White Spot Disease. Available online: https://www.outbreak.gov.au/current-outbreaks/white-spot-disease (accessed on 10 January 2025).
- Hine, M.; Adams, S.; Arthur, J.R.; Bartley, D.; Bondad-Reantaso, M.G.; Chávez, C.; Clausen, J.H.; Dalsgaard, A.; Flegel, T.; Gudding, R.; et al. Improving Biosecurity: A Necessity for Aquaculture Sustainability. 2010. Available online: https://researchportal.murdoch.edu.au/esploro/outputs/conferencePaper/Improving-biosecurity-A-necessity-for-aquaculture/991005543480907891#file-0 (accessed on 21 August 2024).
- Kumar, S.; Paul, T. Biosafety and Biosecurity for Sustainable Aquaculture Development. In Advances in Fisheries Biotechnology; Springer: Berlin/Heidelberg, Germany, 2022; pp. 453–463. [Google Scholar]
- Scarfe, A.D.; Palić, D. Aquaculture biosecurity: Practical approach to prevent, control, and eradicate diseases. In Aquaculture Health Management; Elsevier: Amsterdam, The Netherlands, 2020; pp. 75–116. [Google Scholar]
- Bernoth, E.; Ernst, I.; Wright, B. National aquatic animal health plans: The Australian experience. Rev. Sci. Tech. (Int. Off. Epizoot.) 2008, 27, 71–88. [Google Scholar] [CrossRef]
- AUS-DAFF. AQUAPLAN—Australia’s National Strategic Plan for Aquatic Animal Health 1998–2003; Australian Department of Agriculture, Fisheries and Forestry (AU-DAFF): Canberra, Australia, 1988; 34p.
- AUS-DAFF. AQUAPLAN 2005–2010—Australia’s National Strategic Plan for Aquatic Animal Health; Australian Department of Agriculture, Fisheries and Forestry (AU-DAFF): Canberra, Australia, 2005; 52p.
- AUS-DA. AQUAPLAN 2014–2019—Australia’s National Strategic Plan for Aquatic Animal Health; Australian Department of Agriculture (AU-DA): Canberra, Australia, 2014; 29p.
- FRDC. Aquaplan. Available online: https://www.agriculture.gov.au/sites/default/files/documents/aquaplan-2022-2027.pdf (accessed on 15 January 2025).
- Department of Agriculture, Fisheries and Forestry. AQUAVETPLAN. Available online: https://www.agriculture.gov.au/agriculture-land/animal/aquatic/aquavetplan (accessed on 27 December 2024).
- Animal Health Australia. Emergency Animal Disease Response Agreement. Available online: https://animalhealthaustralia.com.au/eadra/#:~:text=Animal%20Health%20Australia%20(AHA)%20manages,response%20if%20an%20outbreak%20occurs (accessed on 27 August 2024).
- Hishamunda, N.; Ridler, N.; Martone, E. Policy and Governance in Aquaculture: Lessons Learned and Way Forward. In FAO Fisheries and Aquaculture Technical Paper; FAO: Rome, Italy, 2014; Available online: https://www.proquest.com/docview/1541489093?pq-origsite=gscholar&fromopenview=true&sourcetype=Scholarly%20Journals (accessed on 23 July 2024).
- Mishra, S.; Seshagiri, B.; Rathod, R.; Sahoo, S.N.; Choudhary, P.; Patel, S.; Behera, D.K.; Ojha, D.K.; Jena, A.; Namburu, P.K. Recent advances in fish disease diagnosis, therapeutics, and vaccine development. Front. Aquac. Biotechnol. 2023, 115–145. [Google Scholar] [CrossRef]
- Alam, M.S.; Islam, M.N.; Das, M.; Islam, S.F.; Rabbane, M.G.; Karim, E.; Roy, A.; Alam, M.S.; Ahmed, R.; Kibria, A.S.M. RNAi-based therapy: Combating shrimp viral diseases. Viruses 2023, 15, 2050. [Google Scholar] [CrossRef]
- Department of Agriculture, Fisheries and Forestry. The Network of Aquaculture Centres in Asia–Pacific. Available online: https://www.agriculture.gov.au/agriculture-land/fisheries/aquaculture/collaboration (accessed on 19 August 2024).
- Animal Health Australia. Aquatic Health and Biosecurity. Available online: https://animalhealthaustralia.com.au/aquatic-health/ (accessed on 13 September 2024).
- Biosecurity Australia. Generic Import Risk Analysis Report for Prawns and Prawn Products; Biosecurity Australia: Canberra, Australia, 2009; p. 305. [Google Scholar]
- Department of Agriculture, Fisheries and Forestry. Legislation. Available online: https://www.agriculture.gov.au/biosecurity-trade/policy/legislation#biosecurity-legislation (accessed on 12 November 2024).
- Walker, P.J.; Mohan, C. Viral disease emergence in shrimp aquaculture: Origins, impact and the effectiveness of health management strategies. Rev. Aquac. 2009, 1, 125–154. [Google Scholar] [CrossRef]
- Inspector-General of Biosecurity. Submission to Inspector-General of Biosecurity Review. Available online: https://www.researchgate.net/profile/Dr-B-K-Diggles/publication/320602800_DigsFish_Submission_to_the_Inspector-General_of_Biosecurity’s_review_of_the_circumstances_leading_to_the_2017_suspension_of_uncooked_prawn_imports_into_Autralia_and_the_biosecurity_considerations_rel/links/59efe4d90f7e9baeb26ace23/DigsFish-Submission-to-the-Inspector-General-of-Biosecuritys-review-of-the-circumstances-leading-to-the-2017-suspension-of-uncooked-prawn-imports-into-Australia-and-the-biosecurity-considerations-rele.pdf (accessed on 23 August 2024).
- Department of Agriculture, Fisheries and Forestry. Disease Surveillance and Reporting. Available online: https://www.agriculture.gov.au/agriculture-land/animal/aquatic/reporting (accessed on 19 August 2024).
- Global Seafood Alliance. Australian Biotech Company Launches Early Detection Technology for Shrimp Diseases. Available online: https://www.globalseafood.org/advocate/australian-biotech-company-launches-early-detection-technology-for-shrimp-diseases/#:~:text=Genics%2C%20an%20Australian%20biotech%20firm%2C%20launched%20Shrimp%20MultiPath2.,just%20one%20pathogen%20per%20sample (accessed on 21 July 2024).
- James Cook University. JCU Project to Help Safeguard Prawn Industry. Available online: https://www.jcu.edu.au/news/releases/2024/june/jcu-project-to-help-safeguard-prawn-industry#https://www.sciencedirect.com/science/article/pii/S2666765723000303 (accessed on 23 August 2024).
- FRDC. Water Treatment to Control Influent Water Biosecurity Risk on Australian Prawn Farms. Effectiveness and Impacts on Production Ponds. Available online: https://www.frdc.com.au/project/2017-238 (accessed on 21 July 2024).
- Sub-Committee on Aquatic Animal Health. Available online Aquaculture Farm Biosecurity Plan. Available online: https://www.agriculture.gov.au/sites/default/files/documents/aquaculture-farm-biosecurity-plan-generic.pdf (accessed on 23 July 2024).
- Department of Agriculture, Fisheries and Forestry. AQUAVETPLAN. Disease Strategy for White Spot Disease. Available online: https://www.agriculture.gov.au/sites/default/files/sitecollectiondocuments/animal-plant/aquatic/aquavetplan/white-spot.pdf (accessed on 7 May 2024).
- CRCNA. Demonstrating the Impact of Prawn Viruses on Prawn Aquaculture Production. Available online: https://crcna.com.au/projects/demonstrating-impact-prawn-viruses-prawn-aquaculture-production/ (accessed on 27 August 2024).
- FRDC. Trichlorfon Strategy Improves Prawn Farm Biosecurity. Available online: https://www.frdc.com.au/trichlorfon-strategy-improves-prawn-farm-biosecurity#:~:text=As%20a%20preventive%2C%20water%20is,a%20white%20spot%20disease%20outbreak (accessed on 27 December 2024).
- Hatchery International. New Disease Management Tech for Australia’s Prawn Farmers. Available online: https://www.hatcheryinternational.com/new-disease-management-tech-for-australias-prawn-farmers/ (accessed on 13 September 2024).
- Department of Agriculture, Fisheries and Forestry. Biosecurity Training Centre. Available online: https://www.agriculture.gov.au/biosecurity-trade/policy/australia/biosecurity-reform/biosecurity-training-centre (accessed on 23 November 2024).
- Farmbiosecurity. New National Biosecurity Training Hub Launched. Available online: https://www.farmbiosecurity.com.au/new-national-biosecurity-training-hub-launched/?utm_source (accessed on 3 January 2025).
- CRCNA. Northern Australia Aquaculture Biosecurity Training Video. Available online: https://crcna.com.au/resources/publications/northern-australia-aquaculture-biosecurity-training-video-2/ (accessed on 11 October 2024).
- FRDC. Aquatic Animal Health & Biosecurity. Available online: https://www.frdc.com.au/aquatic-animal-health-biosecurity (accessed on 14 December 2024).
Pathogenic Virus | Viral Genus | Viral Family | Type | Susceptible Fish Species | Origin | Year of Study | Impact Level | References |
---|---|---|---|---|---|---|---|---|
EHNV | Ranavirus | Iridoviridae | dsDNA | Wild redfin (Perca fluviatilis) | Victoria, Australia | July 2007 and June 2011 | High | [23] |
CyHV2 | Cyvirus | Alloherpesviridae | dsDNA | Goldfish (Cyprinus carpio) | Western Australia | * | Moderate | [24] |
TSRV | Aquareovirus | Reoviridae | dsRNA | farmed Atlantic salmon (Salmo salar) | Tasmania | Since 2005 | Moderate | [25,26] |
POMV | Unclassified | Orthomyxoviridae | ssRNA | Atlantic salmon | Southern Tasmania | 2012 | High | [27] |
NNV | Betanodavirus | Nodaviridae | ssRNA | Barramundi (Lates calcarifer) | New South Wales, Northern Territory, Queensland, South Australia, Tasmania, and Western Australia | * | High | [28] |
ISKNV | Megalocytivirus | Iridoviridae | dsDNA | Ornamental fish | Exotic—not recorded in Australia | 2008 and 2011 | Potential threat | [29] |
BIV | Ranavirus | Iridoviridae | dsDNA | Tilapia fry (Oreochromis mossambicus) | North Queensland, Australia | * | Moderate | [30] |
Pathogenic Virus | Viral Genus | Viral Family | Genome Type | Susceptible Prawn Species | Origin | Year of Study | Impact Level | References |
---|---|---|---|---|---|---|---|---|
IHHNV | Penstylhamaparvovirus | Parvoviridae | ssDNA | P. monodon | Northern Territory and Queensland | July 2018 and October 2020 | High | [14,20] |
GAV | Okavirus | Roniviridae | ssRNA | P. monodon | Queensland | July 2018 and October 2020 | Moderate | [14,20] |
MrNV | Unclassified | Nodaviridae | ssRNA | Giant freshwater prawn Macrobrachium rosenbergii | Queensland | During January and March 2020 | Moderate | [81] |
WSSV | Whispovrius | Nimaviridae | dsDNA | Penaeid shrimps | South-Eastern Queensland | 2017 | Very high | [82] |
When-2 | Unclassified | Unclassified | ssRNA | P. monodon | Wenzhou in Zhejiang province, China | Between July 2018 and October 2020 | Unknown | [20] |
MVB | Nucleopolyhedrovirus | Baculoviridae | dsDNA | P. monodon | Australia | * | Unknown | [83] |
MoV | Wenrivirus | Phenuiviridae | ssRNA | P. monodon and Kuruma shrimp (Penaeus japonicus) | Eastern Australia | * | Moderate | [84] |
HPV | Densoviruses | Parvoviridae | ssDNA | P. monodon, P. japonicus, Brown tiger prawn (P. esculentus), Indian white prawn (P. indicus), P. merguiensis | Moreton Bay Gulf of Carpentaria | 2005 | Moderate | [85] |
YHV-7 | Unclassified | Unclassified | - | P. monodon | Joseph Bonaparte Gulf in northern Australia | November 2012 | High | [86] |
Virus | Year of Major Outbreak | Affected Species | Direct Economic Losses | Indirect Economic Costs | Trade and Market Impact | Socioeconomic Implications | References |
---|---|---|---|---|---|---|---|
WSSV | 2016 | P. monodon | Estimated AUD 23.5 million loss (2016–2017); loss of 25 million prawns; single farm loss > AUD 1 million despite AUD 400 k support | Restocking delays, poor feed conversion, downtime, higher production cost | Export bans, market uncertainty, compliance costs, price volatility | AUD 24 million farm gate loss (~25% of sector); 100% mortality within 3–10 days; income loss and debt in farmers | [147,149,153,154,155,156,157,158,159,160,161] |
NNV | Recurrent (no fixed date) | Barramundi (larvae and juveniles) | Insolvency of first Barramundi hatchery in Australia | High larval mortality; delays in production cycles | Market instability due to supply chain disruption | Disruption of breeding; financial loss for hatcheries | [162,163] |
TSRV | Endemic (concerns resurfacing recently) | S. salar | Not quantified; concerns emerging from association with diseased fish | Potential productivity loss under stress conditions; diagnostic and surveillance costs | No documented trade bans, but growing industry concern | Industry-driven monitoring and management; vertical and horizontal transmission risks | [26] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rahaman, M.M.; Sharma, B.; Talukder, S.; Uddin, M.J.; Siddik, M.A.B.; Sarker, S. Viral Threats to Australian Fish and Prawns: Economic Impacts and Biosecurity Solutions—A Systematic Review. Viruses 2025, 17, 692. https://doi.org/10.3390/v17050692
Rahaman MM, Sharma B, Talukder S, Uddin MJ, Siddik MAB, Sarker S. Viral Threats to Australian Fish and Prawns: Economic Impacts and Biosecurity Solutions—A Systematic Review. Viruses. 2025; 17(5):692. https://doi.org/10.3390/v17050692
Chicago/Turabian StyleRahaman, Md. Mizanur, Bhavya Sharma, Saranika Talukder, Muhammad Jasim Uddin, Muhammad A. B. Siddik, and Subir Sarker. 2025. "Viral Threats to Australian Fish and Prawns: Economic Impacts and Biosecurity Solutions—A Systematic Review" Viruses 17, no. 5: 692. https://doi.org/10.3390/v17050692
APA StyleRahaman, M. M., Sharma, B., Talukder, S., Uddin, M. J., Siddik, M. A. B., & Sarker, S. (2025). Viral Threats to Australian Fish and Prawns: Economic Impacts and Biosecurity Solutions—A Systematic Review. Viruses, 17(5), 692. https://doi.org/10.3390/v17050692