Roles of Macrophage Migration Inhibitory Factor (MIF) Signaling Pathway in Oncovirus Infection and Virus-Associated Cancers
Abstract
1. Introduction
2. MIF and Epstein–Barr Virus (EBV)
3. MIF and Hepatitis B and C Virus (HBV/HCV)
4. MIF and Human Cytomegalovirus (HCMV)
5. MIF and Human Papillomavirus (HPV)
6. MIF and Human T-Lymphotropic Virus 1 (HTLV-1)
7. MIF and Kaposi’s Sarcoma-Associated Herpesvirus (KSHV)
8. The Development of MIF-Targeted Therapy
9. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Grieb, G.; Merk, M.; Bernhagen, J.; Bucala, R. Macrophage migration inhibitory factor (MIF): A promising biomarker. Drug News Perspect. 2010, 23, 257–264. [Google Scholar] [CrossRef] [PubMed]
- Sumaiya, K.; Langford, D.; Natarajaseenivasan, K.; Shanmughapriya, S. Macrophage migration inhibitory factor (MIF): A multifaceted cytokine regulated by genetic and physiological strategies. Pharmacol. Ther. 2022, 233, 108024. [Google Scholar] [CrossRef] [PubMed]
- Aliyarbayova, A.; Sultanova, T.; Yaqubova, S.; Najafova, T.; Sadiqova, G.; Salimova, A. Macrophage Migration Inhibitory Factor: Its Multifaceted Role in Inflammation and Immune Regulation Across Organ Systems. Cell Physiol. Biochem. 2025, 59, 569–588. [Google Scholar] [PubMed]
- Jankauskas, S.S.; Wong, D.W.L.; Bucala, R.; Djudjaj, S.; Boor, P. Evolving complexity of MIF signaling. Cell Signal 2019, 57, 76–88. [Google Scholar] [CrossRef]
- Calandra, T.; Roger, T. Macrophage migration inhibitory factor: A regulator of innate immunity. Nat. Rev. Immunol. 2003, 3, 791–800. [Google Scholar] [CrossRef]
- Noe, J.T.; Mitchell, R.A. MIF-Dependent Control of Tumor Immunity. Front. Immunol. 2020, 11, 609948. [Google Scholar] [CrossRef]
- Mora Barthelmess, R.; Stijlemans, B.; Van Ginderachter, J.A. Hallmarks of Cancer Affected by the MIF Cytokine Family. Cancers 2023, 15, 395. [Google Scholar] [CrossRef]
- Wang, S.S.; Cen, X.; Liang, X.H.; Tang, Y.L. Macrophage migration inhibitory factor: A potential driver and biomarker for head and neck squamous cell carcinoma. Oncotarget 2017, 8, 10650–10661. [Google Scholar] [CrossRef]
- Schneider, K.L.; Claus, L.; Bucala, R.; Schulz-Heddergott, R. Targeting macrophage migration inhibitory factor as a potential therapeutic strategy in colorectal cancer. Oncogenesis 2025, 14, 30. [Google Scholar] [CrossRef]
- Mesri, E.A.; Feitelson, M.A.; Munger, K. Human viral oncogenesis: A cancer hallmarks analysis. Cell Host Microbe 2014, 15, 266–282. [Google Scholar] [CrossRef]
- Yoshizaki, T.; Horikawa, T.; Qing-Chun, R.; Wakisaka, N.; Takeshita, H.; Sheen, T.S.; Lee, S.Y.; Sato, H.; Furukawa, M. Induction of interleukin-8 by Epstein-Barr virus latent membrane protein-1 and its correlation to angiogenesis in nasopharyngeal carcinoma. Clin. Cancer Res. 2001, 7, 1946–1951. [Google Scholar]
- Hsu, M.; Wu, S.Y.; Chang, S.S.; Su, I.J.; Tsai, C.H.; Lai, S.J.; Shiau, A.L.; Takada, K.; Chang, Y. Epstein-Barr virus lytic transactivator Zta enhances chemotactic activity through induction of interleukin-8 in nasopharyngeal carcinoma cells. J. Virol. 2008, 82, 3679–3688. [Google Scholar] [CrossRef]
- Xue, N.; Lin, J.H.; Xing, S.; Liu, D.; Li, S.B.; Lai, Y.Z.; Wang, X.P.; Mao, M.J.; Zhong, Q.; Zeng, M.S.; et al. Plasma Macrophage Migration Inhibitory Factor and CCL3 as Potential Biomarkers for Distinguishing Patients with Nasopharyngeal Carcinoma from High-Risk Individuals Who Have Positive Epstein-Barr Virus Capsid Antigen-Specific IgA. Cancer Res. Treat. 2019, 51, 378–390. [Google Scholar] [CrossRef] [PubMed]
- Wilson, G.L.; Young, B.G. Production of migration inhibitory factor (MIF) by human leukocytes following exposure to Epstein-Barr virus. Cell Immunol. 1978, 38, 147–156. [Google Scholar] [CrossRef] [PubMed]
- Lo, M.C.; Yip, T.C.; Ngan, K.C.; Cheng, W.W.; Law, C.K.; Chan, P.S.; Chan, K.C.; Wong, C.K.; Wong, R.N.; Lo, K.W.; et al. Role of MIF/CXCL8/CXCR2 signaling in the growth of nasopharyngeal carcinoma tumor spheres. Cancer Lett. 2013, 335, 81–92. [Google Scholar] [CrossRef] [PubMed]
- Park, G.B.; Kim, Y.S.; Lee, H.K.; Yang, J.W.; Kim, D.; Hur, D.Y. ASK1/JNK-mediated TAp63 activation controls the cell survival signal of baicalein-treated EBV-transformed B cells. Mol. Cell Biochem. 2016, 412, 247–258. [Google Scholar] [CrossRef]
- Feng, G.; Xu, Y.; Ma, N.; Midorikawa, K.; Oikawa, S.; Kobayashi, H.; Nakamura, S.; Ishinaga, H.; Zhang, Z.; Huang, G.; et al. Influence of Epstein-Barr virus and human papillomavirus infection on macrophage migration inhibitory factor and macrophage polarization in nasopharyngeal carcinoma. BMC Cancer 2021, 21, 929. [Google Scholar] [CrossRef]
- Costa-Silva, B.; Aiello, N.M.; Ocean, A.J.; Singh, S.; Zhang, H.; Thakur, B.K.; Becker, A.; Hoshino, A.; Mark, M.T.; Molina, H.; et al. Pancreatic cancer exosomes initiate pre-metastatic niche formation in the liver. Nat. Cell Biol. 2015, 17, 816–826. [Google Scholar] [CrossRef]
- Kamel, M.M.; Saad, M.F.; Mahmoud, A.A.; Edries, A.A.; Abdel-Moneim, A.S. Evaluation of serum PIVKA-II and MIF as diagnostic markers for HCV/HBV induced hepatocellular carcinoma. Microb. Pathog. 2014, 77, 31–35. [Google Scholar] [CrossRef]
- Zhang, S.; Lin, R.; Zhou, Z.; Wen, S.; Lin, L.; Chen, S.; Shan, Y.; Cong, Y.; Wang, S. Macrophage migration inhibitory factor interacts with HBx and inhibits its apoptotic activity. Biochem. Biophys. Res. Commun. 2006, 342, 671–679. [Google Scholar] [CrossRef]
- Xu, R.; Wu, Y.; Xiang, X.; Lv, X.; He, M.; Xu, C.; Lai, G.; Xiang, T. Sulforaphane effectively inhibits HBV by altering Treg/Th17 immune balance and the MIF-macrophages polarizing axis in vitro and in vivo. Virus Res. 2024, 341, 199316. [Google Scholar] [CrossRef] [PubMed]
- Moudi, B.; Heidari, Z.; Mahmoudzadeh-Sagheb, H.; Hashemi, M. Gene polymorphisms of macrophage migration inhibitory factor affect susceptibility to chronic hepatitis B virus infection in an Iranian cohort. Microbiol. Immunol. 2016, 60, 390–396. [Google Scholar] [CrossRef] [PubMed]
- Osman, H.A.; El-Sayed, M.; Tag-Adeen, M.; Sabra, A.; El-Sawy, S.A.; Mahmoud, M.A.; Elwahab, S.M.A.; Wahman, M.; Hassan, M.H. Genetic profile of MIF single nucleotide polymorphism (rs755622 G>C) in hepatocellular carcinoma among Egyptian patients. Clin. Exp. Hepatol. 2023, 9, 46–56. [Google Scholar] [CrossRef] [PubMed]
- Wirtz, T.H.; Fischer, P.; Backhaus, C.; Bergmann, I.; Brandt, E.F.; Heinrichs, D.; Koenen, M.T.; Schneider, K.M.; Eggermann, T.; Kurth, I.; et al. Genetic Variants in the Promoter Region of the Macrophage Migration Inhibitory Factor are Associated with the Severity of Hepatitis C Virus-Induced Liver Fibrosis. Int. J. Mol. Sci. 2019, 20, 3753. [Google Scholar] [CrossRef]
- Bacher, M.; Eickmann, M.; Schrader, J.; Gemsa, D.; Heiske, A. Human cytomegalovirus-mediated induction of MIF in fibroblasts. Virology 2002, 299, 32–37. [Google Scholar] [CrossRef]
- Adamson, C.S.; Nevels, M.M. Bright and Early: Inhibiting Human Cytomegalovirus by Targeting Major Immediate-Early Gene Expression or Protein Function. Viruses 2020, 12, 110. [Google Scholar] [CrossRef]
- Howard, J.D.; Chung, C.H. Biology of human papillomavirus-related oropharyngeal cancer. Semin. Radiat. Oncol. 2012, 22, 187–193. [Google Scholar] [CrossRef]
- Kindt, N.; Descamps, G.; Lechien, J.R.; Remmelink, M.; Colet, J.M.; Wattiez, R.; Berchem, G.; Journe, F.; Saussez, S. Involvement of HPV Infection in the Release of Macrophage Migration Inhibitory Factor in Head and Neck Squamous Cell Carcinoma. J. Clin. Med. 2019, 8, 75. [Google Scholar] [CrossRef]
- Ohsugi, T.; Kumasaka, T. Low CD4/CD8 T-cell ratio associated with inflammatory arthropathy in human T-cell leukemia virus type I Tax transgenic mice. PLoS ONE 2011, 6, e18518. [Google Scholar] [CrossRef]
- Salahuddin, S.Z.; Markham, P.D.; Lindner, S.G.; Gootenberg, J.; Popovic, M.; Hemmi, H.; Sarin, P.S.; Gallo, R.C. Lymphokine production by cultured human T cells transformed by human T-cell leukemia-lymphoma virus-I. Science 1984, 223, 703–707. [Google Scholar] [CrossRef]
- Yin, M.; Srinivas, N.; Lei, K.C.; Murad, M.; Ugurel, S.; Livingstone, E.; Hyun, J.; Gambichler, T.; Rached, N.A.; Becker, J.C. Crosstalk Between CLL and Cutaneous T-Cell Lymphoma: MIF-CD74 Axis and Dysregulated Inflammatory Signaling. EJC Skin Cancer 2025, 3, 100735. [Google Scholar] [CrossRef]
- del Casar, J.M.; Corte, M.D.; Alvarez, A.; Garcia, I.; Bongera, M.; Gonzalez, L.O.; Garcia-Muniz, J.L.; Allende, M.T.; Astudillo, A.; Vizoso, F.J. Lymphatic and/or blood vessel invasion in gastric cancer: Relationship with clinicopathological parameters, biological factors and prognostic significance. J. Cancer Res. Clin. Oncol. 2008, 134, 153–161. [Google Scholar] [CrossRef] [PubMed]
- Del Mistro, A.; Baboci, L.; Frayle-Salamanca, H.; Trevisan, R.; Bergamo, E.; Lignitto, L.; Sasset, L.; Cecchetto, M.G.; Cattelan, A.M.; Calabro, M.L. Oral human papillomavirus and human herpesvirus-8 infections among human immunodeficiency virus type 1-infected men and women in Italy. Sex. Transm. Dis. 2012, 39, 894–898. [Google Scholar] [CrossRef] [PubMed]
- Dai, L.; Cao, Y.; Jiang, W.; Zabaleta, J.; Liu, Z.; Qiao, J.; Qin, Z. KSHV co-infection down-regulates HPV16 E6 and E7 from cervical cancer cells. Oncotarget 2017, 8, 35792–35803. [Google Scholar] [CrossRef]
- Dai, L.; Qiao, J.; Del Valle, L.; Qin, Z. KSHV co-infection regulates HPV16+ cervical cancer cells pathogenesis in vitro and in vivo. Am. J. Cancer Res. 2018, 8, 708–714. [Google Scholar]
- Cirone, M. Cancer cells dysregulate PI3K/AKT/mTOR pathway activation to ensure their survival and proliferation: Mimicking them is a smart strategy of gammaherpesviruses. Crit. Rev. Biochem. Mol. Biol. 2021, 56, 500–509. [Google Scholar] [CrossRef]
- Watanabe, T.; Sugimoto, A.; Hosokawa, K.; Fujimuro, M. Signal Transduction Pathways Associated with KSHV-Related Tumors. Adv. Exp. Med. Biol. 2018, 1045, 321–355. [Google Scholar]
- Davis, D.A.; Shrestha, P.; Yarchoan, R. Hypoxia and hypoxia-inducible factors in Kaposi sarcoma-associated herpesvirus infection and disease pathogenesis. J. Med. Virol. 2023, 95, e29071. [Google Scholar] [CrossRef]
- Cheng, B.; Wang, Q.; Song, Y.; Liu, Y.; Liu, Y.; Yang, S.; Li, D.; Zhang, Y.; Zhu, C. MIF inhibitor, ISO-1, attenuates human pancreatic cancer cell proliferation, migration and invasion in vitro, and suppresses xenograft tumour growth in vivo. Sci. Rep. 2020, 10, 6741. [Google Scholar] [CrossRef]
- Crichlow, G.V.; Cheng, K.F.; Dabideen, D.; Ochani, M.; Aljabari, B.; Pavlov, V.A.; Miller, E.J.; Lolis, E.; Al-Abed, Y. Alternative chemical modifications reverse the binding orientation of a pharmacophore scaffold in the active site of macrophage migration inhibitory factor. J. Biol. Chem. 2007, 282, 23089–23095. [Google Scholar] [CrossRef]
- Zheng, L.; Feng, Z.; Tao, S.; Gao, J.; Lin, Y.; Wei, X.; Zheng, B.; Huang, B.; Zheng, Z.; Zhang, X.; et al. Destabilization of macrophage migration inhibitory factor by 4-IPP reduces NF-kappaB/P-TEFb complex-mediated c-Myb transcription to suppress osteosarcoma tumourigenesis. Clin. Transl. Med. 2022, 12, e652. [Google Scholar] [CrossRef]
- Mahalingam, D.; Patel, M.R.; Sachdev, J.C.; Hart, L.L.; Halama, N.; Ramanathan, R.K.; Sarantopoulos, J.; Volkel, D.; Youssef, A.; de Jong, F.A.; et al. Phase I study of imalumab (BAX69), a fully human recombinant antioxidized macrophage migration inhibitory factor antibody in advanced solid tumours. Br. J. Clin. Pharmacol. 2020, 86, 1836–1848. [Google Scholar] [CrossRef]
- Fey, R.M.; Nichols, R.A.; Tran, T.T.; Vandenbark, A.A.; Kulkarni, R.P. MIF and CD74 as Emerging Biomarkers for Immune Checkpoint Blockade Therapy. Cancers 2024, 16, 1773. [Google Scholar] [CrossRef]
- Cho, Y.; Crichlow, G.V.; Vermeire, J.J.; Leng, L.; Du, X.; Hodsdon, M.E.; Bucala, R.; Cappello, M.; Gross, M.; Gaeta, F.; et al. Allosteric inhibition of macrophage migration inhibitory factor revealed by ibudilast. Proc. Natl. Acad. Sci. USA 2010, 107, 11313–11318. [Google Scholar] [CrossRef]
- Ha, W.; Sevim-Nalkiran, H.; Zaman, A.M.; Matsuda, K.; Khasraw, M.; Nowak, A.K.; Chung, L.; Baxter, R.C.; McDonald, K.L. Ibudilast sensitizes glioblastoma to temozolomide by targeting Macrophage Migration Inhibitory Factor (MIF). Sci. Rep. 2019, 9, 2905. [Google Scholar] [CrossRef]
- Xu, L.; Zhang, Y.; Zheng, L.; Qiao, C.; Li, Y.; Li, D.; Zhen, X.; Hou, T. Discovery of novel inhibitors targeting the macrophage migration inhibitory factor via structure-based virtual screening and bioassays. J. Med. Chem. 2014, 57, 3737–3745. [Google Scholar] [CrossRef]

| Inhibitor | Type | Target Site or Action | Functional Effects | Diseases | References |
|---|---|---|---|---|---|
| ISO-1 | Small-molecule | Tautomerase MIF/CD74 | Suppress tumor proliferation, migration and invasion | Pancreatic cancer | [39] |
| OXIM-1 | Small-molecule | Bind to MIF active site by hydrogen bonds and hydrophobic interaction | Decrease NF-κB; reduce inflammation | Acute peritonitis | [40] |
| 4-1PP (4-iodo-6-phenylpyrimidine) | Small-molecule | Bind covalently to MIF active site | MIF degradation; block NF-κB/P-TEFb complex formation | Osteosarcoma | [41] |
| Imalumab (BAX69) | Monoclonal antibody | oxMIF MIF/CD74 | Neutralize MIF activity; suppress tumor growth and metastasis | Malignant solid tumor, mCRC, NSCLC, ovarian cancer | [42,43] |
| Ibudilast | Small-molecule | Non-competitively bind to adjacent site of MIF and cause conformation change | Downregulate MIF expression and functions | Neuronopathic pain, opioid withdrawal, acute opioid analgesia | [44,45] |
| P425/CPSI-1306 | Dual-active inhibitor | Disrupt allosteric structure of MIF MIF/CD74 | Inhibit tautomerase and biological properties of MIF | Inflammatory diseases | [46] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fan, J.; Ryu, V.; Qin, Z.; Dai, L. Roles of Macrophage Migration Inhibitory Factor (MIF) Signaling Pathway in Oncovirus Infection and Virus-Associated Cancers. Viruses 2025, 17, 1582. https://doi.org/10.3390/v17121582
Fan J, Ryu V, Qin Z, Dai L. Roles of Macrophage Migration Inhibitory Factor (MIF) Signaling Pathway in Oncovirus Infection and Virus-Associated Cancers. Viruses. 2025; 17(12):1582. https://doi.org/10.3390/v17121582
Chicago/Turabian StyleFan, Jiaojiao, Victor Ryu, Zhiqiang Qin, and Lu Dai. 2025. "Roles of Macrophage Migration Inhibitory Factor (MIF) Signaling Pathway in Oncovirus Infection and Virus-Associated Cancers" Viruses 17, no. 12: 1582. https://doi.org/10.3390/v17121582
APA StyleFan, J., Ryu, V., Qin, Z., & Dai, L. (2025). Roles of Macrophage Migration Inhibitory Factor (MIF) Signaling Pathway in Oncovirus Infection and Virus-Associated Cancers. Viruses, 17(12), 1582. https://doi.org/10.3390/v17121582

