Generation and Efficacy of Two Chimeric Viruses Derived from GPE− Vaccine Strain as Classical Swine Fever Vaccine Candidates
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cells and Viruses
2.2. Construction of Chimeric Pestiviruses
2.3. Virus Rescue
2.4. Genetic Stability Assessment
2.5. Sequencing
2.6. Virus Titration
2.7. Animal Use
2.8. Animal Experiments
2.9. Serum Neutralization Test (SNT)
2.10. Isolation of Porcine Peripheral Blood Mononuclear Cells (PBMCs)
2.11. In Vitro Stimulation Assay of PBMCs for the Detection of CSFV-Specific Interferon-γ (IFN-γ)-Secreting Cells by Enzyme-Linked Immunosorbent Assay (ELISA)
2.12. Statistical Analysis
2.13. Ethics Statement
3. Results
3.1. Rescue of Chimeric Viruses, In Vitro Characterization, and Pathogenicity Assessment in Pigs
3.2. Infectivity and Immune Responses in Chimeric Virus-Inoculated Pigs
3.3. Efficacy of Chimeric Virus-Vaccinated Pigs against CSFV Challenge
3.3.1. Vaccination Allows Solid Protection from Clinical Manifestations Following CSFV Challenge
3.3.2. Hematological Parameters in Pigs
3.3.3. Early Protection in Vaccinated Pigs via IFN-γ Induction with the Absence of Neutralizing Antibody
3.3.4. Protection against Systemic Infection in Vaccinated Pigs after CSFV Challenge
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yadav, S.; Weng, H.-Y. Estimating the Scale of Adverse Animal Welfare Consequences of Movement Restriction and Mitigation Strategies in a Classical Swine Fever Outbreak. BMC Vet. Res. 2017, 13, 83. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ganges, L.; Crooke, H.R.; Bohórquez, J.A.; Postel, A.; Sakoda, Y.; Becher, P.; Ruggli, N. Classical Swine Fever Virus: The Past, Present and Future. Virus Res. 2020, 289, 198151. [Google Scholar] [CrossRef] [PubMed]
- Smith, D.B.; Meyers, G.; Bukh, J.; Gould, E.A.; Monath, T.; Scott Muerhoff, A.; Pletnev, A.; Rico-Hesse, R.; Stapleton, J.T.; Simmonds, P.; et al. Proposed Revision to the Taxonomy of the Genus Pestivirus, Family Flaviviridae. J. Gen. Virol. 2017, 98, 2106–2112. [Google Scholar] [CrossRef]
- Postel, A.; Smith, D.B.; Becher, P. Proposed Update to the Taxonomy of Pestiviruses: Eight Additional Species within the Genus Pestivirus, Family Flaviviridae. Viruses 2021, 13, 1542. [Google Scholar] [CrossRef]
- Meyers, G.; Thiel, H.-J. Molecular Characterization of Pestiviruses. In Advances in Virus Research; Maramorosch, K., Murphy, F.A., Shatkin, A.J., Eds.; Academic Press: San Diego, CA, USA, 1996; Volume 47, pp. 53–118. [Google Scholar] [CrossRef]
- Tautz, N.; Tews, B.A.; Meyers, G. Chapter Two—The Molecular Biology of Pestiviruses. In Advances in Virus Research; Kielian, M., Maramorosch, K., Mettenleiter, T.C., Eds.; Academic Press: San Diego, CA, USA, 2015; Volume 93, pp. 47–160. [Google Scholar] [CrossRef]
- Ito, S.; Jurado, C.; Bosch, J.; Ito, M.; Sánchez-Vizcaíno, J.M.; Isoda, N.; Sakoda, Y. Role of Wild Boar in the Spread of Classical Swine Fever in Japan. Pathogens 2019, 8, 206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Postel, A.; Nishi, T.; Kameyama, K.-I.; Meyer, D.; Suckstorff, O.; Fukai, K.; Becher, P. Reemergence of Classical Swine Fever, Japan, 2018. Emerg. Infect. Dis. 2019, 25, 1228–1231. [Google Scholar] [CrossRef] [Green Version]
- Postel, A.; Austermann-Busch, S.; Petrov, A.; Moennig, V.; Becher, P. Epidemiology, Diagnosis and Control of Classical Swine Fever: Recent Developments and Future Challenges. Transbound. Emerg. Dis. 2018, 65, 248–261. [Google Scholar] [CrossRef] [Green Version]
- Beer, M.; Reimann, I.; Hoffmann, B.; Depner, K. Novel Marker Vaccines against Classical Swine Fever. Vaccine 2007, 25, 5665–5670. [Google Scholar] [CrossRef]
- Li, F.; Li, B.; Niu, X.; Chen, W.; Li, Y.; Wu, K.; Li, X.; Ding, H.; Zhao, M.; Chen, J.; et al. The Development of Classical Swine Fever Marker Vaccines in Recent Years. Vaccines 2022, 10, 603. [Google Scholar] [CrossRef]
- Blome, S.; Moß, C.; Reimann, I.; König, P.; Beer, M. Classical Swine Fever Vaccines—State-of-the-Art. Vet. Microbiol. 2017, 206, 10–20. [Google Scholar] [CrossRef]
- Coronado, L.; Perera, C.L.; Rios, L.; Frías, M.T.; Pérez, L.J. A Critical Review about Different Vaccines against Classical Swine Fever Virus and Their Repercussions in Endemic Regions. Vaccines 2021, 9, 154. [Google Scholar] [CrossRef]
- Rasmussen, T.B.; Uttenthal, Å.; Reimann, I.; Nielsen, J.; Depner, K.; Beer, M. Virulence, Immunogenicity and Vaccine Properties of a Novel Chimeric Pestivirus. J. Gen. Virol. 2007, 88, 481–486. [Google Scholar] [CrossRef]
- Yi, W.; Wang, H.; Qin, H.; Wang, Q.; Guo, R.; Wen, G.; Pan, Z. Construction and Efficacy of a New Live Chimeric C-Strain Vaccine with DIVA Characteristics against Classical Swine Fever. Vaccine 2023, 41, 2003–2012. [Google Scholar] [CrossRef] [PubMed]
- Reimann, I.; Depner, K.; Trapp, S.; Beer, M. An Avirulent Chimeric Pestivirus with Altered Cell Tropism Protects Pigs against Lethal Infection with Classical Swine Fever Virus. Virology 2004, 322, 143–157. [Google Scholar] [CrossRef] [Green Version]
- Lim, S.; Choe, S.; Kim, K.-S.; Jeoung, H.-Y.; Cha, R.M.; Park, G.-S.; Shin, J.; Park, G.-N.; Cho, I.-S.; Song, J.-Y.; et al. Assessment of the Efficacy of an Attenuated Live Marker Classical Swine Fever Vaccine (Flc-LOM-BErns) in Pregnant Sows. Vaccine 2019, 37, 3598–3604. [Google Scholar] [CrossRef]
- Blome, S.; Wernike, K.; Reimann, I.; König, P.; Moß, C.; Beer, M. A Decade of Research into Classical Swine Fever Marker Vaccine CP7_E2alf (Suvaxyn® CSF Marker): A Review of Vaccine Properties. Vet. Res. 2017, 48, 51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blome, S.; Aebischer, A.; Lange, E.; Hofmann, M.; Leifer, I.; Loeffen, W.; Koenen, F.; Beer, M. Comparative Evaluation of Live Marker Vaccine Candidates “CP7_E2alf” and “Flc11” along with C-Strain “Riems” after Oral Vaccination. Vet. Microbiol. 2012, 158, 42–59. [Google Scholar] [CrossRef]
- Postel, A.; Schmeiser, S.; Oguzoglu, T.C.; Indenbirken, D.; Alawi, M.; Fischer, N.; Grundhoff, A.; Becher, P. Close Relationship of Ruminant Pestiviruses and Classical Swine Fever Virus. Emerg. Infect. Dis. 2015, 21, 668–672. [Google Scholar] [CrossRef] [PubMed]
- Postel, A.; Becher, P. Genetically Distinct Pestiviruses Pave the Way to Improved Classical Swine Fever Marker Vaccine Candidates Based on the Chimeric Pestivirus Concept. Emerg. Microbes Infect. 2020, 9, 2180–2189. [Google Scholar] [CrossRef]
- Tamura, T.; Sakoda, Y.; Yoshino, F.; Nomura, T.; Yamamoto, N.; Sato, Y.; Okamatsu, M.; Ruggli, N.; Kida, H. Selection of Classical Swine Fever Virus with Enhanced Pathogenicity Reveals Synergistic Virulence Determinants in E2 and NS4B. J. Virol. 2012, 86, 8602–8613. [Google Scholar] [CrossRef] [Green Version]
- Sakoda, Y.; Yamaguchi, O.; Fukusho, A. A New Assay for Classical Swine Fever Virus Based on Cytopathogenicity in Porcine Kidney Cell Line FS-L3. J. Virol. Methods 1998, 70, 93–101. [Google Scholar] [CrossRef]
- Ishikawa, K.; Nagai, H.; Katayama, K.; Tsutsui, M.; Tanabayashi, K.; Takeuchi, K.; Hishiyama, M.; Saitoh, A.; Takagi, M.; Gotoh, K.; et al. Comparison of the Entire Nucleotide and Deduced Amino Acid Sequences of the Attenuated Hog Cholera Vaccine Strain GPE− and the Wild-Type Parental Strain ALD. Arch. Virol. 1995, 140, 1385–1391. [Google Scholar] [CrossRef] [PubMed]
- Kim, T.; Huynh, L.T.; Hirose, S.; Igarashi, M.; Hiono, T.; Isoda, N.; Sakoda, Y. Characteristics of Classical Swine Fever Virus Variants Derived from Live Attenuated GPE− Vaccine Seed. Viruses 2021, 13, 1672. [Google Scholar] [CrossRef] [PubMed]
- Sakoda, Y.; Fukusho, A. Establishment and Characterization of a Porcine Kidney Cell Line, FS-L3, Which Forms Unique Multicellular Domes in Serum-Free Culture. In Vitro Cell. Dev. Biol. Anim. 1998, 34, 53–57. [Google Scholar] [CrossRef]
- Itakura, Y.; Matsuno, K.; Ito, A.; Gerber, M.; Liniger, M.; Fujimoto, Y.; Tamura, T.; Kameyama, K.; Okamatsu, M.; Ruggli, N.; et al. A Cloned Classical Swine Fever Virus Derived from the Vaccine Strain GPE− Causes Cytopathic Effect in CPK-NS Cells via Type-I Interferon-Dependent Necroptosis. Virus Res. 2020, 276, 197809. [Google Scholar] [CrossRef] [PubMed]
- Su’etsugu, M.; Takada, H.; Katayama, T.; Tsujimoto, H. Exponential Propagation of Large Circular DNA by Reconstitution of a Chromosome-Replication Cycle. Nucleic Acids Res. 2017, 45, 11525–11534. [Google Scholar] [CrossRef] [Green Version]
- Moser, C.; Stettler, P.; Tratschin, J.-D.; Hofmann, M.A. Cytopathogenic and Noncytopathogenic RNA Replicons of Classical Swine Fever Virus. J. Virol. 1999, 73, 7787–7794. [Google Scholar] [CrossRef]
- Kameyama, K.; Sakoda, Y.; Tamai, K.; Igarashi, H.; Tajima, M.; Mochizuki, T.; Namba, Y.; Kida, H. Development of an Immunochromatographic Test Kit for Rapid Detection of Bovine Viral Diarrhea Virus Antigen. J. Virol. Methods 2006, 138, 140–146. [Google Scholar] [CrossRef]
- Tamura, T.; Igarashi, M.; Enkhbold, B.; Suzuki, T.; Okamatsu, M.; Ono, C.; Mori, H.; Izumi, T.; Sato, A.; Fauzyah, Y.; et al. In Vivo Dynamics of Reporter Flaviviridae Viruses. J. Virol. 2019, 93, e01191-19. [Google Scholar] [CrossRef]
- Reed, L.J.; Muench, H. A Simple Method of Estimating Fifty per Cent Endpoints. Am. J. Epidemiol. 1938, 27, 493–497. [Google Scholar] [CrossRef]
- Mittelholzer, C.; Moser, C.; Tratschin, J.-D.; Hofmann, M.A. Analysis of Classical Swine Fever Virus Replication Kinetics Allows Differentiation of Highly Virulent from Avirulent Strains. Vet. Microbiol. 2000, 74, 293–308. [Google Scholar] [CrossRef]
- Tetsuo, M.; Matsuno, K.; Tamura, T.; Fukuhara, T.; Kim, T.; Okamatsu, M.; Tautz, N.; Matsuura, Y.; Sakoda, Y. Development of a High-Throughput Serum Neutralization Test Using Recombinant Pestiviruses Possessing a Small Reporter Tag. Pathogens 2020, 9, 188. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Graham, S.P.; Everett, H.E.; Haines, F.J.; Johns, H.L.; Sosan, O.A.; Salguero, F.J.; Clifford, D.J.; Steinbach, F.; Drew, T.W.; Crooke, H.R. Challenge of Pigs with Classical Swine Fever Viruses after C-Strain Vaccination Reveals Remarkably Rapid Protection and Insights into Early Immunity. PLoS ONE 2012, 7, e29310. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van Gennip, H.G.P.; van Rijn, P.A.; Widjojoatmodjo, M.N.; de Smit, A.J.; Moormann, R.J.M. Chimeric Classical Swine Fever Viruses Containing Envelope Protein ERNS or E2 of Bovine Viral Diarrhoea Virus Protect Pigs against Challenge with CSFV and Induce a Distinguishable Antibody Response. Vaccine 2000, 19, 447–459. [Google Scholar] [CrossRef] [PubMed]
- de Smit, A.J.; Bouma, A.; van Gennip, H.G.P.; de Kluijver, E.P.; Moormann, R.J.M. Chimeric (Marker) C-Strain Viruses Induce Clinical Protection against Virulent Classical Swine Fever Virus (CSFV) and Reduce Transmission of CSFV between Vaccinated Pigs. Vaccine 2001, 19, 1467–1476. [Google Scholar] [CrossRef]
- Tong, C.; Liu, H.; Wang, J.; Sun, Y.; Chen, N. Safety, Efficacy, and DIVA Feasibility on a Novel Live Attenuated Classical Swine Fever Marker Vaccine Candidate. Vaccine 2022, 40, 7219–7229. [Google Scholar] [CrossRef] [PubMed]
- Holinka, L.G.; Fernandez-Sainz, I.; O’Donnell, V.; Prarat, M.V.; Gladue, D.P.; Lu, Z.; Risatti, G.R.; Borca, M.V. Development of a Live Attenuated Antigenic Marker Classical Swine Fever Vaccine. Virology 2009, 384, 106–113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reimann, I.; Depner, K.; Utke, K.; Leifer, I.; Lange, E.; Beer, M. Characterization of a New Chimeric Marker Vaccine Candidate with a Mutated Antigenic E2-Epitope. Vet. Microbiol. 2010, 142, 45–50. [Google Scholar] [CrossRef]
- Wei, Q.; Liu, Y.; Zhang, G. Research Progress and Challenges in Vaccine Development against Classical Swine Fever Virus. Viruses 2021, 13, 445. [Google Scholar] [CrossRef]
- Luo, Y.; Yuan, Y.; Ankenbauer, R.G.; Nelson, L.D.; Witte, S.B.; Jackson, J.A.; Welch, S.-K.W. Construction of Chimeric Bovine Viral Diarrhea Viruses Containing Glycoprotein Erns of Heterologous Pestiviruses and Evaluation of the Chimeras as Potential Marker Vaccines against BVDV. Vaccine 2012, 30, 3843–3848. [Google Scholar] [CrossRef]
- Jo, W.K.; van Elk, C.; van de Bildt, M.; van Run, P.; Petry, M.; Jesse, S.T.; Jung, K.; Ludlow, M.; Kuiken, T.; Osterhaus, A. An Evolutionary Divergent Pestivirus Lacking the Npro Gene Systemically Infects a Whale Species. Emerg. Microbes Infect. 2019, 8, 1383–1392. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- König, M.; Lengsfeld, T.; Pauly, T.; Stark, R.; Thiel, H.J. Classical Swine Fever Virus: Independent Induction of Protective Immunity by Two Structural Glycoproteins. J. Virol. 1995, 69, 6479–6486. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wei, Q.; Bai, Y.; Song, Y.; Liu, Y.; Yu, W.; Sun, Y.; Wang, L.; Deng, R.; Xing, G.; Zhang, G. Generation and Immunogenicity Analysis of Recombinant Classical Swine Fever Virus Glycoprotein E2 and Erns Expressed in Baculovirus Expression System. Virol. J. 2021, 18, 44. [Google Scholar] [CrossRef]
- Hirose, S.; Isoda, N.; Huynh, L.T.; Kim, T.; Yoshimoto, K.; Tanaka, T.; Inui, K.; Hiono, T.; Sakoda, Y. Antiviral Effects of 5-Aminolevulinic Acid Phosphate against Classical Swine Fever Virus: In Vitro and In Vivo Evaluation. Pathogens 2022, 11, 164. [Google Scholar] [CrossRef] [PubMed]
- Sasahara, J.; Kumagai, T.; Shimizu, Y.; Furuuchi, S. Field Experiments of Hog Cholera Live Vaccine Prepared in Guinea-Pig Kidney Cell Culture. Natl. Inst. Anim. Health Q. 1969, 9, 83–91. [Google Scholar]
- Bohórquez, J.A.; Wang, M.; Díaz, I.; Alberch, M.; Pérez-Simó, M.; Rosell, R.; Gladue, D.P.; Borca, M.V.; Ganges, L. The FlagT4G Vaccine Confers a Strong and Regulated Immunity and Early Virological Protection against Classical Swine Fever. Viruses 2022, 14, 1954. [Google Scholar] [CrossRef]
- Suradhat, S.; Intrakamhaeng, M.; Damrongwatanapokin, S. The Correlation of Virus-Specific Interferon-Gamma Production and Protection against Classical Swine Fever Virus Infection. Vet. Immunol. Immunopathol. 2001, 83, 177–189. [Google Scholar] [CrossRef]
Trial | Virus | Pig ID | Virus Recovery at dpc (log10 TCID50/mL) | |||||||
---|---|---|---|---|---|---|---|---|---|---|
−7 | 0 | 3 | 5 | 7 | 9 | 11 | 14 | |||
First | vGPE−/PAPeV Erns | #351 | – | – | – | – | – | – | – | – |
#352 | – | – | – | – | – | – | – | – | ||
#353 | – | – | – | – | – | – | – | – | ||
vGPE− | #348 | – | – | – | – | – | – | – | – | |
#349 | – | – | + | 2.8 | 3.3 | 1.3 | + | – | ||
#350 | – | – | – | – | – | – | – | – | ||
Control | #345 | – | – | 1.8 | 3.6 | 4.6 | 6.0 | 6.1 | 6.8 | |
#346 | – | – | 1.5 | 2.8 | 3.6 | 3.8 | 3.3 | 2.8 | ||
#347 | – | – | 1.3 | 3.6 | 4.3 | 6.3 | 5.8 | 6.0 | ||
Second | vGPE−/PhoPeV Erns | #371 | – | – | – | – | – | – | – | – |
#372 | – | – | – | – | – | – | – | – | ||
#373 | – | – | – | – | – | – | – | – | ||
Control | #368 | – | – | 2.3 | 4.3 | 5.8 | 5.8 | 6.0 | 5.6 | |
#369 | – | – | 1.6 | 3.3 | 3.8 | 4.3 | 4.8 | 4.0 | ||
#370 | – | – | 1.3 | 4.0 | 6.0 | 6.5 | 6.3 | 6.6 |
Trial | Virus | Pig ID | Virus Recovery (log10 TCID50/g) | ||||||
---|---|---|---|---|---|---|---|---|---|
Tonsil | Brain | Spleen | Kidney | Adrenal Grand | Mesenteric Lymph Node | Colon | |||
First | vGPE−/PAPeV Erns | #351 | – | – | – | – | – | – | – |
#352 | – | – | – | – | – | – | – | ||
#353 | – | – | – | – | – | – | – | ||
vGPE− | #348 | – | – | – | – | – | – | – | |
#349 | + | – | – | + | – | – | – | ||
#350 | – | – | – | – | – | – | – | ||
Control | #345 | 6.0 | 4.8 | 6.1 | 5.3 | 5.0 | 6.6 | 6.1 | |
#346 | 3.3 | 2.7 | 2.7 | 3.8 | 2.6 | 2.3 | 2.3 | ||
#347 | 6.1 | 4.3 | 7.3 | 5.5 | 5.6 | 5.8 | 5.5 | ||
Second | vGPE−/PhoPeV Erns | #371 | – | – | – | – | – | – | – |
#372 | – | – | – | – | – | – | – | ||
#373 | – | – | – | – | – | – | – | ||
Control | #368 | 5.0 | 4.0 | 6.0 | 5.8 | 5.8 | 5.0 | 5.0 | |
#369 | 4.6 | 4.0 | 4.8 | 5.0 | 4.8 | 5.0 | 4.8 | ||
#370 | 6.3 | 4.3 | 6.6 | 6.8 | 6.8 | 5.8 | 5.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huynh, L.T.; Isoda, N.; Hew, L.Y.; Ogino, S.; Mimura, Y.; Kobayashi, M.; Kim, T.; Nishi, T.; Fukai, K.; Hiono, T.; et al. Generation and Efficacy of Two Chimeric Viruses Derived from GPE− Vaccine Strain as Classical Swine Fever Vaccine Candidates. Viruses 2023, 15, 1587. https://doi.org/10.3390/v15071587
Huynh LT, Isoda N, Hew LY, Ogino S, Mimura Y, Kobayashi M, Kim T, Nishi T, Fukai K, Hiono T, et al. Generation and Efficacy of Two Chimeric Viruses Derived from GPE− Vaccine Strain as Classical Swine Fever Vaccine Candidates. Viruses. 2023; 15(7):1587. https://doi.org/10.3390/v15071587
Chicago/Turabian StyleHuynh, Loc Tan, Norikazu Isoda, Lim Yik Hew, Saho Ogino, Yume Mimura, Maya Kobayashi, Taksoo Kim, Tatsuya Nishi, Katsuhiko Fukai, Takahiro Hiono, and et al. 2023. "Generation and Efficacy of Two Chimeric Viruses Derived from GPE− Vaccine Strain as Classical Swine Fever Vaccine Candidates" Viruses 15, no. 7: 1587. https://doi.org/10.3390/v15071587
APA StyleHuynh, L. T., Isoda, N., Hew, L. Y., Ogino, S., Mimura, Y., Kobayashi, M., Kim, T., Nishi, T., Fukai, K., Hiono, T., & Sakoda, Y. (2023). Generation and Efficacy of Two Chimeric Viruses Derived from GPE− Vaccine Strain as Classical Swine Fever Vaccine Candidates. Viruses, 15(7), 1587. https://doi.org/10.3390/v15071587