Activation of an Effective Immune Response after Yellow Fever Vaccination Is Associated with the Genetic Background and Early Response of IFN-γ and CLEC5A
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Group and Blood Samples
2.2. Purification and Cryopreservation of Human Peripheral Blood Mononuclear Cells (PMBCs) and Sera
2.3. Quantification of Antibodies against the Yellow Fever Virus
2.4. Immunolabeling for Flow Cytometry
2.5. DNA and RNA Extraction
2.6. Expression of Genes Related to an Antiviral Response
2.7. Genotyping and Genetic Analysis
3. Results
3.1. Activation of CLEC5A+ Monocytes and T Lymphocytes after YF17DD Vaccination
3.2. Expression of CLEC5A and Genes Related to Interferon Pathways Has a Positive Correlation with YF17DD Vaccine Immunogenicity
3.3. Polymorphism in CLEC5A and IFNG Genes Modulates the Immunologic Response to the YF17DD Vaccine
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, L.H.; Wilson, M.E. Yellow Fever Control: Current Epidemiology and Vaccination Strategies. Trop. Dis. Travel Med. Vaccines 2020, 6, 1. [Google Scholar] [CrossRef] [PubMed]
- Theiler, M.; Smith, H.H. The use of yellow fever virus modified by in vitro cultivation for human immunization. J. Exp. Med. 1937, 65, 787–800. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Monath, T.P. Yellow Fever Vaccine. Expert Rev. Vaccines 2005, 4, 553–574. [Google Scholar] [CrossRef] [PubMed]
- Pulendran, B. Learning Immunology from the Yellow Fever Vaccine: Innate Immunity to Systems Vaccinology. Nat. Rev. Immunol. 2009, 9, 741–747. [Google Scholar] [CrossRef]
- Rice, C.; Lenches, E.; Shin, S.; Sheets, R.; Strauss, J. Nucleotide Sequence of Yellow Fever Virus: Implications for Flavivirus Gene Expression and Evolution. Science 1985, 229, 726–733. [Google Scholar] [CrossRef] [Green Version]
- Ryman, K.D.; Ledger, T.N.; Campbell, G.A.; Watowich, S.J.; Barrett, A.D.T. Mutation in a 17D-204 Vaccine Substrain-Specific Envelope Protein Epitope Alters the Pathogenesis of Yellow Fever Virus in Mice. Virology 1998, 244, 59–65. [Google Scholar] [CrossRef] [Green Version]
- Duarte dos Santos, C.N.; Post, P.R.; Carvalho, R.; Ferreira, I.I.; Rice, C.M.; Galler, R. Complete Nucleotide Sequence of Yellow Fever Virus Vaccine Strains 17DD and 17D-213. Virus Res. 1995, 35, 35–41. [Google Scholar] [CrossRef]
- Hahn, C.S.; Dalrymple, J.M.; Strauss, J.H.; Rice, C.M. Comparison of the Virulent Asibi Strain of Yellow Fever Virus with the 17D Vaccine Strain Derived from It. Proc. Natl. Acad. Sci. USA 1987, 84, 2019–2023. [Google Scholar] [CrossRef] [Green Version]
- Beck, A.; Tesh, R.B.; Wood, T.G.; Widen, S.G.; Ryman, K.D.; Barrett, A.D.T. Comparison of the Live Attenuated Yellow Fever Vaccine 17D-204 Strain to Its Virulent Parental Strain Asibi by Deep Sequencing. J. Infect. Dis. 2014, 209, 334–344. [Google Scholar] [CrossRef]
- Beck, A.S.; Wood, T.G.; Widen, S.G.; Thompson, J.K.; Barrett, A.D.T. Analysis By Deep Sequencing of Discontinued Neurotropic Yellow Fever Vaccine Strains. Sci. Rep. 2018, 8, 13408. [Google Scholar] [CrossRef]
- Wieten, R.W.; Jonker, E.F.F.; van Leeuwen, E.M.M.; Remmerswaal, E.B.M.; ten Berge, I.J.M.; de Visser, A.W.; van Genderen, P.J.J.; Goorhuis, A.; Visser, L.G.; Grobusch, M.P.; et al. A Single 17D Yellow Fever Vaccination Provides Lifelong Immunity; Characterization of Yellow-Fever-Specific Neutralizing Antibody and T-Cell Responses after Vaccination. PLoS ONE 2016, 11, e0149871. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Poland, J.D.; Calisher, C.H.; Monath, T.P.; Downs, W.G.; Murphy, K. Persistence of Neutralizing Antibody 30-35 Years after Immunization with 17D Yellow Fever Vaccine. Bull. World Health Organ. 1981, 59, 895–900. [Google Scholar] [PubMed]
- Gotuzzo, E.; Yactayo, S.; Córdova, E. Efficacy and Duration of Immunity after Yellow Fever Vaccination: Systematic Review on the Need for a Booster Every 10 Years. Am. J. Trop. Med. Hyg. 2013, 89, 434–444. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roukens, A.H.E.; van Halem, K.; de Visser, A.W.; Visser, L.G. Long-Term Protection After Fractional-Dose Yellow Fever Vaccination: Follow-up Study of a Randomized, Controlled, Noninferiority Trial. Ann. Intern. Med. 2018, 169, 761. [Google Scholar] [CrossRef] [PubMed]
- De Menezes Martins, R.; Maria de Lourdes, S.M.; de Lima, S.M.B.; de Noronha, T.G.; Xavier, J.R.; Camacho, L.A.B.; de Albuquerque, E.M.; Farias, R.H.G.; da Matta de Castro, T.; Homma, A. Duration of Post-Vaccination Immunity to Yellow Fever in Volunteers Eight Years after a Dose-Response Study. Vaccine 2018, 36, 4112–4117. [Google Scholar] [CrossRef]
- Barba-Spaeth, G.; Longman, R.S.; Albert, M.L.; Rice, C.M. Live Attenuated Yellow Fever 17D Infects Human DCs and Allows for Presentation of Endogenous and Recombinant T Cell Epitopes. J. Exp. Med. 2005, 202, 1179–1184. [Google Scholar] [CrossRef]
- Querec, T.; Bennouna, S.; Alkan, S.; Laouar, Y.; Gorden, K.; Flavell, R.; Akira, S.; Ahmed, R.; Pulendran, B. Yellow Fever Vaccine YF-17D Activates Multiple Dendritic Cell Subsets via TLR2, 7, 8, and 9 to Stimulate Polyvalent Immunity. J. Exp. Med. 2006, 203, 413–424. [Google Scholar] [CrossRef] [Green Version]
- Douam, F.; Soto Albrecht, Y.E.; Hrebikova, G.; Sadimin, E.; Davidson, C.; Kotenko, S.V.; Ploss, A. Type III Interferon-Mediated Signaling is Critical for Controlling Live Attenuated Yellow Fever Virus Infection in vivo. mBio 2017, 8, e00819-17. [Google Scholar] [CrossRef] [Green Version]
- Watson, A.; Klimstra, W. T Cell-Mediated Immunity towards Yellow Fever Virus and Useful Animal Models. Viruses 2017, 9, 77. [Google Scholar] [CrossRef]
- Neves, P.C.C.; Santos, J.R.; Tubarão, L.N.; Bonaldo, M.C.; Galler, R. Early IFN-Gamma Production after YF 17D Vaccine Virus Immunization in Mice and Its Association with Adaptive Immune Responses. PLoS ONE 2013, 8, e81953. [Google Scholar] [CrossRef] [Green Version]
- Kohler, S.; Bethke, N.; Böthe, M.; Sommerick, S.; Frentsch, M.; Romagnani, C.; Niedrig, M.; Thiel, A. The Early Cellular Signatures of Protective Immunity Induced by Live Viral Vaccination: Immunity to Infection. Eur. J. Immunol. 2012, 42, 2363–2373. [Google Scholar] [CrossRef] [PubMed]
- Avendaño-Tamayo, E.; Campo, O.; Chacón-Duque, J.C.; Ramírez, R.; Rojas, W.; Agudelo-Flórez, P.; Bedoya, G.; Restrepo, B.N. Variants in the TNFA, IL6 and IFNG Genes Are Associated with the Dengue Severity in a Sample from Colombian Population. Biomedica 2017, 37, 486. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhuo, Y.; Yang, Y.; Zhang, M.; Xu, Y.; Chen, Z.; Mu, L.; Tang, X.; Zhong, Z.; Chen, J.; Zhou, L. Single Nucleotide Polymorphisms in IFN-γ Signaling Pathway Associated with Risk of Hepatitis B Virus Infection in Chinese Children. Can. J. Infect. Dis. Med Microbiol. 2020, 2020, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, S.; Wang, Y.; Zhang, M.; Wang, M.; He, J.-Q. Genetic Variants in IFNG and IFNGR1 and Tuberculosis Susceptibility. Cytokine 2019, 123, 154775. [Google Scholar] [CrossRef] [PubMed]
- Silva, G.A.V.; Naveca, F.G.; Ramasawmy, R.; Boechat, A.L. Association between the IFNG +874A/T Gene Polymorphism and Leprosy Resistance: A Meta-Analysis. Cytokine 2014, 65, 130–133. [Google Scholar] [CrossRef] [PubMed]
- Tomashek, K.M.; Challberg, M.; Nayak, S.U.; Schiltz, H.F. Disease Resurgence, Production Capability Issues and Safety Concerns in the Context of an Aging Population: Is There a Need for a New Yellow Fever Vaccine? Vaccines 2019, 7, 179. [Google Scholar] [CrossRef] [Green Version]
- Doblas, A.; Domingo, C.; Bae, H.G.; Bohórquez, C.L.; de Ory, F.; Niedrig, M.; Mora, D.; Carrasco, F.J.; Tenorio, A. Yellow Fever Vaccine-Associated Viscerotropic Disease and Death in Spain. J. Clin. Virol. 2006, 36, 156–158. [Google Scholar] [CrossRef]
- Hernandez, N.; Bucciol, G.; Moens, L.; Le Pen, J.; Shahrooei, M.; Goudouris, E.; Shirkani, A.; Changi-Ashtiani, M.; Rokni-Zadeh, H.; Sayar, E.H.; et al. Inherited IFNAR1 Deficiency in Otherwise Healthy Patients with Adverse Reaction to Measles and Yellow Fever Live Vaccines. J. Exp. Med. 2019, 216, 2057–2070. [Google Scholar] [CrossRef]
- Volkov, L.; Grard, G.; Bollaert, P.-E.; Durand, G.A.; Cravoisy, A.; Conrad, M.; Nace, L.; Courte, G.; Marnai, R.; Leparc-Goffart, I.; et al. Viscerotropic Disease and Acute Uveitis Following Yellow Fever Vaccination: A Case Report. BMC Infect. Dis. 2020, 20, 116. [Google Scholar] [CrossRef] [Green Version]
- Barrett, A.D.; Teuwen, D.E. Yellow Fever Vaccine—How Does It Work and Why Do Rare Cases of Serious Adverse Events Take Place? Curr. Opin. Immunol. 2009, 21, 308–313. [Google Scholar] [CrossRef]
- Pulendran, B.; Miller, J.; Querec, T.D.; Akondy, R.; Moseley, N.; Laur, O.; Glidewell, J.; Monson, N.; Zhu, T.; Zhu, H.; et al. Case of Yellow Fever Vaccine–Associated Viscerotropic Disease with Prolonged Viremia, Robust Adaptive Immune Responses, and Polymorphisms in CCR5 and RANTES Genes. J. Infect. Dis. 2008, 198, 500–507. [Google Scholar] [CrossRef] [PubMed]
- Belsher, J.L.; Gay, P.; Brinton, M.; DellaValla, J.; Ridenour, R.; Lanciotti, R.; Perelygin, A.; Zaki, S.; Paddock, C.; Querec, T.; et al. Fatal Multiorgan Failure Due to Yellow Fever Vaccine-Associated Viscerotropic Disease. Vaccine 2007, 25, 8480–8485. [Google Scholar] [CrossRef] [PubMed]
- Sung, P.-S.; Hsieh, S.-L. CLEC2 and CLEC5A: Pathogenic Host Factors in Acute Viral Infections. Front. Immunol. 2019, 10, 2867. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alagarasu, K.; Bachal, R.V.; Tillu, H.; Mulay, A.P.; Kakade, M.B.; Shah, P.S.; Cecilia, D. Association of Combinations of Interleukin-10 and pro-Inflammatory Cytokine Gene Polymorphisms with Dengue Hemorrhagic Fever. Cytokine 2015, 74, 130–136. [Google Scholar] [CrossRef]
- Yoshikawa, F.S.Y.; Pietrobon, A.J.; Branco, A.C.C.C.; Pereira, N.Z.; Oliveira, L.M.D.S.; Machado, C.M.; Duarte, A.J.D.S.; Sato, M.N. Zika Virus Infects Newborn Monocytes Without Triggering a Substantial Cytokine Response. J. Infect. Dis. 2019, 220, 32–40. [Google Scholar] [CrossRef]
- Watson, A.A.; Lebedev, A.A.; Hall, B.A.; Fenton-May, A.E.; Vagin, A.A.; Dejnirattisai, W.; Felce, J.; Mongkolsapaya, J.; Palma, A.S.; Liu, Y.; et al. Structural Flexibility of the Macrophage Dengue Virus Receptor Clec5a: Implications for Ligand Binding and signaling. J. Biol. Chem. 2011, 286, 24208–24218. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.-T.; Lin, Y.-L.; Huang, M.-T.; Wu, M.-F.; Cheng, S.-C.; Lei, H.-Y.; Lee, C.-K.; Chiou, T.-W.; Wong, C.-H.; Hsieh, S.-L. CLEC5A Is Critical for Dengue-Virus-Induced Lethal Disease. Nature 2008, 453, 672–676. [Google Scholar] [CrossRef]
- Chen, S.-T.; Liu, R.-S.; Wu, M.-F.; Lin, Y.-L.; Chen, S.-Y.; Tan, D.T.-W.; Chou, T.-Y.; Tsai, I.-S.; Li, L.; Hsieh, S.-L. CLEC5A Regulates Japanese Encephalitis Virus-Induced Neuroinflammation and Lethality. PLoS Pathog. 2012, 8, e1002655. [Google Scholar] [CrossRef]
- Lectin in Host Defense Against Microbial Infections; Hsieh, S.-L. (Ed.) Advances in Experimental Medicine and Biology; Springer: Singapore, 2020; Volume 1204, ISBN 9789811515798. [Google Scholar]
- Xavier-Carvalho, C.; Gibson, G.; Brasil, P.; Ferreira, R.X.; de Souza Santos, R.; Gonçalves Cruz, O.; de Oliveira, S.A.; de Sá Carvalho, M.; Pacheco, A.G.; Kubelka, C.F.; et al. Single Nucleotide Polymorphisms in Candidate Genes and Dengue Severity in Children: A Case–Control, Functional and Meta-Analysis Study. Infect. Genet. Evol. 2013, 20, 197–205. [Google Scholar] [CrossRef]
- World Medical Association WMA Declaration of Helsinki—Ethical Principles for Medical Research Involving Human Subjects 2018. Available online: https://www.wma.net/policies-post/wma-declaration-of-helsinki-ethical-principles-for-medical-research-involving-human-subjects/ (accessed on 9 July 2018).
- Ministério da Saúde, C.N.; de Resolução, S. No 466, de 12 de Dezembro de 2012 2012. Available online: https://bvsms.saude.gov.br/bvs/saudelegis/cns/2013/res0466_12_12_2012.html (accessed on 12 December 2012).
- Matos, D.C.S.; Marcovistz, R.; Cabello, P.H.; Georgini, R.A.; Sakauchi, D.; Silva, L.L.D. Immunogenicity Test of Tetanus Component in Adsorbed Vaccines by Toxin Binding Inhibition Test. Memórias Inst. Oswaldo Cruz 2002, 97, 909–913. [Google Scholar] [CrossRef] [Green Version]
- Laitinen, J.; Samarut, J.; Hölttä, E. A Nontoxic and Versatile Protein Salting-out Method for Isolation of DNA. BioTechniques 1994, 17, 316, 318, 320–322. [Google Scholar] [PubMed]
- WHO Yellow Fever—Brazil 2019. Available online: https://www.who.int/csr/don/18-april-2019-yellow-fever-brazil/en/ (accessed on 18 April 2019).
- Possas, C.; Lourenço-de-Oliveira, R.; Tauil, P.L.; Pinheiro, F.D.P.; Pissinatti, A.; Cunha, R.V.D.; Freire, M.; Martins, R.M.; Homma, A. Yellow Fever Outbreak in Brazil: The Puzzle of Rapid Viral Spread and Challenges for Immunisation. Memórias Inst. Oswaldo Cruz 2018, 113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lucena, A.R.F.P.; Souza, L.R.D.O.; Percio, J.; Carvalho, S.M.D.; Romano, A.P.M.; Domingues, C.M.A.S. Fatores associados à gravidade dos eventos adversos pós-vacinação contra a febre amarela durante o maior surto da doença registrado no Brasil, 2016–2017. Epidemiol. Serviços Saúde 2020, 29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hamer, D.H.; Angelo, K.; Caumes, E.; van Genderen, P.J.J.; Florescu, S.A.; Popescu, C.P.; Perret, C.; McBride, A.; Checkley, A.; Ryan, J.; et al. Fatal Yellow Fever in Travelers to Brazil, 2018. MMWR Morb. Mortal. Wkly. Rep. 2018, 67, 340–341. [Google Scholar] [CrossRef] [PubMed]
- Santos, A.P.; Matos, D.C.S.; Bertho, A.L.; Mendonça, S.C.F.; Marcovistz, R. Detection of T H 1/T H 2 Cytokine Signatures in Yellow Fever 17DD First-Time Vaccinees through ELISpot Assay. Cytokine 2008, 42, 152–155. [Google Scholar] [CrossRef]
- Silva, M.L.; Martins, M.A.; Espírito-Santo, L.R.; Campi-Azevedo, A.C.; Silveira-Lemos, D.; Ribeiro, J.G.L.; Homma, A.; Kroon, E.G.; Teixeira-Carvalho, A.; Elói-Santos, S.M.; et al. Characterization of Main Cytokine Sources from the Innate and Adaptive Immune Responses Following Primary 17DD Yellow Fever Vaccination in Adults. Vaccine 2011, 29, 583–592. [Google Scholar] [CrossRef]
- Tanaka, T.; Narazaki, M.; Kishimoto, T. IL-6 in Inflammation, Immunity, and Disease. Cold Spring Harb. Perspect. Biol. 2014, 6, a016295. [Google Scholar] [CrossRef]
- Liu, M.; Guo, S.; Hibbert, J.M.; Jain, V.; Singh, N.; Wilson, N.O.; Stiles, J.K. CXCL10/IP-10 in Infectious Diseases Pathogenesis and Potential Therapeutic Implications. Cytokine Growth Factor Rev. 2011, S1359610111000293. [Google Scholar] [CrossRef]
- Xavier-Carvalho, C.; Cezar, R.D.S.; Freire, N.M.; de Vasconcelos, C.M.M.; Solorzano, V.E.F.; de Toledo-Pinto, T.G.; Fialho, L.G.; do Carmo, R.F.; Vasconcelos, L.R.S.; Cordeiro, M.T.; et al. Association of Rs1285933 Single Nucleotide Polymorphism in CLEC5A Gene with Dengue Severity and Its Functional Effects. Human Immunol. 2017, 78, 649–656. [Google Scholar] [CrossRef] [Green Version]
- Gaucher, D.; Therrien, R.; Kettaf, N.; Angermann, B.R.; Boucher, G.; Filali-Mouhim, A.; Moser, J.M.; Mehta, R.S.; Drake, D.R.; Castro, E.; et al. Yellow Fever Vaccine Induces Integrated Multilineage and Polyfunctional Immune Responses. J. Exp. Med. 2008, 205, 3119–3131. [Google Scholar] [CrossRef]
- Martins, M.Â.; Silva, M.L.; Marciano, A.P.V.; Peruhype-Magalhães, V.; Eloi-Santos, S.M.; Ribeiro, J.G.L.; Correa-Oliveira, R.; Homma, A.; Kroon, E.G.; Teixeira-Carvalho, A.; et al. Activation/Modulation of Adaptive Immunity Emerges Simultaneously after 17DD Yellow Fever First-Time Vaccination: Is This the Key to Prevent Severe Adverse Reactions Following Immunization?: Blood Lymphocytes in YF 17DD Vaccination. Clin. Exp. Immunol. 2007, 148, 90–100. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Azamor, T.; da Silva, A.M.V.; Melgaço, J.G.; dos Santos, A.P.; Xavier-Carvalho, C.; Alvarado-Arnez, L.E.; Batista-Silva, L.R.; de Souza Matos, D.C.; Bayma, C.; Missailidis, S.; et al. Activation of an Effective Immune Response after Yellow Fever Vaccination Is Associated with the Genetic Background and Early Response of IFN-γ and CLEC5A. Viruses 2021, 13, 96. https://doi.org/10.3390/v13010096
Azamor T, da Silva AMV, Melgaço JG, dos Santos AP, Xavier-Carvalho C, Alvarado-Arnez LE, Batista-Silva LR, de Souza Matos DC, Bayma C, Missailidis S, et al. Activation of an Effective Immune Response after Yellow Fever Vaccination Is Associated with the Genetic Background and Early Response of IFN-γ and CLEC5A. Viruses. 2021; 13(1):96. https://doi.org/10.3390/v13010096
Chicago/Turabian StyleAzamor, Tamiris, Andréa Marques Vieira da Silva, Juliana Gil Melgaço, Ana Paula dos Santos, Caroline Xavier-Carvalho, Lucia Elena Alvarado-Arnez, Leonardo Ribeiro Batista-Silva, Denise Cristina de Souza Matos, Camilla Bayma, Sotiris Missailidis, and et al. 2021. "Activation of an Effective Immune Response after Yellow Fever Vaccination Is Associated with the Genetic Background and Early Response of IFN-γ and CLEC5A" Viruses 13, no. 1: 96. https://doi.org/10.3390/v13010096