Novel Flavivirus Attenuation Markers Identified in the Envelope Protein of Alfuy Virus
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cell Culture
2.2. Virus Culture and Titration Using TCID50
Strain | Year of Isolation | Place of Isolation | Source of Isolation | Passage History | Reference |
---|---|---|---|---|---|
ALFV MRM3929 1 | 1966 | Kowanyama, QLD 2 | Centropus phasianius3 | Unknown | [38] |
ALFV K37414 | 1999 | Wyndham, WA 2 | Culex pullus4 | 2 C6/36, 3 PS-EK | |
ALFV CY2269 | 1999 | Pompuraaw, QLD 2 | Culex annulirostris4 | 1 C6/36, 3 PS-EK | |
MVEV 1–51 | 1951 | Mooroopna, Vic 2 | Fatal human case | Unknown | [39] |
2.3. Serial Passage of Virus
2.4. Construction of pMVEV/ALFVstr
2.5. RNA Electroporation
2.6. DNA/RNA Sequencing
2.7. Plaque Assay/Purification
2.8. Viral Growth Kinetics
2.9. Heparin Inhibition Assay
2.10. ELISA
2.11. Mouse Virulence
3. Results
3.1. Low Passage ALFV Isolates Exhibit a Mixed Plaque Morphology
3.2. Small-Plaque ALFV Variants Exhibit Enhanced Glycosaminoglycan (GAG) Binding
3.3. A Novel GAG-Binding Motif Maps to Residue 327 in the ALFV E Protein
3.4. Construction and Characterisation MVE/ALFstr Mutant Constructs
3.5. Survival Assay (In Vivo)
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- May, F.J.; Lobigs, M.; Lee, E.; Gendle, D.J.; Mackenzie, J.S.; Broom, A.K.; Conlan, J.V.; Hall, R.A. Biological, antigenic and phylogenetic characterization of the flavivirus Alfuy. J. Gen. Virol. 2006, 87, 329–337. [Google Scholar] [CrossRef]
- Mackenzie, J.S.; Williams, D.T. The Zoonotic Flaviviruses of Southern, South-Eastern and Eastern Asia, and Australasia: The Potential for Emergent Viruses. Zoonoses Public Health 2009, 56, 338–356. [Google Scholar] [CrossRef]
- Mukhopadhyay, S.; Kuhn, R.J.; Rossmann, M.G. A structural perspective of the flavivirus life cycle. Nat. Rev. Microbiol. 2005, 3, 13–22. [Google Scholar] [CrossRef]
- Gollins, S.W.; Porterfield, J.S. Flavivirus infection enhancement in macrophages: An electron microscopic study of viral cellular entry. J. Gen. Virol. 1985, 66, 1969–1982. [Google Scholar] [CrossRef]
- Chen, Y.; Maguire, T.; Marks, R.M. Demonstration of binding of dengue virus envelope protein to target cells. J. Virol. 1996, 70, 8765–8772. [Google Scholar] [CrossRef] [Green Version]
- Heinz, F.X.; Allison, S.L. Flavivirus structure and membrane fusion. Adv. Virus Res. 2003, 59, 63–97. [Google Scholar]
- Kimura, T.; Gollins, S.W.; Porterfield, J.S. The effect of pH on the early interaction of West Nile virus with P388D1 cells. J. Gen. Virol. 1986, 67, 2423–2433. [Google Scholar] [CrossRef]
- Randolph, V.B.; Stollar, V. Low pH-induced cell fusion in flavivirus-infected Aedes albopictus cell cultures. J. Gen. Virol. 1990, 71, 1845–1850. [Google Scholar] [CrossRef]
- Vorovitch, M.F.; Timofeev, A.V.; Atanadze, S.N.; Tugizov, S.M.; Kushch, A.A.; Elbert, L.B. pH-dependent fusion of tick-borne encephalitis virus with artificial membranes. Arch. Virol. 1991, 118, 133–138. [Google Scholar] [CrossRef] [PubMed]
- Heinz, F.X.; Auer, G.; Stiasny, K.; Holzmann, H.; Mandl, C.; Guirakhoo, F.; Kunz, C. The interactions of the flavivirus envelope proteins: Implications for virus entry and release. Arch. Virol. Suppl. 1994, 9, 339–348. [Google Scholar]
- Allison, S.L.; Schalich, J.; Stiasny, K.; Mandl, C.W.; Kunz, C.; Heinz, F.X. Oligomeric rearrangement of tick-borne encephalitis virus envelope proteins induced by an acidic pH. J. Virol. 1995, 69, 695–700. [Google Scholar] [CrossRef] [Green Version]
- Shirato, K.; Miyoshi, H.; Goto, A.; Ako, Y.; Ueki, T.; Kariwa, H.; Takashima, I. Viral envelope protein glycosylation is a molecular determinant of the neuroinvasiveness of the New York strain of West Nile virus. J. Gen. Virol. 2004, 85, 3637–3645. [Google Scholar] [CrossRef]
- Allison, S.L.; Schalich, J.; Stiasny, K.; Mandl, C.W.; Heinz, F.X. Mutational evidence for an internal fusion peptide in flavivirus envelope protein E. J. Virol. 2001, 75, 4268–4275. [Google Scholar] [CrossRef] [Green Version]
- Lobigs, M.; Usha, R.; Nestorowicz, A.; Marshall, I.D.; Weir, R.C.; Dalgarno, L. Host cell selection of Murray Valley encephalitis virus variants altered at an RGD sequence in the envelope protein and in mouse virulence. Virology 1990, 176, 587–595. [Google Scholar] [CrossRef]
- Prow, N.A.; May, F.J.; Westlake, D.J.; Hurrelbrink, R.J.; Biron, R.M.; Leung, J.Y.; McMinn, P.C.; Clark, D.C.; Mackenzie, J.S.; Lobigs, M.; et al. Determinants of attenuation in the envelope protein of the flavivirus Alfuy. J. Gen. Virol. 2011, 92, 2286–2296. [Google Scholar] [CrossRef]
- Sasisekharan, R.; Raman, R.; Prabhakar, V. Glycomics approach to structure-function relationships of glycosaminoglycans. Annu. Rev. Biomed. Eng. 2006, 8, 181–231. [Google Scholar] [CrossRef]
- Funderburgh, J.L. Keratan sulfate biosynthesis. IUBMB Life 2002, 54, 187–194. [Google Scholar] [CrossRef] [PubMed]
- Kusche-Gullberg, M.; Kjellen, L. Sulfotransferases in glycosaminoglycan biosynthesis. Curr. Opin. Struct. Biol. 2003, 13, 605–611. [Google Scholar] [CrossRef]
- Shaltiel, S.; Schvartz, I.; Korc-Grodzicki, B.; Kreizman, T. Evidence for an extra-cellular function for protein kinase A. Mol. Cell. Biochem. 1993, 127–128, 283–291. [Google Scholar] [CrossRef]
- Nishimura, M.; Yan, W.; Mukudai, Y.; Nakamura, S.; Nakamasu, K.; Kawata, M.; Kawamoto, T.; Noshiro, M.; Hamada, T.; Kato, Y. Role of chondroitin sulfate-hyaluronan interactions in the viscoelastic properties of extracellular matrices and fluids. Biochim. Biophys. Acta 1998, 1380, 1–9. [Google Scholar] [CrossRef]
- Trowbridge, J.M.; Gallo, R.L. Dermatan sulfate: New functions from an old glycosaminoglycan. Glycobiology 2002, 12, 117R–125R. [Google Scholar] [CrossRef]
- Funderburgh, J.L. Keratan sulfate: Structure, biosynthesis, and function. Glycobiology 2000, 10, 951–958. [Google Scholar] [CrossRef] [PubMed]
- Iozzo, R.V. Matrix proteoglycans: From molecular design to cellular function. Annu. Rev. Biochem. 1998, 67, 609–652. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shukla, D.; Liu, J.; Blaiklock, P.; Shworak, N.W.; Bai, X.; Esko, J.D.; Cohen, G.H.; Eisenberg, R.J.; Rosenberg, R.D.; Spear, P.G. A novel role for 3-O-sulfated heparan sulfate in herpes simplex virus 1 entry. Cell 1999, 99, 13–22. [Google Scholar] [CrossRef] [Green Version]
- Mondor, I.; Moulard, M.; Ugolini, S.; Klasse, P.J.; Hoxie, J.; Amara, A.; Delaunay, T.; Wyatt, R.; Sodroski, J.; Sattentau, Q.J. Interactions among HIV gp120, CD4, and CXCR4: Dependence on CD4 expression level, gp120 viral origin, conservation of the gp120 COOH- and NH2-termini and V1/V2 and V3 loops, and sensitivity to neutralizing antibodies. Virology 1998, 248, 394–405. [Google Scholar] [CrossRef] [Green Version]
- Compton, T.; Nowlin, D.M.; Cooper, N.R. Initiation of human cytomegalovirus infection requires initial interaction with cell surface heparan sulfate. Virology 1993, 193, 834–841. [Google Scholar] [CrossRef]
- Jackson, T.; Ellard, F.M.; Ghazaleh, R.A.; Brookes, S.M.; Blakemore, W.E.; Corteyn, A.H.; Stuart, D.I.; Newman, J.W.; King, A.M. Efficient infection of cells in culture by type O foot-and-mouth disease virus requires binding to cell surface heparan sulfate. J. Virol. 1996, 70, 5282–5287. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chung, C.S.; Hsiao, J.C.; Chang, Y.S.; Chang, W. A27L protein mediates vaccinia virus interaction with cell surface heparan sulfate. J. Virol. 1998, 72, 1577–1585. [Google Scholar] [CrossRef] [Green Version]
- Summerford, C.; Samulski, R.J. Membrane-associated heparan sulfate proteoglycan is a receptor for adeno-associated virus type 2 virions. J. Virol. 1998, 72, 1438–1445. [Google Scholar] [CrossRef] [Green Version]
- Haywood, A.M. Virus receptors: Binding, adhesion strengthening, and changes in viral structure. J. Virol. 1994, 68, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Maguire, T.; Hileman, R.E.; Fromm, J.R.; Esko, J.D.; Linhardt, R.J.; Marks, R.M. Dengue virus infectivity depends on envelope protein binding to target cell heparan sulfate. Nat. Med. 1997, 3, 866–871. [Google Scholar] [CrossRef] [PubMed]
- Putnak, J.R.; Kanesa-Thasan, N.; Innis, B.L. A putative cellular receptor for dengue viruses. Nat. Med. 1997, 3, 828–829. [Google Scholar] [CrossRef] [PubMed]
- Hung, S.L.; Lee, P.L.; Chen, H.W.; Chen, L.K.; Kao, C.L.; King, C.C. Analysis of the steps involved in Dengue virus entry into host cells. Virology 1999, 257, 156–167. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kozlovskaya, L.I.; Osolodkin, D.I.; Shevtsova, A.S.; Romanova, L.; Rogova, Y.V.; Dzhivanian, T.I.; Lyapustin, V.N.; Pivanova, G.P.; Gmyl, A.P.; Palyulin, V.A.; et al. GAG-binding variants of tick-borne encephalitis virus. Virology 2010, 398, 262–272. [Google Scholar] [CrossRef] [Green Version]
- Lee, E.; Lobigs, M. Mechanism of virulence attenuation of glycosaminoglycan-binding variants of Japanese encephalitis virus and Murray Valley encephalitis virus. J. Virol. 2002, 76, 4901–4911. [Google Scholar] [CrossRef] [Green Version]
- Lee, E.; Lobigs, M. Substitutions at the putative receptor-binding site of an encephalitic flavivirus alter virulence and host cell tropism and reveal a role for glycosaminoglycans in entry. J. Virol. 2000, 74, 8867–8875. [Google Scholar] [CrossRef] [Green Version]
- Reed, L.J.; Muench, H. A simple method of estimating fifty per cent endpoints. Am. J. Hyg. 1938, 27, 493–497. [Google Scholar]
- Doherty, R.L.; Whitehead, R.H.; Wetters, E.J.; Gorman, B.M. Studies of the epidemiology of arthropod-borne viru infections at Mitchell River Mission, Cape York Peninsula, North Queensland. II. Arbovirus infections of mosquitoes, man and domestic fowls, 1963–1966. Trans. R. Soc. Trop. Med. Hyg. 1968, 62, 430–438. [Google Scholar] [CrossRef]
- French, E.L. Murray Valley encephalitis isolation and characterization of the aetiological agent. Med. J. Aust. 1952, 1, 100–103. [Google Scholar] [CrossRef]
- Hurrelbrink, R.J.; Nestorowicz, A.; McMinn, P.C. Characterization of infectious Murray Valley encephalitis virus derived from a stably cloned genome-length cDNA. J. Gen. Virol. 1999, 80, 3115–3125. [Google Scholar] [CrossRef]
- Hall, R.A.; Khromykh, A.A.; Mackenzie, J.M.; Scherret, J.H.; Khromykh, T.I.; Mackenzie, J.S. Loss of dimerisation of the nonstructural protein NS1 of Kunjin virus delays viral replication and reduces virulence in mice, but still allows secretion of NS1. Virology 1999, 264, 66–75. [Google Scholar] [CrossRef] [Green Version]
- Khromykh, A.A.; Kenney, M.T.; Westaway, E.G. Trans-Complementation of flavivirus RNA polymerase gene NS5 by using Kunjin virus replicon-expressing BHK cells. J. Virol. 1998, 72, 7270–7279. [Google Scholar] [CrossRef] [Green Version]
- Clark, D.C.; Lobigs, M.; Lee, E.; Howard, M.J.; Clark, K.; Blitvich, B.J.; Hall, R.A. In situ reactions of monoclonal antibodies with a viable mutant of Murray Valley encephalitis virus reveal an absence of dimeric NS1 protein. J. Gen. Virol. 2007, 88, 1175–1183. [Google Scholar] [CrossRef]
- Joiner, C.L.; Maclean, K.S.; Pritchard, E.K.; Anderson, K.; King, M.B.; Collard, P.; Knox, R. Isoniazid in pulmonary tuberculosis; its use with and without streptomycin. Lancet 1952, 2, 843–849. [Google Scholar] [CrossRef]
- Beasley, D.W.; Whiteman, M.C.; Zhang, S.; Huang, C.Y.; Schneider, B.S.; Smith, D.R.; Gromowski, G.D.; Higgs, S.; Kinney, R.M.; Barrett, A.D. Envelope protein glycosylation status influences mouse neuroinvasion phenotype of genetic lineage 1 West Nile virus strains. J. Virol. 2005, 79, 8339–8347. [Google Scholar] [CrossRef] [Green Version]
- Adams, F.H.; Click, D.; Anderson, R.; Dwan, P. Nonspecific hyaluronidase inhibitor concentrations in the blood serum of siblings and parents of children with rheumatic fever. J. Pediatr. 1952, 41, 258–261. [Google Scholar] [CrossRef]
- Anderson, E.; Harris, L. The composition of silk oak gum. J. Am. Pharm. Assoc. 1952, 41, 529–531. [Google Scholar] [CrossRef]
- Robinson, H.L. Viral attenuation by design. Nat. Biotechnol. 2008, 26, 1000–1001. [Google Scholar] [CrossRef]
- Plotkin, S. History of vaccination. Proc. Natl. Acad. Sci. USA 2014, 111, 12283–12287. [Google Scholar] [CrossRef] [Green Version]
- Westlake, D. Identification of Attenuation Markers in the Envelope Protein of the Flavivirus Alfuy. Ph.D. Thesis, The University of Queensland, St. Lucia, QLD, Australia, 2014. [Google Scholar]
- Romanova, L.; Gmyl, A.P.; Dzhivanian, T.I.; Bakhmutov, D.V.; Lukashev, A.N.; Gmyl, L.V.; Rumyantsev, A.A.; Burenkova, L.A.; Lashkevich, V.A.; Karganova, G.G. Microevolution of tick-borne encephalitis virus in course of host alternation. Virology 2007, 362, 75–84. [Google Scholar] [CrossRef] [Green Version]
- Stollar, V.; Thomas, V.L. An agent in the Aedes aegypti cell line (Peleg) which causes fusion of Aedes albopictus cells. Virology 1975, 64, 367–377. [Google Scholar] [CrossRef]
- Crabtree, M.B.; Sang, R.C.; Stollar, V.; Dunster, L.M.; Miller, B.R. Genetic and phenotypic characterization of the newly described insect flavivirus, Kamiti River virus. Arch. Virol. 2003, 148, 1095–1118. [Google Scholar] [CrossRef]
- Crabtree, M.B.; Nga, P.T.; Miller, B.R. Isolation and characterization of a new mosquito flavivirus, Quang Binh virus, from Vietnam. Arch. Virol. 2009, 154, 857–860. [Google Scholar] [CrossRef]
- Karabatsos, N. International Catalogue of Arboviruses: Including Certain Other Viruses of Vertebrates; American Society of Tropical Medicine and Hygiene: San Antonio, TX, USA, 1985. [Google Scholar]
Virus Isolates & Clones | Plaque Phenotype Status | Plaque Size |
---|---|---|
ALFV3929 | small | 1 mm |
ALFVCY2269 | mixed | 1/3 mm |
ALFVCY2269 S | small | 1 mm |
ALFVCY2269 L | large | 3 mm |
ALFVK37414 | mixed | 1/3 mm |
ALFVK37414 S | small | 1 mm |
ALFVK37414 L | large | 3 mm |
MVEV | large | 3 mm |
MVE/AFVstr 1 | small | 1.5 mm |
Virus Isolates | Glycosylation Motif E154–156 | Hinge Region E273–277 | K327Q Substitution Site E325–330 |
---|---|---|---|
ALFV3929 | DYS | QMDS-T | ELKYL |
ALFV CY2269 (L) | DYS | QMDS-T | ELQYT |
ALFV CY2269 (S) | DYS | QMDS-T | ELKYL |
ALFV K37414 (L) | DYS | QMDS-T | ELQYT |
ALFV K37414 (S) | DYS | QMDS-T | ELKYL |
MVEV1–51 | NYS | EFSSST | ELQYT |
MVE/AFVstr-K327Q | DYS | QMDS-T | ELQYT |
MVE/AFVstr-HMVEV/K327Q | DYS | EFSSST | ELQYT |
MVE/AFVstr-CHO+/HMVEV/K327Q | NYS | EFSSST | ELQYT |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Westlake, D.; Bielefeldt-Ohmann, H.; Prow, N.A.; Hall, R.A. Novel Flavivirus Attenuation Markers Identified in the Envelope Protein of Alfuy Virus. Viruses 2021, 13, 147. https://doi.org/10.3390/v13020147
Westlake D, Bielefeldt-Ohmann H, Prow NA, Hall RA. Novel Flavivirus Attenuation Markers Identified in the Envelope Protein of Alfuy Virus. Viruses. 2021; 13(2):147. https://doi.org/10.3390/v13020147
Chicago/Turabian StyleWestlake, Daniel, Helle Bielefeldt-Ohmann, Natalie A. Prow, and Roy A. Hall. 2021. "Novel Flavivirus Attenuation Markers Identified in the Envelope Protein of Alfuy Virus" Viruses 13, no. 2: 147. https://doi.org/10.3390/v13020147