Next Article in Journal
Baseline Amino Acid Substitutions in the NS5A ISDR and PKR Binding Domain of Hepatitis C and Different Fibrosis Levels and Levels of Development of Hepatocellular Carcinoma in Patients Treated with DAAs
Next Article in Special Issue
Structural Genomics of SARS-CoV-2 Indicates Evolutionary Conserved Functional Regions of Viral Proteins
Previous Article in Journal
La Crosse Virus Infection of Human Keratinocytes Leads to Interferon-Dependent Apoptosis of Bystander Non-Infected Cells In Vitro
Previous Article in Special Issue
Systematic Comparison of Two Animal-to-Human Transmitted Human Coronaviruses: SARS-CoV-2 and SARS-CoV
Open AccessArticle

Preliminary Identification of Potential Vaccine Targets for the COVID-19 Coronavirus (SARS-CoV-2) Based on SARS-CoV Immunological Studies

by Syed Faraz Ahmed 1,†, Ahmed A. Quadeer 1,*,† and Matthew R. McKay 1,2,*
1
Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
2
Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
*
Authors to whom correspondence should be addressed.
These authors contributed equally to this work.
Viruses 2020, 12(3), 254; https://doi.org/10.3390/v12030254
Received: 9 February 2020 / Revised: 22 February 2020 / Accepted: 24 February 2020 / Published: 25 February 2020
(This article belongs to the Special Issue Pathogenesis of Human and Animal Coronaviruses)
The beginning of 2020 has seen the emergence of COVID-19 outbreak caused by a novel coronavirus, Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). There is an imminent need to better understand this new virus and to develop ways to control its spread. In this study, we sought to gain insights for vaccine design against SARS-CoV-2 by considering the high genetic similarity between SARS-CoV-2 and SARS-CoV, which caused the outbreak in 2003, and leveraging existing immunological studies of SARS-CoV. By screening the experimentally-determined SARS-CoV-derived B cell and T cell epitopes in the immunogenic structural proteins of SARS-CoV, we identified a set of B cell and T cell epitopes derived from the spike (S) and nucleocapsid (N) proteins that map identically to SARS-CoV-2 proteins. As no mutation has been observed in these identified epitopes among the 120 available SARS-CoV-2 sequences (as of 21 February 2020), immune targeting of these epitopes may potentially offer protection against this novel virus. For the T cell epitopes, we performed a population coverage analysis of the associated MHC alleles and proposed a set of epitopes that is estimated to provide broad coverage globally, as well as in China. Our findings provide a screened set of epitopes that can help guide experimental efforts towards the development of vaccines against SARS-CoV-2. View Full-Text
Keywords: Coronavirus; 2019-nCoV; 2019 novel coronavirus; SARS-CoV-2; COVID-19; SARS-CoV; MERS-CoV; T cell epitopes; B cell epitopes; vaccine Coronavirus; 2019-nCoV; 2019 novel coronavirus; SARS-CoV-2; COVID-19; SARS-CoV; MERS-CoV; T cell epitopes; B cell epitopes; vaccine
Show Figures

Figure 1

MDPI and ACS Style

Ahmed, S.F.; Quadeer, A.A.; McKay, M.R. Preliminary Identification of Potential Vaccine Targets for the COVID-19 Coronavirus (SARS-CoV-2) Based on SARS-CoV Immunological Studies. Viruses 2020, 12, 254.

Show more citation formats Show less citations formats
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

1
Search more from Scilit
 
Search
Back to TopTop