Patterns of RNA Editing in Newcastle Disease Virus Infections
Abstract
1. Introduction
2. Materials and Methods
2.1. Datasets
2.2. Bioinformatic Analysis
2.3. Markov Model of Polymerase Stuttering
3. Results
3.1. RNA Editing and P/V/W Frequencies
3.2. Pattern of Polymerase Stuttering
3.3. Further Suppression of W mRNA Expression
4. Discussion
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Amarasinghe, G.K.; Ayllón, M.A.; Bào, Y.; Basler, C.F.; Bavari, S.; Blasdell, K.R.; Briese, T.; Brown, P.A.; Bukreyev, A.; Balkema-Buschmann, A.; et al. Taxonomy of the order Mononegavirales: Update 2019. Arch. Virol. 2019, 164, 1967–1980. [Google Scholar] [CrossRef] [PubMed]
- Ganar, K.; Das, M.; Sinha, S.; Kumar, S. Newcastle disease virus: Current status and our understanding. Virus Res. 2014, 184, 71–81. [Google Scholar] [CrossRef] [PubMed]
- Nagai, Y.; Hamaguchi, M.; Toyoda, T. Molecular biology of Newcastle disease virus. Prog. Vet. Microbiol. Immunol. 1989, 5, 16–64. [Google Scholar] [PubMed]
- Sánchez-Felipe, L.; Villar, E.; Muñoz-Barroso, I. α;2-3-And α;2-6-N-linked sialic acids allow efficient interaction of Newcastle Disease Virus with target cells. Glycoconj. J. 2012. [Google Scholar] [CrossRef]
- Choppin, P.W.; Compans, R.W. Reproduction of Paramyxoviruses. In Comprehensive Virology; Choppin, P.W., Fraenkel-Conrat, H., Wagner, R.R., Eds.; Springer: Boston, MA, USA, 1975; ISBN 978-4684-2708-0. [Google Scholar] [CrossRef]
- Lamb, R.A.; Parks, G.D. Paramyxoviridae: The viruses and their replication. Fields Virol. 2007, 5, 1449–1496. [Google Scholar]
- Fields, B.N.; Knipe, D.M.; Howley, P.M. Fields Virology; Wolters Kluwer/Lippincott Williams & Wilkins Health: Philadelphia, PA, USA; Baltimore, MD, USA; New York, NY, USA, 2013; ISBN 13: 9781451105636. [Google Scholar]
- Hamaguchi, M.; Yoshida, T.; Nishikawa, K.; Naruse, H.; Nagai, Y. Transcriptive complex of Newcastle disease virus: I. Both L and P proteins are required to constitute an active complex. Virology 1983, 128, 105–117. [Google Scholar] [CrossRef]
- Steward, M.; Vipond, I.B.; Millar, N.S.; Emmerson, P.T. RNA editing in Newcastle disease virus. J. Gen. Virol. 1993. [Google Scholar] [CrossRef]
- Locke, D.P.; Sellers, H.S.; Crawford, J.M.; Schultz-Cherry, S.; King, D.J.; Meinersmann, R.J.; Seal, B.S. Newcastle disease virus phosphoprotein gene analysis and transcriptional editing in avian cells. Virus Res. 2000, 69, 55–68. [Google Scholar] [CrossRef]
- Qiu, X.; Fu, Q.; Meng, C.; Yu, S.; Zhan, Y.; Dong, L.; Song, C.; Sun, Y.; Tan, L.; Hu, S.; et al. Newcastle Disease Virus V Protein Targets Phosphorylated STAT1 to Block IFN-I Signaling. PLoS ONE 2016, 11, e0148560. [Google Scholar] [CrossRef]
- Schirrmacher, V. Signaling through RIG-I and type I interferon receptor: Immune activation by Newcastle disease virus in man versus immune evasion by Ebola virus (Review). Int. J. Mol. Med. 2015, 36, 3–10. [Google Scholar] [CrossRef]
- Kolakofsky, D.; Pelet, T.; Garcin, D.; Hausmann, S.; Curran, J.; Roux, L. Paramyxovirus RNA Synthesis and the Requirement for Hexamer Genome Length: The Rule of Six Revisited. J. Virol. 1998. [Google Scholar] [CrossRef]
- Calain, P.; Roux, L. The rule of six, a basic feature for efficient replication of Sendai virus defective interfering RNA. J. Virol. 1993, 67, 4822–4830. [Google Scholar] [PubMed]
- Kolakofsky, D.; Vidal, S.; Curran, J. Paramyxovirus RNA Synthesis and P Gene Expression BT—The Paramyxoviruses; Kingsbury, D.W., Ed.; Springer: Boston, MA, USA, 1991; pp. 215–233. ISBN 978-1-4615-3790-8. [Google Scholar]
- Hausmann, S.; Garcin, D.; Delenda, C.; Kolakofsky, D. The Versatility of Paramyxovirus RNA Polymerase Stuttering. J. Virol. 1999, 73, 5568–5576. [Google Scholar] [PubMed]
- Vidal, S.; Curran, J.; Kolakofsky, D. A stuttering model for paramyxovirus P mRNA editing. EMBO J. 1990, 9, 2017–2022. [Google Scholar] [PubMed]
- Jacques, J.P.; Hausmann, S.; Kolakofsky, D. Paramyxovirus mRNA editing leads to G deletions as well as insertions. EMBO J. 1994, 13, 5496–5503. [Google Scholar] [PubMed]
- Kolakofsky, D. Paramyxovirus RNA synthesis, mRNA editing, and genome hexamer phase: A review. Virology 2016, 498, 94–98. [Google Scholar] [CrossRef]
- Liu, W.; Qiu, X.; Song, C.; Sun, Y.; Meng, C.; Liao, Y.; Tan, L.; Ding, Z.; Liu, X.; Ding, C. Deep Sequencing-Based Transcriptome Profiling Reveals Avian Interferon-Stimulated Genes and Provides Comprehensive Insight into Newcastle Disease Virus-Induced Host Responses. Viruses 2018, 10, 162. [Google Scholar] [CrossRef]
- Zhang, J.; Kaiser, M.G.; Deist, M.S.; Gallardo, R.A.; Bunn, D.A.; Kelly, T.R.; Dekkers, J.C.M.; Zhou, H.; Lamont, S.J. Transcriptome Analysis in Spleen Reveals Differential Regulation of Response to Newcastle Disease Virus in Two Chicken Lines. Sci. Rep. 2018, 8, 1278. [Google Scholar] [CrossRef]
- Deist, M.S.; Gallardo, R.A.; Bunn, D.A.; Dekkers, J.C.M.; Zhou, H.; Lamont, S.J. Resistant and susceptible chicken lines show distinctive responses to Newcastle disease virus infection in the lung transcriptome. BMC Genom. 2017, 18, 989. [Google Scholar] [CrossRef]
- Deist, M.S.; Gallardo, R.A.; Bunn, D.A.; Kelly, T.R.; Dekkers, J.C.M.; Zhou, H.; Lamont, S.J. Novel Mechanisms Revealed in the Trachea Transcriptome of Resistant and Susceptible Chicken Lines following Infection with Newcastle Disease Virus. Clin. Vaccine Immunol. 2017, 24, e00027-17. [Google Scholar] [CrossRef]
- Wignall-Fleming, E.B.; Hughes, D.J.; Vattipally, S.; Modha, S.; Goodbourn, S.; Davison, A.J.; Randall, R.E. Analysis of Paramyxovirus Transcription and Replication by High-Throughput Sequencing. J. Virol. 2019, 93, e00571-19. [Google Scholar] [CrossRef] [PubMed]
- Marco-Sola, S.; Sammeth, M.; Guigó, R.; Ribeca, P. The GEM mapper: Fast, accurate and versatile alignment by filtration. Nat. Methods 2012, 9, 1185–1188. [Google Scholar] [CrossRef]
- DePristo, M.A.; Banks, E.; Poplin, R.; Garimella, K.V.; Maguire, J.R.; Hartl, C.; Philippakis, A.A.; del Angel, G.; Rivas, M.A.; Hanna, M.; et al. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat. Genet. 2011, 43, 491–498. [Google Scholar] [CrossRef]
- Li, H.; Handsaker, B.; Wysoker, A.; Fennell, T.; Ruan, J.; Homer, N.; Marth, G.; Abecasis, G.; Durbin, R. The Sequence Alignment/Map format and SAMtools. Bioinformatics 2009, 25, 2078–2079. [Google Scholar] [CrossRef]
- Ferretti, L.; Tennakoon, C.; Silesian, A.; Freimanis, G.; Ribeca, P. SiNPle: Fast and sensitive variant calling for deep sequencing data. Genes 2019, 10, 561. [Google Scholar] [CrossRef]
- Jacques, J.P.; Kolakofsky, D. Pseudo-templated transcription in prokaryotic and eukaryotic organisms. Genes Dev. 1991, 5, 707–713. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Cox, R.M.; Krumm, S.A.; Thakkar, V.D.; Sohn, M.; Plemper, R.K. The structurally disordered paramyxovirus nucleocapsid protein tail domain is a regulator of the mRNA transcription gradient. Sci. Adv. 2017, 3. [Google Scholar] [CrossRef] [PubMed]
- Hausmann, S.; Garcin, D.; Morel, A.S.; Kolakofsky, D. Two nucleotides immediately upstream of the essential A6G3 slippery sequence modulate the pattern of G insertions during Sendai virus mRNA editing. J. Virol. 1999, 73, 343–351. [Google Scholar] [CrossRef]
Melissa Deist & Lamont Lab Group [21,22,23] | Prof Chan Ding’s Lab [20] | |||||
---|---|---|---|---|---|---|
Samples | Chicken Line | Sex | Phenotype | Chicken Age | Samples | Embryo Age |
Leghorn rep 1 | Leghorn | Female | Susceptible | 21 | LaSota rep 1 | CEF cells isolated from 10-day-old SPF chicken embryos |
Leghorn rep 2 | Leghorn | Female | Susceptible | 21 | LaSota rep 2 | |
Leghorn rep 3 | Leghorn | Male | Susceptible | 21 | LaSota rep 3 | |
Fayoumi rep 1 | Fayoumi | Female | Resistant | 21 | Herts/33 rep 1 | |
Fayoumi rep 2 | Fayoumi | Female | Resistant | 21 | Herts/33 rep 2 | |
Fayoumi rep 3 | Fayoumi | Male | Resistant | 21 | Herts/33 rep 3 | |
Virus dose | 200 microliters 107 embryo infectious dose of 50% | Virus dose | MOI = 1 | |||
Experiment type | in vivo | Experiment type | in vitro | |||
Organ harvested | Trachea | Organ used for primary cells | Chicken embryo | |||
Cell type | Epithelial cell | Cell type | Fibroblast cell | |||
Sample type | RNA | Sample Type | RNA | |||
Time of tissue harvest | 2 days post infection | Time of cell harvest | 12 h post infection | |||
NDV strain | LaSota (non-pathogenic) | NDV strain | LaSota (non-pathogenic) & Herts/33 (highly pathogenic) |
Samples | P | V | W | P mRNA Count | V mRNA Count | W mRNA Count |
---|---|---|---|---|---|---|
Leghorn 1 | 0.5881057 | 0.3502203 | 0.0616740 | 534 | 318 | 56 |
Leghorn 2 | 0.5895536 | 0.3096877 | 0.1007588 | 3341 | 1755 | 571 |
Leghorn 3 | 0.6131687 | 0.3165559 | 0.0702754 | 1937 | 1000 | 222 |
Fayoumi 1 | 0.5700246 | 0.3611794 | 0.0687961 | 464 | 294 | 56 |
Fayoumi 2 | 0.5855513 | 0.3650190 | 0.0494297 | 154 | 96 | 13 |
Fayoumi 3 | 0.5555556 | 0.3801170 | 0.0643275 | 95 | 65 | 11 |
CEF Herts/33 1 | 0.7581556 | 0.1857977 | 0.0560466 | 71,789 | 17,593 | 5307 |
CEF Herts/33 2 | 0.7703368 | 0.1770732 | 0.0525900 | 79,934 | 18,374 | 5457 |
CEF Herts/33 3 | 0.7920412 | 0.1618567 | 0.0461021 | 75,335 | 15,395 | 4385 |
CEF LaSota 1 | 0.9236920 | 0.0665634 | 0.0097446 | 18,484 | 1332 | 195 |
CEF LaSota 2 | 0.9380527 | 0.0531048 | 0.0088425 | 18,883 | 1069 | 178 |
CEF LaSota 3 | 0.9465327 | 0.0443343 | 0.0091330 | 20,624 | 966 | 199 |
p-Value | Leghorn | Fayoumi | CEF Herts/33 | CEF LaSota |
---|---|---|---|---|
Leghorn | 1.0000000 | 0.1803779 | 0.2960698 | 0.2243687 |
Fayoumi | 0.1803779 | 1.0000000 | 0.0015257 | 0.7551445 |
CEF Herts/33 | 0.2960698 | 0.0015257 | 1.0000000 | 0.0026214 |
CEF LaSota | 0.2243687 | 0.7551445 | 0.0026214 | 1.0000000 |
Coefficient | Estimate | Std. Error | t Value | Pr (>|t|) |
---|---|---|---|---|
(intercept) | 0.0091800 | 0.0549286 | 0.1671257 | 0.8677600 |
l (slope) | −0.5130190 | 0.0339636 | −15.1049786 | 0.0000000 |
Fayoumi | 0.1106835 | 0.1650741 | 0.6705082 | 0.5047720 |
CEF-LaSota | −0.2277560 | 0.0566429 | −4.0209119 | 0.0001460 |
CEF-Herts/33 | −0.8588694 | 0.0722928 | −11.8804256 | 0.0000000 |
l:Fayoumi | −0.0589679 | 0.1098642 | −0.5367340 | 0.5931778 |
l:CEF-LaSota | −0.0224315 | 0.0350717 | −0.6395889 | 0.5245578 |
l:CEF-Herts/33 | 0.0737953 | 0.0428570 | 1.7218949 | 0.0895690 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jadhav, A.; Zhao, L.; Ledda, A.; Liu, W.; Ding, C.; Nair, V.; Ferretti, L. Patterns of RNA Editing in Newcastle Disease Virus Infections. Viruses 2020, 12, 1249. https://doi.org/10.3390/v12111249
Jadhav A, Zhao L, Ledda A, Liu W, Ding C, Nair V, Ferretti L. Patterns of RNA Editing in Newcastle Disease Virus Infections. Viruses. 2020; 12(11):1249. https://doi.org/10.3390/v12111249
Chicago/Turabian StyleJadhav, Archana, Lele Zhao, Alice Ledda, Weiwei Liu, Chan Ding, Venugopal Nair, and Luca Ferretti. 2020. "Patterns of RNA Editing in Newcastle Disease Virus Infections" Viruses 12, no. 11: 1249. https://doi.org/10.3390/v12111249
APA StyleJadhav, A., Zhao, L., Ledda, A., Liu, W., Ding, C., Nair, V., & Ferretti, L. (2020). Patterns of RNA Editing in Newcastle Disease Virus Infections. Viruses, 12(11), 1249. https://doi.org/10.3390/v12111249