Genomic Diversity and Evolution of Quasispecies in Newcastle Disease Virus Infections
Abstract
1. Introduction
2. Materials and Methods
2.1. Cell Culture
2.2. RNA Extraction and Sequencing
2.3. In Vivo Studies
2.4. Bioinformatic Analyses
- SNP density: (where ind[y] is 1 if y is true and 0 otherwise)
- Pairwise nucleotide diversity:
- Entropy:
- Tajima’s D:
3. Results
3.1. Samples and Read Depth
3.2. Overall Genetic Diversity Show Higher Diversity in the In Vivo Samples
3.3. An Excess of Low-Frequency Variants is Compatible with an Exponential Growth Rate within Host/Culture
3.4. Genetic Diversity along the Genome Shows Regions of High Diversity and/or Hypermutability
3.5. The Site Frequency Spectrum (SFS) Gives Clues about Evolutionary Events Occurring within Host
3.6. Looking for Signatures of Selection: Non-Synonymous, Synonymous and Non-Coding Variants
3.6.1. Ratios of Polymorphism within-Host at Functional Versus Non-Functional Positions
3.6.2. The Patterns of Polymorphism within-Host Versus the Divergence between-Host Are not Always Correlated
3.6.3. Contrasting the Patterns of Polymorphism within-Host Versus the Divergence between-Host at Functional Versus Non-Functional Positions: Differential Selective Patterns at Different Stages
4. Discussion
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Lauring, A.S.; Andino, R. Quasispecies theory and the behavior of RNA viruses. PLoS Pathog. 2010, 6, e1001005. [Google Scholar] [CrossRef] [PubMed]
- Vignuzzi, M.; Stone, J.K.; Arnold, J.J.; Cameron, C.E.; Andino, R. Quasispecies diversity determines pathogenesis through cooperative interactions in a viral population. Nature 2006, 439, 344–348. [Google Scholar] [CrossRef] [PubMed]
- Domingo, E.; Perales, C. Viral quasispecies. PLoS Genet. 2019, 15, e1008271. [Google Scholar] [CrossRef] [PubMed]
- Brown, V.R.; Bevins, S.N. A review of virulent Newcastle disease viruses in the United States and the role of wild birds in viral persistence and spread. Vet. Res. 2017, 48, 68. [Google Scholar] [CrossRef] [PubMed]
- Schirrmacher, V. Fifty Years of Clinical Application of Newcastle Disease Virus: Time to Celebrate! Biomedicines 2016, 4, 16. [Google Scholar] [CrossRef] [PubMed]
- Schirrmacher, V.; Van Gool, S.; Stuecker, W. Breaking Therapy Resistance: An Update on Oncolytic Newcastle Disease Virus for Improvements of Cancer Therapy. Biomedicines 2019, 7, 66. [Google Scholar] [CrossRef] [PubMed]
- Amarasinghe, G.K.; Ayllón, M.A.; Bào, Y.; Basler, C.F.; Bavari, S.; Blasdell, K.R.; Briese, T.; Brown, P.A.; Bukreyev, A.; Balkema-Buschmann, A.; et al. Taxonomy of the order Mononegavirales: Update 2019. Arch. Virol. 2019, 164, 1967–1980. [Google Scholar] [CrossRef]
- Ganar, K.; Das, M.; Sinha, S.; Kumar, S. Newcastle disease virus: Current status and our understanding. Virus Res. 2014, 184, 71–81. [Google Scholar] [CrossRef]
- Nagai, Y.; Hamaguchi, M.; Toyoda, T. Molecular biology of Newcastle disease virus. Prog. Vet. Microbiol. Immunol. 1989, 5, 16–64. [Google Scholar]
- Lamb, R.A.; Parks, G.D. Paramyxoviridae: The viruses and their replication. Fields Virol. 2007, 5, 1449–1496. [Google Scholar]
- Ramanujam, P.; Tan, W.S.; Nathan, S.; Yusoff, K. Pathotyping of Newcastle disease virus with a filamentous bacteriophage. Biotechniques 2004. [Google Scholar] [CrossRef] [PubMed]
- Aldous, E.W.; Alexander, D.J. Detection and differentiation of Newcastle disease virus (avian paramyxovirus type 1). Avian Pathol. 2001, 30, 117–128. [Google Scholar] [CrossRef] [PubMed]
- Alexander, D.J.; Campbell, G.; Manvell, R.J.; Collins, M.S.; Parsons, G.; McNulty, M.S. Characterisation of an antigenically unusual virus responsible for two outbreaks of Newcastle disease in the Republic of Ireland in 1990. Vet. Rec. 1992, 130, 65–68. [Google Scholar] [CrossRef] [PubMed]
- Gould, A.R.; Kattenbelt, J.A.; Selleck, P.; Hansson, E.; Della-Porta, A.; Westbury, H.A. Virulent Newcastle disease in Australia: Molecular epidemiological analysis of viruses isolated prior to and during the outbreaks of 1998–2000. Virus Res. 2001, 77, 51–60. [Google Scholar] [CrossRef]
- Tirumurugaan, K.G.; Kapgate, S.; Vinupriya, M.K.; Vijayarani, K.; Kumanan, K.; Elankumaran, S. Genotypic and pathotypic characterization of Newcastle disease viruses from India. PLoS ONE 2011, 6, e28414. [Google Scholar] [CrossRef] [PubMed]
- Miller, P.J.; Decanini, E.L.; Afonso, C.L. Newcastle disease: Evolution of genotypes and the related diagnostic challenges. Infect. Genet. Evol. 2010, 10, 26–35. [Google Scholar] [CrossRef] [PubMed]
- De Almeida, R.S.; Hammoumi, S.; Gil, P.; Briand, F.X.; Molia, S.; Gaidet, N.; Cappelle, J.; Chevalier, V.; Balança, G.; Traoré, A.; et al. New avian paramyxoviruses type I strains identified in Africa provide new outcomes for phylogeny reconstruction and genotype classification. PLoS ONE 2013, 8, e76413. [Google Scholar] [CrossRef]
- Diel, D.G.; Da Silva, L.H.A.; Liu, H.; Wang, Z.; Miller, P.J.; Afonso, C.L. Genetic diversity of avian paramyxovirus type 1: Proposal for a unified nomenclature and classification system of Newcastle disease virus genotypes. Infect. Genet. Evol. 2012. [Google Scholar] [CrossRef]
- Dimitrov, K.M.; Abolnik, C.; Afonso, C.L.; Albina, E.; Bahl, J.; Berg, M.; Briand, F.-X.; Brown, I.H.; Choi, K.-S.; Chvala, I.; et al. Updated unified phylogenetic classification system and revised nomenclature for Newcastle disease virus. Infect. Genet. Evol. 2019, 74, 103917. [Google Scholar] [CrossRef]
- Jenkins, G.M.; Rambaut, A.; Pybus, O.G.; Holmes, E.C. Rates of molecular evolution in RNA viruses: A quantitative phylogenetic analysis. J. Mol. Evol. 2002, 54, 156–165. [Google Scholar] [CrossRef]
- Miller, P.J.; Kim, L.M.; Ip, H.S.; Afonso, C.L. Evolutionary dynamics of Newcastle disease virus. Virology 2009, 391, 64–72. [Google Scholar] [CrossRef] [PubMed]
- Meng, C.; Qiu, X.; Yu, S.; Li, C.; Sun, Y.; Chen, Z.; Liu, K.; Zhang, X.; Tan, L.; Song, C.; et al. Evolution of Newcastle disease virus quasispecies diversity and enhanced virulence after passage through chicken air sacs. J. Virol. 2015, 90, 2052–2063. [Google Scholar] [CrossRef] [PubMed]
- Kattenbelt, J.A.; Stevens, M.P.; Selleck, P.W.; Gould, A.R. Analysis of Newcastle disease virus quasispecies and factors affecting the emergence of virulent virus. Arch. Virol. 2010, 155, 1607–1615. [Google Scholar] [CrossRef] [PubMed]
- Braun, T.; Bordería, A.V.; Barbezange, C.; Vignuzzi, M.; Louzoun, Y. Long-term context-dependent genetic adaptation of the viral genetic cloud. Bioinformatics 2019, 35, 1907–1915. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Qiu, X.; Song, C.; Sun, Y.; Meng, C.; Liao, Y.; Tan, L.; Ding, Z.; Liu, X.; Ding, C. Deep sequencing-based transcriptome profiling reveals avian interferon-stimulated genes and provides comprehensive insight into Newcastle disease virus-induced host responses. Viruses 2018, 10, 162. [Google Scholar] [CrossRef]
- Zhang, J.; Kaiser, M.G.; Deist, M.S.; Gallardo, R.A.; Bunn, D.A.; Kelly, T.R.; Dekkers, J.C.M.; Zhou, H.; Lamont, S.J. Transcriptome analysis in spleen reveals differential regulation of response to Newcastle disease virus in two chicken lines. Sci. Rep. 2018, 8, 1278. [Google Scholar] [CrossRef]
- Deist, M.S.; Gallardo, R.A.; Bunn, D.A.; Dekkers, J.C.M.; Zhou, H.; Lamont, S.J. Resistant and susceptible chicken lines show distinctive responses to Newcastle disease virus infection in the lung transcriptome. BMC Genom. 2017, 18, 989. [Google Scholar] [CrossRef]
- Deist, M.S.; Gallardo, R.A.; Bunn, D.A.; Kelly, T.R.; Dekkers, J.C.M.; Zhou, H.; Lamont, S.J. Novel mechanisms revealed in the trachea transcriptome of resistant and susceptible chicken lines following infection with Newcastle disease virus. Clin. Vaccine Immunol. 2017, 24, e00027-17. [Google Scholar] [CrossRef]
- Marco-Sola, S.; Sammeth, M.; Guigó, R.; Ribeca, P. The GEM mapper: Fast, accurate and versatile alignment by filtration. Nat. Methods 2012, 9, 1185–1188. [Google Scholar] [CrossRef]
- Li, H.; Handsaker, B.; Wysoker, A.; Fennell, T.; Ruan, J.; Homer, N.; Marth, G.; Abecasis, G.; Durbin, R. The sequence alignment/map format and SAMtools. Bioinformatics 2009, 25, 2078–2079. [Google Scholar] [CrossRef]
- Ferretti, L.; Tennakoon, C.; Silesian, A.; Freimanis, G.; Ribeca, P. SiNPle: Fast and sensitive variant calling for deep sequencing data. Genes 2019, 10, 561. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Illingworth, C.J.R. Measurements of intrahost viral diversity require an unbiased diversity metric. Virus Evol. 2019, 5. [Google Scholar] [CrossRef] [PubMed]
- Ferretti, L.; Ramos-Onsins, S.E.; Pérez-Enciso, M. Population genomics from pool sequencing. Mol. Ecol. 2013, 22, 5561–5576. [Google Scholar] [CrossRef] [PubMed]
- Achaz, G. Frequency spectrum neutrality tests: One for all and all for one. Genetics 2009, 183, 249–258. [Google Scholar] [CrossRef] [PubMed]
- Ferretti, L.; Marmorini, G.; Ramos-Onsins, S. Properties of neutrality tests based on allele frequency spectrum. arXiv 2010, arXiv:1011.1470. [Google Scholar]
- Gascuel, O. BIONJ: An improved version of the NJ algorithm based on a simple model of sequence data. Mol. Biol. Evol. 1997, 14, 685–695. [Google Scholar] [CrossRef] [PubMed]
- Hollich, V.; Milchert, L.; Arvestad, L.; Sonnhammer, E.L.L. Assessment of protein distance measures and tree-building methods for phylogenetic tree reconstruction. Mol. Biol. Evol. 2005, 22, 2257–2264. [Google Scholar] [CrossRef] [PubMed]
- Paradis, E.; Schliep, K. ape 5.0: An environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 2019, 35, 526–528. [Google Scholar] [CrossRef]
- Rafajlović, M.; Klassmann, A.; Eriksson, A.; Wiehe, T.; Mehlig, B. Demography-adjusted tests of neutrality based on genome-wide SNP data. Theor. Popul. Biol. 2014, 95, 1–12. [Google Scholar] [CrossRef]
- Ferretti, L.; Perez-Enciso, M.; Ramos-Onsins, S. Optimal neutrality tests based on the frequency spectrum. Genetics 2010, 186, 353–365. [Google Scholar] [CrossRef]
- Hudson, R.R.; Kreitman, M.; Aguadé, M. A test of neutral molecular evolution based on nucleotide data. Genetics 1987, 116, 153–159. [Google Scholar] [PubMed]
- Schilling, M.A.; Katani, R.; Memari, S.; Cavanaugh, M.; Buza, J.; Radzio-Basu, J.; Mpenda, F.N.; Deist, M.S.; Lamont, S.J.; Kapur, V. Transcriptional innate immune response of the developing chicken embryo to Newcastle disease virus infection. Front. Genet. 2018, 9, 61. [Google Scholar] [CrossRef] [PubMed]
- Ishida, N.; Taira, H.; Omata, T.; Mizumoto, K.; Hattori, S.; Iwasaki, K.; Kawakita, M. Sequence of 2,617 nucieotides from the 3′ end of Newcastle disease virus genome RNA and the predicted amino acid sequence of viral NP protein. Nucleic Acids Res. 1986, 14, 6551–6564. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Yan, Y.; Samal, S.K. Role of intergenic sequences in newcastle disease virus RNA transcription and pathogenesis. J. Virol. 2008, 82, 1323–1331. [Google Scholar] [CrossRef] [PubMed]
- Marcos, F.; Ferreira, L.; Cros, J.; Park, M.-S.; Nakaya, T.; García-Sastre, A.; Villar, E. Mapping of the RNA promoter of Newcastle disease virus. Virology 2005, 331, 396–406. [Google Scholar] [CrossRef][Green Version]
- Gaikwad, S.S.; Lee, H.-J.; Kim, J.-Y.; Choi, K.-S. Expression and serological application of recombinant epitope-repeat protein carrying an immunodominant epitope of Newcastle disease virus nucleoprotein. Clin. Exp. Vaccine Res. 2019, 8, 27–34. [Google Scholar] [CrossRef]
- Fan, W.; Xu, Y.; Zhang, P.; Chen, P.; Zhu, Y.; Cheng, Z.; Zhao, X.; Liu, Y.; Liu, J. Analysis of molecular evolution of nucleocapsid protein in Newcastle disease virus. Oncotarget 2017, 8, 97127–97136. [Google Scholar] [CrossRef]
- Steward, M.; Vipond, I.B.; Millar, N.S.; Emmerson, P.T. RNA editing in Newcastle disease virus. J. Gen. Virol. 2015, 74, 2539–2547. [Google Scholar] [CrossRef]
- Locke, D.P.; Sellers, H.S.; Crawford, J.M.; Schultz-Cherry, S.; King, D.J.; Meinersmann, R.J.; Seal, B.S. Newcastle disease virus phosphoprotein gene analysis and transcriptional editing in avian cells. Virus Res. 2000, 69, 55–68. [Google Scholar] [CrossRef]
- Childs, K.S.; Andrejeva, J.; Randall, R.E.; Goodbourn, S. Mechanism of mda-5 inhibition by paramyxovirus V proteins. J. Virol. 2009, 83, 1465–1473. [Google Scholar] [CrossRef]
- Chu, Z.; Wang, C.; Tang, Q.; Shi, X.; Gao, X.; Ma, J.; Lu, K.; Han, Q.; Jia, Y.; Wang, X.; et al. Newcastle disease virus V protein inhibits cell apoptosis and promotes viral replication by targeting cacybp/SIP. Front. Cell. Infect. Microbiol. 2018, 8, 304. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Chu, Z.; Liu, W.; Pang, Y.; Gao, X.; Tang, Q.; Ma, J.; Lu, K.; Adam, F.E.A.; Dang, R.; et al. Newcastle disease virus V protein inhibits apoptosis in DF-1 cells by downregulating TXNL1. Vet. Res. 2018, 49, 102. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.; Krishnamurthy, S.; Panda, A.; Samal, S.K. Newcastle disease virus V protein is associated with viral pathogenesis and functions as an alpha interferon antagonist. J. Virol. 2003, 77, 8676–8685. [Google Scholar] [CrossRef] [PubMed]
- Alamares, J.G.; Elankumaran, S.; Samal, S.K.; Iorio, R.M. The interferon antagonistic activities of the V proteins from two strains of Newcastle disease virus correlate with their known virulence properties. Virus Res. 2010, 147, 153–157. [Google Scholar] [CrossRef] [PubMed]
- Rao, P.L.; Gandham, R.K.; Subbiah, M. Molecular evolution and genetic variations of V and W proteins derived by RNA editing in Avian Paramyxoviruses. Sci. Rep. 2020. [Google Scholar] [CrossRef]
- Takimoto, T.; Portner, A. Molecular mechanism of paramyxovirus budding. Virus Res. 2004, 106, 133–145. [Google Scholar] [CrossRef]
- Pantua, H.D.; McGinnes, L.W.; Peeples, M.E.; Morrison, T.G. Requirements for the assembly and release of Newcastle disease virus-like particles. J. Virol. 2006, 80, 11062–11073. [Google Scholar] [CrossRef]
- Seal, B.S.; King, D.J.; Meinersmann, R.J. Molecular evolution of the Newcastle disease virus matrix protein gene and phylogenetic relationships among the paramyxoviridae. Virus Res. 2000, 66, 1–11. [Google Scholar] [CrossRef]
- Peeters, B.P.; De Leeuw, O.S.; Koch, G.; Gielkens, A.L. Rescue of Newcastle disease virus from cloned cDNA: Evidence that cleavability of the fusion protein is a major determinant for virulence. J. Virol. 1999, 73, 5001–5009. [Google Scholar] [CrossRef]
- Swanson, K.; Wen, X.; Leser, G.P.; Paterson, R.G.; Lamb, R.A.; Jardetzky, T.S. Structure of the Newcastle disease virus F protein in the post-fusion conformation. Virology 2010, 402, 372–379. [Google Scholar] [CrossRef]
- Toyoda, T.; Gotoh, B.; Sakaguchi, T.; Kida, H.; Nagai, Y. Identification of amino acids relevant to three antigenic determinants on the fusion protein of Newcastle disease virus that are involved in fusion inhibition and neutralization. J. Virol. 1988, 62, 4427–4430. [Google Scholar] [CrossRef] [PubMed]
- Nagai, Y.; Klenk, H.D.; Rott, R. Proteolytic cleavage of the viral glycoproteins and its significance for the virulence of Newcastle disease virus. Virology 1976, 72, 494–508. [Google Scholar] [CrossRef]
- McGinnes, L.W.; Morrison, T.G. The role of individual oligosaccharide chains in the activities of the HN glycoprotein of Newcastle disease virus. Virology 1995, 212, 398–410. [Google Scholar] [CrossRef] [PubMed]
- Panda, A.; Elankumaran, S.; Krishnamurthy, S.; Huang, Z.; Samal, S.K. Loss of N-linked glycosylation from the hemagglutinin-neuraminidase protein alters virulence of Newcastle disease virus. J. Virol. 2004, 78, 4965–4975. [Google Scholar] [CrossRef]
- García-Sastre, A.; Cabezas, J.; Villar, E. Proteins of newcastle disease virus envelope: Interaction between the outer hemagglutinin-neuraminidase glycoprotein and the inner non-glycosylated matrix protein. Biochim. Biophys. Acta Protein Struct. Mol. Enzymol. 1989, 999, 171–175. [Google Scholar] [CrossRef]
- Jin, J.; Cheng, J.; He, Z.; Ren, Y.; Yu, X.; Song, Y.; Yang, H.; Yang, Y.; Liu, T.; Zhang, G. Different origins of Newcastle disease virus hemagglutinin-neuraminidase protein modulate the replication efficiency and pathogenicity of the virus. Front. Microbiol. 2017, 8, 1607. [Google Scholar] [CrossRef]
- Huang, Z.; Panda, A.; Elankumaran, S.; Govindarajan, D.; Rockemann, D.D.; Samal, S.K. The hemagglutinin-neuraminidase protein of Newcastle disease virus determines tropism and virulence. J. Virol. 2004, 78, 4176–4184. [Google Scholar] [CrossRef]
- Iorio, R.M.; Syddall, R.J.; Sheehan, J.P.; Bratt, M.A.; Glickman, R.L.; Riel, A.M. Neutralization map of the hemagglutinin-neuraminidase glycoprotein of Newcastle disease virus: Domains recognized by monoclonal antibodies that prevent receptor recognition. J. Virol. 1991. [Google Scholar] [CrossRef]
Samples | Total Number of Sequenced High Quality Nucleotides | Number of Bases with Read Depth ≥100 | ||
---|---|---|---|---|
Host | Virus | Replicate | ||
in vivo Leghorn (susceptible line) | LaSota | 1 | 7,863,831 | 7947 |
2 | 40,862,546 | 10,853 | ||
3 | 24,478,520 | 8116 | ||
in vivo Fayoumi (resistant line) | 1 | 7,209,555 | 7961 | |
2 | 2,260,242 | 7387 | ||
in vitro Chicken embryo fibroblast (CEF) cells | LaSota | 1 | 513,645,350 | 15,169 |
2 | 489,575,827 | 15,169 | ||
3 | 493,067,864 | 15,169 | ||
Herts/33 | 1 | 2,297,752,521 | 15,162 | |
2 | 2,538,051,612 | 15,169 | ||
3 | 2,158,838,655 | 15,163 |
Gene | NP | P | M | F | HN | HN |
---|---|---|---|---|---|---|
Feature | Peak in polymorphism | Correlated patterns pol-div. | Generally low polymorphisms | Dip in divergence | 1st peak in divergence | 2nd peak in divergence |
Genomic position (±250 bp) | 683–684 (leghorn1) | Whole gene (3290–4384) | 5018–5019 | 6589–6593 | 7219–7220 |
Protein | NP | P | M | F | F | HN | HN |
---|---|---|---|---|---|---|---|
Feature | dip | peak | dip | 1st peak | 2nd peak | 1st peak | 2nd peak |
Location (dark gray in Figure 8) | 600–900 | 2300–2700 | 3550–3800 | 4750–4850 | 5200–5350 | 6600–6750 | 7100–7400 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jadhav, A.; Zhao, L.; Liu, W.; Ding, C.; Nair, V.; Ramos-Onsins, S.E.; Ferretti, L. Genomic Diversity and Evolution of Quasispecies in Newcastle Disease Virus Infections. Viruses 2020, 12, 1305. https://doi.org/10.3390/v12111305
Jadhav A, Zhao L, Liu W, Ding C, Nair V, Ramos-Onsins SE, Ferretti L. Genomic Diversity and Evolution of Quasispecies in Newcastle Disease Virus Infections. Viruses. 2020; 12(11):1305. https://doi.org/10.3390/v12111305
Chicago/Turabian StyleJadhav, Archana, Lele Zhao, Weiwei Liu, Chan Ding, Venugopal Nair, Sebastian E. Ramos-Onsins, and Luca Ferretti. 2020. "Genomic Diversity and Evolution of Quasispecies in Newcastle Disease Virus Infections" Viruses 12, no. 11: 1305. https://doi.org/10.3390/v12111305
APA StyleJadhav, A., Zhao, L., Liu, W., Ding, C., Nair, V., Ramos-Onsins, S. E., & Ferretti, L. (2020). Genomic Diversity and Evolution of Quasispecies in Newcastle Disease Virus Infections. Viruses, 12(11), 1305. https://doi.org/10.3390/v12111305