Basal Level p53 Suppresses Antiviral Immunity Against Foot-And-Mouth Disease Virus
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cells and Virus
2.2. Antibodies, Plasmids, and Chemical Treatment
2.3. Virus Infection, RNA Extraction and RT-qPCR
2.4. Western Blotting
2.5. Short Hairpin RNA (shRNA) Transfection
2.6. Generation of p53 Knockout (KO) Cell Lines in BHK-21 and PK-15
2.7. Reproduction and Identification of p53-KO Mice
2.8. Isolation and Culture of Primary Peritoneal Macrophages
2.9. Virus Challenge Assay in Mice
3. Results
3.1. FMDV Infection Dynamically Regulates p53 Protein Level Partly through MDM2-Dependent Proteasome Pathway
3.2. Depletion of p53 Inhibits FMDV Replication
3.3. Expression of the Immune-Related Genes is Greatly Enhanced in p53-KO Cells
3.4. p53-KO Mice is More Resistant to FMDV Infection
4. Discussion
4.1. p53 is Required for Efficient FMDV Replication
4.2. p53 Suppresses the Innate Immune Response During FMDV Infection
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Lane, D.P.; Crawford, L.V. T antigen is bound to a host protein in sv40-transformed cells. Nature 1979, 278, 261–263. [Google Scholar] [CrossRef] [PubMed]
- Levine, A.J.; Oren, M. The first 30 years of p53: Growing ever more complex. Nat. Rev. Cancer 2009, 9, 749–758. [Google Scholar] [CrossRef] [PubMed]
- Sheets, E.E.; Yeh, J. The role of apoptosis in gynaecological malignancies. Ann. Med. 1997, 29, 121–126. [Google Scholar] [CrossRef] [PubMed]
- Swiatkowska, A.; Zydowicz, P.; Sroka, J.; Ciesiolka, J. The role of the 5’ terminal region of p53 mrna in the p53 gene expression. Acta Biochim. Pol. 2016, 63, 645–651. [Google Scholar] [CrossRef] [PubMed]
- Maruzuru, Y.; Fujii, H.; Oyama, M.; Kozuka-Hata, H.; Kato, A.; Kawaguchi, Y. Roles of p53 in herpes simplex virus 1 replication. J. Virol. 2013, 87, 9323–9332. [Google Scholar] [CrossRef]
- Takaoka, A.; Hayakawa, S.; Yanai, H.; Stoiber, D.; Negishi, H.; Kikuchi, H.; Sasaki, S.; Imai, K.; Shibue, T.; Honda, K.; et al. Integration of interferon-alpha/beta signalling to p53 responses in tumour suppression and antiviral defence. Nature 2003, 424, 516–523. [Google Scholar] [CrossRef] [PubMed]
- Meistelman, C.; Agoston, S.; Kersten, U.W.; Saint-Maurice, C.; Bencini, A.F.; Loose, J.P. Pharmacokinetics and pharmacodynamics of vecuronium and pancuronium in anesthetized children. Anesth. Analg. 1986, 65, 1319–1323. [Google Scholar] [CrossRef]
- Yang, M.R.; Lee, S.R.; Oh, W.; Lee, E.W.; Yeh, J.Y.; Nah, J.J.; Joo, Y.S.; Shin, J.; Lee, H.W.; Pyo, S.; et al. West nile virus capsid protein induces p53-mediated apoptosis via the sequestration of hdm2 to the nucleolus. Cell Microbiol. 2008, 10, 165–176. [Google Scholar] [CrossRef]
- Santos, C.R.; Vega, F.M.; Blanco, S.; Barcia, R.; Lazo, P.A. The vaccinia virus b1r kinase induces p53 downregulation by an mdm2-dependent mechanism. Virology 2004, 328, 254–265. [Google Scholar] [CrossRef]
- Seibert, K.N.; Essani, K.; Bejcek, B.E. The tanapoxvirus 142r protein is a serine-threonine kinase that phosphorylates the tumor suppressor p53. Open Virol. J. 2013, 7, 1–4. [Google Scholar] [CrossRef]
- Koromilas, A.E.; Li, S.; Matlashewski, G. Control of interferon signaling in human papillomavirus infection. Cytokine Growth Factor Rev. 2001, 12, 157–170. [Google Scholar] [CrossRef]
- Engeland, K. Cell cycle arrest through indirect transcriptional repression by p53: I have a dream. Cell Death Differ. 2017, 25, 114–132. [Google Scholar] [CrossRef]
- Fischer, M.; Uxa, S.; Stanko, C.; Magin, T.M.; Engeland, K. Human papilloma virus e7 oncoprotein abrogates the p53-p21-dream pathway. Sci. Rep. 2017, 7, 2603. [Google Scholar] [CrossRef]
- Drayman, N.; Ben-Nun-Shaul, O.; Butin-Israeli, V.; Srivastava, R.; Rubinstein, A.M.; Mock, C.S.; Elyada, E.; Ben-Neriah, Y.; Lahav, G.; Oppenheim, A. P53 elevation in human cells halt sv40 infection by inhibiting t-ag expression. Oncotarget 2016, 7, 52643–52660. [Google Scholar] [CrossRef]
- César, M.O.F.; Michael, P.; Igotz, D.; William, M.; Sathish Kumar, M.; Lee, S.W.; Adolfo, G.S.; Moran, T.M.; Aaronson, S.A. P53 serves as a host antiviral factor that enhances innate and adaptive immune responses to influenza a virus. J. Immunol. 2011, 187, 6428–6436. [Google Scholar]
- Zhu, Z.; Yang, Y.; Wei, J.; Shao, D.; Shi, Z.; Li, B.; Liu, K.; Qiu, Y.; Zheng, H.; Ma, Z. Type i interferon-mediated immune response against influenza a virus is attenuated in the absence of p53. Biochem. Biophys. Res. Commun. 2014, 454, 189–195. [Google Scholar] [CrossRef]
- Yan, W.; Wei, J.; Deng, X.; Shi, Z.; Zhu, Z.; Shao, D.; Li, B.; Wang, S.; Tong, G.; Ma, Z. Transcriptional analysis of immune-related gene expression in p53-deficient mice with increased susceptibility to influenza a virus infection. BMC Med. Genom. 2015, 8, 52. [Google Scholar] [CrossRef]
- Greenway, A.L.; Mcphee, D.A.; Kelly, A.; Ricky, J.; Gavan, H.; John, M.; Ahmed, A.; Sonia, S.; Paul, L. Human immunodeficiency virus type 1 nef binds to tumor suppressor p53 and protects cells against p53-mediated apoptosis. J. Virol. 2002, 76, 2692–2702. [Google Scholar] [CrossRef]
- Maruzuru, Y.; Koyanagi, N.; Takemura, N.; Uematsu, S.; Matsubara, D.; Suzuki, Y.; Arii, J.; Kato, A.; Kawaguchi, Y. P53 is a host cell regulator during herpes simplex encephalitis. J. Virol. 2016, 90. [Google Scholar] [CrossRef]
- Aloni-Grinstein, R.; Charni-Natan, M.; Solomon, H.; Rotter, V. P53 and the viral connection: Back into the future. Cancers 2018, 10, 178. [Google Scholar] [CrossRef]
- Shimmon, G.; Wood, B.A.; Morris, A.; Mioulet, V.; Grazioli, S.; Brocchi, E.; Berryman, S.; Tuthill, T.; King, D.P.; Burman, A.; et al. Truncated bovine integrin alpha-v/beta-6 as a universal capture ligand for fmd diagnosis. PLoS ONE 2016, 11, e0160696. [Google Scholar] [CrossRef]
- Zhao, F.R.; Xie, Y.L.; Liu, Z.Z.; Shao, J.J.; Li, S.F.; Zhang, Y.G.; Chang, H.Y. Lithium chloride inhibits early stages of foot-and-mouth disease virus (fmdv) replication in vitro. J. Med. Virol. 2017, 89, 2041–2046. [Google Scholar] [CrossRef]
- Dvorak, C.M.; Akkutay-Yoldar, Z.; Stone, S.R.; Tousignant, S.J.; Vannucci, F.A.; Murtaugh, M.P. An indirect enzyme-linked immunosorbent assay for the identification of antibodies to senecavirus a in swine. BMC Vet. Res. 2017, 13, 50. [Google Scholar] [CrossRef]
- Feng, Q.; Hato, S.V.; Langereis, M.A.; Zoll, J.; Virgen-Slane, R.; Peisley, A.; Hur, S.; Semler, B.L.; van Rij, R.P.; van Kuppeveld, F.J. Mda5 detects the double-stranded rna replicative form in picornavirus-infected cells. Cell Rep. 2012, 2, 1187–1196. [Google Scholar] [CrossRef]
- Deddouche, S.; Goubau, D.; Rehwinkel, J.; Chakravarty, P.; Begum, S.; Maillard, P.V.; Borg, A.; Matthews, N.; Feng, Q.; van Kuppeveld, F.J.; et al. Identification of an lgp2-associated mda5 agonist in picornavirus-infected cells. Elife 2014, 3, e01535. [Google Scholar] [CrossRef]
- Zhu, Z.; Wang, G.; Yang, F.; Cao, W.; Mao, R.; Du, X.; Zhang, X.; Li, C.; Li, D.; Zhang, K.; et al. Foot-and-mouth disease virus viroporin 2b antagonizes rig-i-mediated antiviral effects by inhibition of its protein expression. J. Virol. 2016, 90, 11106–11121. [Google Scholar] [CrossRef]
- Ran, F.A.; Hsu, P.D.; Wright, J.; Agarwala, V.; Scott, D.A.; Zhang, F. Genome engineering using the crispr-cas9 system. Nat. Protoc. 2013, 8, 2281–2308. [Google Scholar] [CrossRef]
- Rabbi, M.F.; Benoit, L.; Marie-Hélène, M.B.; Bernstein, C.N.; Jean-Eric, G. Catestatin decreases macrophage function in two mouse models of experimental colitis. Biochem. Pharmacol. 2014, 89, 386–398. [Google Scholar] [CrossRef]
- Clague, M.J.; Urbé, S. Ubiquitin: Same molecule, different degradation pathways. Cell 2010, 143, 682–685. [Google Scholar] [CrossRef]
- Onomoto, K.; Yoneyama, M.; Fujita, T. Recognition of viral nucleic acids and regulation of type i ifn expression. Nihon Rinsho 2006, 64, 1236–1243. [Google Scholar]
- Rivas, C.; Aaronson, S.A.; Munozfontela, C. Dual role of p53 in innate antiviral immunity. Viruses 2010, 2, 298–313. [Google Scholar] [CrossRef]
- Muñoz-Fontela, C.; Mandinova, A.; Aaronson, S.A.; Lee, S.W. Emerging roles of p53 and other tumour-suppressor genes in immune regulation. Nat. Rev. Immunol. 2016, 16, 741–750. [Google Scholar] [CrossRef] [Green Version]
- He, X.Y.; Xiang, C.; Zhang, C.X.; Xie, Y.Y.; Chen, L.; Zhang, G.X.; Lu, Y.; Liu, G. P53 in the myeloid lineage modulates an inflammatory microenvironment limiting initiation and invasion of intestinal tumors. Cell Rep. 2015, 13, 888–897. [Google Scholar] [CrossRef]
- Gudkov, A.V.; Gurova, K.V.; Komarova, E.A. Inflammation and p53: A tale of two stresses. Genes Cancer 2011, 2, 503–516. [Google Scholar] [CrossRef]
- Levine, A.J. P53, the cellular gatekeeper for growth and division. Cell 1997, 88, 323–331. [Google Scholar] [CrossRef]
- Teng, Y.; Liu, S.; Guo, X.; Liu, S.; Jin, Y.; He, T.; Bi, D.; Zhang, P.; Lin, B.; An, X.; et al. An integrative analysis reveals a central role of p53 activation via mdm2 in zika virus infection induced cell death. Front. Cell Infect. Microbiol. 2017, 7, 327. [Google Scholar] [CrossRef]
- Mori, T.; Anazawa, Y.; Iiizumi, M.; Fukuda, S.; Nakamura, Y.; Arakawa, H. Identification of the interferon regulatory factor 5 gene (irf-5) as a direct target for p53. Oncogene 2002, 21, 2914–2918. [Google Scholar] [CrossRef]
- Park, J.H.; Yang, S.W.; Park, J.M.; Ka, S.H.; Kim, J.H.; Kong, Y.Y.; Jeon, Y.J.; Seol, J.H.; Chung, C.H. Positive feedback regulation of p53 transactivity by DNA damage-induced isg15 modification. Nat. Commun. 2016, 7, 12513. [Google Scholar] [CrossRef]
- Munoz-Fontela, C.; Macip, S.; Martinez-Sobrido, L.; Brown, L.; Ashour, J.; Garcia-Sastre, A.; Lee, S.W.; Aaronson, S.A. Transcriptional role of p53 in interferon-mediated antiviral immunity. J. Exp. Med. 2008, 205, 1929–1938. [Google Scholar] [CrossRef] [Green Version]
- Hsu, T.H.; Chu, C.C.; Jiang, S.Y.; Hung, M.W.; Ni, W.C.; Lin, H.E.; Chang, T.C. Expression of the class ii tumor suppressor gene rig1 is directly regulated by p53 tumor suppressor in cancer cell lines. Febs. Lett. 2012, 586, 1287–1293. [Google Scholar] [CrossRef]
- Santhanam, U.; Ray, A.; Sehgal, P.B. Repression of the interleukin 6 gene promoter by p53 and the retinoblastoma susceptibility gene product. Proc. Natl. Acad. Sci. USA 1991, 88, 7605–7609. [Google Scholar] [CrossRef]
- Komarova, E.A.; Krivokrysenko, V.; Wang, K.H.; Neznanov, N.; Chernov, M.V.; Komarov, P.G.; Brennan, M.L.; Golovkina, T.V.; Rokhlin, O.; Kuprash, D.V.; et al. P53 is a suppressor of inflammatory response in mice. Faseb J. 2005, 19, 1030. [Google Scholar] [CrossRef]
- Feng, H.H.; Zhu, Z.X.; Cao, W.J.; Yang, F.; Zhang, X.L.; Du, X.L.; Zhang, K.S.; Liu, X.T.; Zheng, H.X. Foot-and-mouth disease virus induces lysosomal degradation of nme1 to impair p53-regulated interferon-inducible antiviral genes expression. Cell Death Dis. 2018, 9, 885. [Google Scholar] [CrossRef]
- Wang, X.D.; Deng, X.F.; Yan, W.J.; Zhu, Z.X.; Shen, Y.; Qiu, Y.F.; Shi, Z.X.; Shao, D.H.; Wei, J.C.; Xia, X.Z.; et al. Stabilization of p53 in influenza a virus-infected cells is associated with compromised mdm2-mediated ubiquitination of p53. J. Biol. Chem. 2012, 287, 18366–18375. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, T.; Chen, H.; Liu, X.; Qi, L.; Gao, X.; Wang, K.; Yao, K.; Zhang, J.; Sun, Y.; Zhang, Y.; et al. Basal Level p53 Suppresses Antiviral Immunity Against Foot-And-Mouth Disease Virus. Viruses 2019, 11, 727. https://doi.org/10.3390/v11080727
Zhang T, Chen H, Liu X, Qi L, Gao X, Wang K, Yao K, Zhang J, Sun Y, Zhang Y, et al. Basal Level p53 Suppresses Antiviral Immunity Against Foot-And-Mouth Disease Virus. Viruses. 2019; 11(8):727. https://doi.org/10.3390/v11080727
Chicago/Turabian StyleZhang, Tianliang, Haotai Chen, Xinsheng Liu, Linlin Qi, Xin Gao, Kailing Wang, Kaishen Yao, Jie Zhang, Yuefeng Sun, Yongguang Zhang, and et al. 2019. "Basal Level p53 Suppresses Antiviral Immunity Against Foot-And-Mouth Disease Virus" Viruses 11, no. 8: 727. https://doi.org/10.3390/v11080727
APA StyleZhang, T., Chen, H., Liu, X., Qi, L., Gao, X., Wang, K., Yao, K., Zhang, J., Sun, Y., Zhang, Y., & Wu, R. (2019). Basal Level p53 Suppresses Antiviral Immunity Against Foot-And-Mouth Disease Virus. Viruses, 11(8), 727. https://doi.org/10.3390/v11080727