Decreased Sensitivity of the Serological Detection of Feline Immunodeficiency Virus Infection Potentially Due to Imported Genetic Variants
Abstract
:1. Introduction
2. Materials and Methods
2.1. Serum Samples
2.2. FIV-TM ELISA
2.3. FIV WB
2.4. FIV Point-of-Care Testing
2.5. FIV RT-PCR Analysis
2.6. Diagnostic Sensitivity and Specificity of FIV-TM ELISA
2.7. Statistics
3. Results
3.1. Sample Characteristics and Results of FIV WB Testing
3.2. Comparison of WB-Negative and WB-Positive Cats
3.3. Confirmation of FIV-TM ELISA Results Using FIV WB
3.4. False ELISA-Positive Samples (WB-Negative and FIV-TM ELISA-Positive)
3.5. False ELISA-Negative Results (WB-Positive and FIV-TM ELISA-Negative)
3.6. Further FIV Testing of False ELISA-Negative Samples
3.7. Inconclusive WB Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Pedersen, N.C.; Ho, E.W.; Brown, M.L.; Yamamoto, J.K. Isolation of a t-lymphotropic virus from domestic cats with an immunodeficiency-like syndrome. Science 1987, 235, 790–793. [Google Scholar] [CrossRef] [PubMed]
- Pedersen, N.C.; Yamamoto, J.K.; Ishida, T.; Hansen, H. Feline immunodeficiency virus infection. Vet. Immunol. Immunopathol. 1989, 21, 111–129. [Google Scholar] [CrossRef]
- Olmsted, R.A.; Langley, R.; Roelke, M.E.; Goeken, R.M.; Adger-Johnson, D.; Goff, J.P.; Albert, J.P.; Packer, C.; Laurenson, M.K.; Caro, T.M. Worldwide prevalence of lentivirus infection in wild feline species: Epidemiologic and phylogenetic aspects. J. Virol. 1992, 66, 6008–6018. [Google Scholar] [PubMed]
- Ackley, C.D.; Yamamoto, J.K.; Levy, N.; Pedersen, N.C.; Cooper, M.D. Immunologic abnormalities in pathogen-free cats experimentally infected with feline immunodeficiency virus. J. Virol. 1990, 64, 5652–5655. [Google Scholar] [PubMed]
- Troyer, J.L.; Pecon-Slattery, J.; Roelke, M.E.; Johnson, W.; VandeWoude, S.; Vazquez-Salat, N.; Brown, M.; Frank, L.; Woodroffe, R.; Winterbach, C.; et al. Seroprevalence and genomic divergence of circulating strains of feline immunodeficiency virus among felidae and hyaenidae species. J. Virol. 2005, 79, 8282–8294. [Google Scholar] [CrossRef] [PubMed]
- Brown, E.W.; Yuhki, N.; Packer, C.; O’Brien, S.J. A lion lentivirus related to feline immunodeficiency virus: Epidemiologic and phylogenetic aspects. J. Virol. 1994, 68, 5953–5968. [Google Scholar] [PubMed]
- Carpenter, M.A.; O’Brien, S.J. Coadaptation and immunodeficiency virus: Lessons from the felidae. Curr. Opin. Genet. Dev. 1995, 5, 739–745. [Google Scholar] [CrossRef]
- Barr, M.C.; Calle, P.P.; Roelke, M.E.; Scott, F.W. Feline immunodeficiency virus-infection in nondomestic felids. J. Zoo Wildl. Med. 1989, 20, 265–272. [Google Scholar]
- Hofmann-Lehmann, R.; Fehr, D.; Grob, M.; Elgizoli, M.; Packer, C.; Martenson, J.S.; O’Brien, S.J.; Lutz, H. Prevalence of antibodies to feline parvovirus, calicivirus, herpesvirus, coronavirus, and immunodeficiency virus and of feline leukemia virus antigen and the interrelationship of these viral infections in free-ranging lions in east Africa. Clin. Diagn. Lab. Immunol. 1996, 3, 554–562. [Google Scholar]
- Kraase, M.; Sloan, R.; Klein, D.; Logan, N.; McMonagle, L.; Biek, R.; Willett, B.J.; Hosie, M.J. Feline immunodeficiency virus env gene evolution in experimentally infected cats. Vet. Immunol. Immunopathol. 2010, 134, 96–106. [Google Scholar] [CrossRef]
- Preston, B.; Poiesz, B.; Loeb, L. Fidelity of hiv-1 reverse transcriptase. Science 1988, 242, 1168–1171. [Google Scholar] [CrossRef] [PubMed]
- Takeuchi, Y.; Nagumo, T.; Hoshino, H. Low fidelity of cell-free DNA synthesis by reverse transcriptase of human immunodeficiency virus. J. Virol. 1988, 62, 3900–3902. [Google Scholar] [PubMed]
- Roberts, J.; Bebenek, K.; Kunkel, T. The accuracy of reverse transcriptase from hiv-1. Science 1988, 242, 1171–1173. [Google Scholar] [CrossRef] [PubMed]
- Rigby, M.A.; Holmes, E.C.; Pistello, M.; Mackay, A.; Leigh Brown, A.J.; Neil, J.C. Evolution of structural proteins of feline immunodeficiency virus: Molecular epidemiology and evidence of selection for change. J. Gen. Virol. 1993, 74, 425–436. [Google Scholar] [CrossRef] [PubMed]
- Sodora, D.L.; Shpaer, E.G.; Kitchell, B.E.; Dow, S.W.; Hoover, E.A.; Mullins, J.I. Identification of three feline immunodeficiency virus (fiv) env gene subtypes and comparison of the fiv and human immunodeficiency virus type 1 evolutionary patterns. J. Virol. 1994, 68, 2230–2238. [Google Scholar] [PubMed]
- Bachmann, M.H.; Mathiason-Dubard, C.; Learn, G.H.; Rodrigo, A.G.; Sodora, D.L.; Mazzetti, P.; Hoover, E.A.; Mullins, J.I. Genetic diversity of feline immunodeficiency virus: Dual infection, recombination, and distinct evolutionary rates among envelope sequence clades. J. Virol. 1997, 71, 4241–4253. [Google Scholar] [PubMed]
- Kakinuma, S.; Motokawa, K.; Hohdatsu, T.; Yamamoto, J.K.; Koyama, H.; Hashimoto, H. Nucleotide sequence of feline immunodeficiency virus: Classification of japanese isolates into two subtypes which are distinct from non-japanese subtypes. J. Virol. 1995, 69, 3639–3646. [Google Scholar]
- Pecoraro, M.R.; Tomonaga, K.; Miyazawa, T.; Kawaguchi, Y.; Sugita, S.; Tohya, Y.; Kai, C.; Etcheverrigaray, M.E.; Mikami, T. Genetic diversity of argentine isolates of feline immunodeficiency virus. J. Gen. Virol. 1996, 77, 2031–2035. [Google Scholar] [CrossRef]
- Weaver, E.A.; Collisson, E.W.; Slater, M.; Zhu, G. Phylogenetic analyses of texas isolates indicate an evolving subtype of the clade b feline immunodeficiency viruses. J. Virol. 2004, 78, 2158–2163. [Google Scholar] [CrossRef]
- Duarte, A.; Tavares, L. Phylogenetic analysis of portuguese feline immunodeficiency virus sequences reveals high genetic diversity. Vet. Microbiol. 2006, 114, 25–33. [Google Scholar] [CrossRef]
- Hayward, J.J.; Rodrigo, A.G. Recombination in feline immunodeficiency virus from feral and companion domestic cats. Virol. J. 2008, 5, 76. [Google Scholar] [CrossRef] [PubMed]
- Marçola, T.G.; Gomes, C.P.C.; Silva, P.A.; Fernandes, G.R.; Paludo, G.R.; Pereira, R.W. Identification of a novel subtype of feline immunodeficiency virus in a population of naturally infected felines in the brazilian federal district. Virus Genes 2013, 46, 546–550. [Google Scholar] [CrossRef] [PubMed]
- Hayward, J.J.; Rodrigo, A.G. Molecular epidemiology of feline immunodeficiency virus in the domestic cat (felis catus). Vet. Immunol. Immunopathol. 2010, 134, 68. [Google Scholar] [CrossRef] [PubMed]
- Oğuzoğlu, T.Ç.; Timurkan, M.Ö.; Muz, D.; Kudu, A.; Numanbayraktaroğlu, B.; Sadak, S.; Burgu, I. First molecular characterization of feline immunodeficiency virus in turkey. Arch. Virol. 2010, 155, 1877–1881. [Google Scholar] [CrossRef] [PubMed]
- Greene, W.K.; Meers, J.; del Fierro, G.; Carnegie, P.R.; Robinson, W.F. Extensive sequence variation of feline immunodeficiency virus env genes in isolates from naturally infected cats. Arch. Virol. 1993, 133, 51–62. [Google Scholar] [CrossRef]
- Nishimura, Y.; Goto, Y.; Pang, H.; Endo, Y.; Mizuno, T.; Momoi, Y.; Watari, T.; Tsujimoto, H.; Hasegawa, A. Genetic heterogeneity of env gene of feline immunodeficiency virus obtained from multiple districts in japan. Virus Res. 1998, 57, 101–112. [Google Scholar] [CrossRef]
- Hayward, J.J.; Taylor, J.; Rodrigo, A.G. Phylogenetic analysis of feline immunodeficiency virus in feral and companion domestic cats of new zealand. J. Virol. 2007, 81, 2999–3004. [Google Scholar] [CrossRef]
- Martins, N.S.; Rodrigues, A.P.S.; da Luz, L.A.; dos Reis, L.L.; de Oliveira, R.M.; de Oliveira, R.A.; Abreu-Silva, A.L.; dos Reis, J.K.P.; Melo, F.A. Feline immunodeficiency virus subtypes b and a in cats from são luis, maranhão, brazil. Arch. Virol. 2018, 163, 549–554. [Google Scholar] [CrossRef]
- Pistello, M.; Cammarota, G.; Nicoletti, E.; Matteucci, D.; Curcio, M.; Del Mauro, D.; Bendinelli, M. Analysis of the genetic diversity and phylogenetic relationship of italian isolates of feline immunodeficiency virus indicates a high prevalence and heterogeneity of subtype b. J. Gen. Virol. 1997, 78, 2247–2257. [Google Scholar] [CrossRef]
- Nakamura, K.; Suzuki, Y.; Ikeo, K.; Ikeda, Y.; Sato, E.; Nguyen, N.T.P.; Gojobori, T.; Mikami, T.; Miyazawa, T. Phylogenetic analysis of vietnamese isolates of feline immunodeficiency virus: Genetic diversity of subtype c. Arch. Virol. 2003, 148, 783–791. [Google Scholar]
- Reggeti, F.; Bienzle, D. Feline immunodeficiency virus subtypes a, b and c and intersubtype recombinants in ontario, canada. J. Gen. Virol. 2004, 85, 1843–1852. [Google Scholar] [CrossRef] [PubMed]
- Steinrigl, A.; Ertl, R.; Langbein, I.; Klein, D. Phylogenetic analysis suggests independent introduction of feline immunodeficiency virus clades a and b to central europe and identifies diverse variants of clade b. Vet. Immunol. Immunopathol. 2010, 134, 82–89. [Google Scholar] [CrossRef] [PubMed]
- Weaver, E.A. A detailed phylogenetic analysis of fiv in the united states. PLoS ONE 2010, 5, e12004. [Google Scholar] [CrossRef] [PubMed]
- Steinrigl, A.; Klein, D. Phylogenetic analysis of feline immunodeficiency virus in central europe: A prerequisite for vaccination and molecular diagnostics. J. Gen. Virol. 2003, 84, 1301–1307. [Google Scholar] [CrossRef] [PubMed]
- Samman, A.; McMonagle, E.L.; Logan, N.; Willett, B.J.; Biek, R.; Hosie, M.J. Phylogenetic characterisation of naturally occurring feline immunodeficiency virus in the united kingdom. Vet. Microbiol. 2011, 150, 239–247. [Google Scholar] [CrossRef] [PubMed]
- Roukaerts, I.D.M.; Theuns, S.; Taffin, E.R.L.; Daminet, S.; Nauwynck, H.J. Phylogenetic analysis of feline immunodeficiency virus strains from naturally infected cats in belgium and the netherlands. Virus Res. 2015, 196, 30–36. [Google Scholar] [CrossRef] [PubMed]
- Perharić, M.; Biđin, M.; Starešina, V.; Milas, Z.; Turk, N.; Štritof, Z.; Hađina, S.; Habuš, J.; Stevanović, V.; Mojčec-Perko, V.; et al. Phylogenetic characterisation of feline immunodeficiency virus in naturally infected cats in croatia indicates additional heterogeneity of subtype b in europe. Arch. Virol. 2016, 161, 2567–2573. [Google Scholar] [CrossRef] [PubMed]
- Caxito, F.A.; Coelho, F.M.; Oliveira, M.E.; Resende, M. Feline immunodeficiency virus subtype b in domestic cats in minas gerais, brazil. Vet. Res. Commun. 2006, 30, 953–956. [Google Scholar] [CrossRef] [PubMed]
- Lara, V.M.; Taniwaki, S.A.; Araújo Jr, J.P. Caracterização filogenética de amostras do vírus da imunodeficiência felina (fiv) do estado de são paulo. Pesqui. Veterinária Bras. 2007, 27, 467–470. [Google Scholar] [CrossRef]
- Martins, A.N.; Medeiros, S.O.; Simonetti, J.P.; Schatzmayr, H.G.; Tanuri, A.; Brindeiro, R.M. Phylogenetic and genetic analysis of feline immunodeficiency virus gag, pol, and env genes from domestic cats undergoing nucleoside reverse transcriptase inhibitor treatment or treatment-naïve cats in rio de janeiro, brazil. J. Virol. 2008, 82, 7863–7874. [Google Scholar] [CrossRef]
- Cano-Ortiz, L.; Junqueira, D.M.; Comerlato, J.; Costa, C.S.; Zani, A.; Duda, N.B.; Tochetto, C.; dos Santos, R.N.; da Costa, F.V.A.; Roehe, P.M.; et al. Phylodynamics of the brazilian feline immunodeficiency virus. Infect. Genet. Evol. 2017, 55, 166–171. [Google Scholar] [CrossRef] [PubMed]
- Uema, M.; Ikeda, Y.; Miyazawa, T.; Lin, A.J.; Chen, M.-C.; Tkuo, Z.-F.; Kai, C.; Mikami, T.; Takahashi, E. Feline immunodeficiency virus subtype c is prevalent in northern part of taiwan. J. Vet. Med. Sci. 1999, 61, 197–199. [Google Scholar] [CrossRef] [PubMed]
- Inada, G.; Miyazawa, T.; Inoshima, Y.; Kohmoto, M.; Ikeda, Y.; Liu, C.-H.; Lin, J.A.; Kou, T.-F.; Mikami, T. Phylogenetic analysis of feline immunodeficiency virus isolated from cats in taiwan. Arch. Virol. 1997, 142, 1459–1467. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Wang, L.; Li, J.; Kelly, P.; Price, S.; Wang, C. First molecular characterization of feline immunodeficiency virus in domestic cats from mainland China. PLoS ONE 2017, 12, e0169739. [Google Scholar] [CrossRef] [PubMed]
- Kann, R.K.; Kyaw-Tanner, M.T.; Seddon, J.M.; Lehrbach, P.R.; Zwijnenberg, R.J.; Meers, J. Molecular subtyping of feline immunodeficiency virus from domestic cats in australia. Aust. Vet. J. 2006, 84, 112–116. [Google Scholar] [CrossRef] [PubMed]
- Iwata, D.; Holloway, S. Molecular subtyping of feline immunodeficiency virus from cats in melbourne. Aust. Vet. J. 2008, 86, 385–389. [Google Scholar] [CrossRef] [PubMed]
- Kyaw-Tanner, M.T.; Greene, W.K.; Park, H.; Robinson, W.F. The induction of in vivo superinfection and recombination using feline immunodeficiency virus as the model. Arch. Virol. 1994, 138, 261–271. [Google Scholar] [CrossRef]
- Okada, S.; Pu, R.; Young, E.; Stoffs, W.V.; Yamamoto, J.K. Superinfection of cats with feline immunodeficiency virus subtypes a and b. AIDS Res. Hum. Retrovir. 1994, 10, 1739–1746. [Google Scholar] [CrossRef]
- Pistello, M.; Matteucci, D.; Cammarota, G.; Mazzetti, P.; Giannecchini, S.; Del Mauro, D.; Macchi, S.; Zaccaro, L.; Bendinelli, M. Kinetics of replication of a partially attenuated virus and of the challenge virus during a three-year intersubtype feline immunodeficiency virus superinfection experiment in cats. J. Virol. 1999, 73, 1518–1527. [Google Scholar]
- Bęczkowski, P.M.; Hughes, J.; Biek, R.; Litster, A.; Willett, B.J.; Hosie, M.J. Feline immunodeficiency virus (fiv) env recombinants are common in natural infections. Retrovirology 2014, 11, 80. [Google Scholar] [CrossRef]
- Yamamoto, J.K. Pathogenesis of experimentally induced feline immunodeficiency virus infection in cats. Am. J. Vet. Res. 1988, 49, 1246–1258. [Google Scholar] [PubMed]
- O’Connor, T.P., Jr.; Tanguay, S.; Steinman, R.; Smith, R.; Barr, M.C.; Yamamoto, J.K.; Pedersen, N.C.; Andersen, P.R.; Tonelli, Q.J. Development and evaluation of immunoassay for detection of antibodies to the feline t-lymphotropic lentivirus (feline immunodeficiency virus). J. Clin. Microbiol. 1989, 27, 474–479. [Google Scholar] [PubMed]
- Calzolari, M.; Young, E.; Cox, D.; Davis, D.; Lutz, H. Serological diagnosis of feline immunodeficiency virus infection using recombinant transmembrane glycoprotein. Vet. Immunol. Immunopathol. 1995, 46, 83–92. [Google Scholar] [CrossRef]
- Bienzle, D.; Reggeti, F.; Wen, X.; Little, S.; Hobson, J.; Kruth, S. The variability of serological and molecular diagnosis of feline immunodeficiency virus infection. Can. Vet. J. 2004, 45, 753–757. [Google Scholar] [PubMed]
- Crawford, P.C.; Levy, J.K. New challenges for the diagnosis of feline immunodeficiency virus infection. Vet. Clin. North. Am. Small Anim. Pract. 2007, 37, 335–350. [Google Scholar] [CrossRef] [PubMed]
- Hosie, M.J.; Addie, D.; Belák, S.; Boucraut-Baralon, C.; Egberink, H.; Frymus, T.; Gruffydd-Jones, T.; Hartmann, K.; Lutz, H.; Marsilio, F.; et al. Feline immunodeficiency: Abcd guidelines on prevention and management. J. Feline Med. Surg. 2009, 11, 575–584. [Google Scholar] [CrossRef] [PubMed]
- Ammersbach, M.; Bienzle, D. Methods for assessing feline immunodeficiency virus infection, infectivity and purification. Vet. Immunol. Immunopathol. 2011, 143, 202–214. [Google Scholar] [CrossRef] [PubMed]
- Leutenegger, C.M.; Klein, D.; Hofmann-Lehmann, R.; Mislin, C.; Hummel, U.; Böni, J.; Boretti, F.; Guenzburg, W.H.; Lutz, H. Rapid feline immunodeficiency virus provirus quantitation by polymerase chain reaction using the taqman® fluorogenic real-time detection system. J. Virol. Methods 1999, 78, 105–116. [Google Scholar] [CrossRef]
- Klein, D.; Janda, P.; Steinborn, R.; Müller, M.; Salmons, B.; Günzburg, W.H. Proviral load determination of different feline immunodeficiency virus isolates using real-time polymerase chain reaction: Influence of mismatches on quantification. Electrophoresis 1999, 20, 291–299. [Google Scholar] [CrossRef]
- Klein, D.; Leutenegger, C.M.; Bahula, C.; Gold, P.; Hofmann-Lehmann, R.; Salmons, B.; Lutz, H.; Gunzburg, W.H. Influence of preassay and sequence variations on viral load determination by a multiplex real-time reverse transcriptase-polymerase chain reaction for feline immunodeficiency virus. J. Acquir. Immune Defic. Syndr. 2001, 26, 8–20. [Google Scholar] [CrossRef] [PubMed]
- Phillips, T.R.; Talbott, R.L.; Lamont, C.; Muir, S.; Lovelace, K.; Elder, J.H. Comparison of two host cell range variants of feline immunodeficiency virus. J. Virol. 1990, 64, 4605–4613. [Google Scholar] [PubMed]
- Avrameas, A.; Guillet, J.-G.; Chouchane, L.; Moraillon, A.; Sonigo, P.; Strosberg, A.D. Localisation of three epitopes of the env protein of feline immunodeficiency virus. Mol. Immunol. 1992, 29, 565–572. [Google Scholar] [CrossRef]
- Pancino, G.; Chappey, C.; Saurin, W.; Sonigo, P. B epitopes and selection pressures in feline immunodeficiency virus envelope glycoproteins. J. Virol. 1993, 67, 664–672. [Google Scholar] [PubMed]
- Pancino, G.; Sonigo, P. Retention of viral infectivity after extensive mutation of the highly conserved immunodominant domain of the feline immunodeficiency virus envelope. J. Virol. 1997, 71, 4339–4346. [Google Scholar] [PubMed]
- Barr, M.C. Fiv, felv, and fipv: Interpretation and misinterpretation of serological test results. Semin. Vet. Med. Surg. (Small Anim.) 1996, 11, 144–153. [Google Scholar] [CrossRef]
- Hartmann, K.; Werner, R.M.; Egberink, H.F.; Jarrett, O. Comparison of six in-house tests for the rapid diagnosis of feline immunodeficiency and feline leukaemia virus infections. Vet. Rec. 2001, 149, 317–320. [Google Scholar] [CrossRef] [PubMed]
- Levy, J.; Crawford, C.; Hartmann, K.; Hofmann-Lehmann, R.; Little, S.; Sundahl, E.; Thayer, V. 2008 american association of feline practitioners’ feline retrovirus management guidelines. J. Feline Med. Surg. 2008, 10, 300–316. [Google Scholar] [CrossRef]
- Sand, C.; Englert, T.; Egberink, H.; Lutz, H.; Hartmann, K. Evaluation of a new in-clinic test system to detect feline immunodeficiency virus and feline leukemia virus infection. Vet. Clin. Pathol. 2010, 39, 210–214. [Google Scholar] [CrossRef]
- Nichols, J.; Weng, H.Y.; Litster, A.; Leutenegger, C.; Guptill, L. Commercially available enzyme-linked immunosorbent assay and polymerase chain reaction tests for detection of feline immunodeficiency virus infection. J. Vet. Intern. Med. 2017, 31, 55–59. [Google Scholar] [CrossRef]
- Horzinek, M.; Egberink, H.; Lutz, H. Use of western blot and radio immunoprecipitation for diagnosis of feline leukemia and fekine immunodeficiency virus infections. J. Am. Vet. Med. Assoc. 1991, 1339–1342. [Google Scholar]
- Fontenot, J.D.; Hoover, E.A.; Elder, J.H.; Montelaro, R.C. Evaluation of feline immunodeficiency virus and feline leukemia virus transmembrane peptides for serological diagnosis. J. Clin. Microbiol. 1992, 30, 1885–1890. [Google Scholar] [PubMed]
- Rimmelzwaan, G.F.; Siebelink, K.H.; Broos, H.; Drost, G.A.; Weijer, K.; van Herwijnen, R.; Osterhaus, A.D. Gag- and env-specific serum antibodies in cats after natural and experimental infection with feline immunodeficiency virus. Vet. Microbiol. 1994, 39, 153–165. [Google Scholar] [CrossRef]
- Westman, M.E.; Malik, R.; Hall, E.; Sheehy, P.A.; Norris, J.M. Determining the feline immunodeficiency virus (fiv) status of fiv-vaccinated cats using point-of-care antibody kits. Comp. Immunol. Microbiol. Infect. Dis. 2015, 42, 43–52. [Google Scholar] [CrossRef] [PubMed]
- Lutz, H.; Arnold, P.; Hubscher, U.; Egberink, H.; Pedersen, N.; Horzinek, M.C. Specificity assessment of feline t-lymphotropic lentivirus serology. Zentralbl. Veterinarmed. B 1988, 35, 773–778. [Google Scholar] [CrossRef] [PubMed]
- Reid, R.W.; Barr, M.C.; Scott, F.W. Retrospective serologic survey for the presence of feline immunodeficiency virus antibody: A comparison of elisa and ifa techniques. Cornell Vet. 1992, 82, 359–369. [Google Scholar] [PubMed]
- Hartmann, K.; Kuffer, M.; Egberink, H.F.; Lutz, H.; Kraft, W. Diagnostik der fiv-infektion. Tierarztl. Prax. 1994, 22, 268–272. [Google Scholar] [PubMed]
- Levy, J.; Richards, J.; Edwards, D.; Elston, T.; Hartmann, K.; Rodan, I.; Thayer, V.; Tompkins, M.; Wolf, A.; American Association of Feline, P.; et al. 2001 report of the american association of feline practitioners and academy of feline medicine advisory panel on feline retrovirus testing and management. J. Feline Med. Surg. 2003, 5, 3–10. [Google Scholar] [PubMed]
- Jacobson, R.H. How well do serodiagnostic tests predict the infection or disease status of cats. J. Am. Vet. Med. Assoc. 1991, 199, 1343–1347. [Google Scholar] [PubMed]
- Allenspach, K. Provirusloadbestimmung bei FIV-infizierten Katzen während Immunstimulation. Ph.D. Thesis, University of Zurich, Zurich, Switzerland, 1995. [Google Scholar]
- Wang, C.; Johnson, C.M.; Ahluwalia, S.K.; Chowdhury, E.; Li, Y.; Gao, D.; Poudel, A.; Rahman, K.S.; Kaltenboeck, B. Dual-emission fluorescence resonance energy transfer (fret) real-time pcr differentiates feline immunodeficiency virus subtypes and discriminates infected from vaccinated cats. J. Clin. Microbiol. 2010, 48, 1667–1672. [Google Scholar] [CrossRef]
- Tierschutzgesetz (TschG). Available online: https://www.admin.ch/opc/de/classified-compilation/20022103/index.html (accessed on 11 April 2019).
- Lehmann, R.; Franchini, M.; Aubert, A.; Wolfensberger, C.; Cronier, J.; Lutz, H. Vaccination of cats experimentally infected with feline immunodeficiency virus, using a recombinant feline leukemia virus vaccine. J. Am. Vet. Med. Assoc. 1991, 199, 1446–1452. [Google Scholar]
- Leutenegger, C.M.; Hofmann-Lehmann, R.; Holznagel, E.; Cuisinier, A.M.; Wolfensberger, C.; Duquesne, V.; Cronier, J.; Allenspach, K.; Aubert, A.; Ossent, P.; et al. Partial protection by vaccination with recombinant feline immunodeficiency virus surface glycoproteins. AIDS Res. Hum. Retroviruses 1998, 14, 275–283. [Google Scholar] [CrossRef] [PubMed]
- Eckstrand, C.D.; Hillman, C.; Smith, A.L.; Sparger, E.E.; Murphy, B.G. Viral Reservoirs in Lymph Nodes of FIV-Infected Progressor and Long-Term Non-Progressor Cats during the Asymptomatic Phase. PLoS ONE 2016, 11, e0146825. [Google Scholar] [CrossRef] [PubMed]
- Krakoff, E.; Gagne, R.B.; VandeWoude, S.; Carver, S. Variation in intra-individual lentiviral evolution rates: A systematic review of human, non-human primate and felid species. J. Virol. 2019, JVI.00538-00519. [Google Scholar] [CrossRef] [PubMed]
- Bęczkowski, P.M.; Hughes, J.; Biek, R.; Litster, A.; Willett, B.J.; Hosie, M.J. Rapid evolution of the env gene leader sequence in cats naturally infected with feline immunodeficiency virus. J. Gen. Virol. 2015, 96, 893–903. [Google Scholar] [CrossRef]
- Carpenter, M.A.; Brown, E.W.; MacDonald, D.W.; O’Brien, S.J. Phylogeographic patterns of feline immunodeficiency virus genetic diversity in the domestic cat. Virology 1998, 251, 234–243. [Google Scholar] [CrossRef] [PubMed]
- Kyaw-Tanner, M.T.; Robinson, W.F. Quasispecies and naturally occurring superinfection in feline immunodeficiency virus infection. Arch. Virol. 1996, 141, 1703–1713. [Google Scholar] [CrossRef]
- Willett, B.J.; Kraase, M.; Logan, N.; McMonagle, E.; Varela, M.; Hosie, M.J. Selective expansion of viral variants following experimental transmission of a reconstituted feline immunodeficiency virus quasispecies. PLoS ONE 2013, 8, e54871. [Google Scholar] [CrossRef]
- Carpenter, M.A.; Brown, E.W.; Culver, M.; Johnson, W.E.; Pecon-Slattery, J.; Brousset, D.; O’Brien, S.J. Genetic and phylogenetic divergence of feline immunodeficiency virus in the puma (puma concolor). J. Virol. 1996, 70, 6682–6693. [Google Scholar]
- Nishimura, Y.; Goto, Y.; Yoneda, K.; Endo, Y.; Mizuno, T.; Hamachi, M.; Maruyama, H.; Kinoshita, H.; Koga, S.; Komori, M.; et al. Interspecies transmission of feline immunodeficiency virus from the domestic cat to the tsushima cat (felis bengalensis euptilura) in the wild. J. Virol. 1999, 73, 7916–7921. [Google Scholar]
- Franklin, S.P.; Troyer, J.L.; Terwee, J.A.; Lyren, L.M.; Boyce, W.M.; Riley, S.P.D.; Roelke, M.E.; Crooks, K.R.; VandeWoude, S. Frequent transmission of immunodeficiency viruses among bobcats and pumas. J. Virol. 2007, 81, 10961–10969. [Google Scholar] [CrossRef]
- Troyer, J.L.; VandeWoude, S.; Pecon-Slattery, J.; McIntosh, C.; Franklin, S.; Antunes, A.; Johnson, W.; O’Brien, S.J. Fiv cross-species transmission: An evolutionary prospective. Vet. Immunol. Immunopathol. 2008, 123, 159–166. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Malmberg, J.L.; Wood, B.A.; Hladky, S.; Troyer, R.; Roelke, M.; Cunningham, M.; McBride, R.; Vickers, W.; Boyce, W.; et al. Feline immunodeficiency virus cross-species transmission: Implications for emergence of new lentiviral infections. J. Virol. 2017, 91, e02134-16. [Google Scholar] [CrossRef] [PubMed]
- Lewis, J.S.; Logan, K.A.; Alldredge, M.W.; Carver, S.; Bevins, S.N.; Lappin, M.; VandeWoude, S.; Crooks, K.R. The effects of demographic, social, and environmental characteristics on pathogen prevalence in wild felids across a gradient of urbanization. PLoS ONE 2017, 12, e0187035. [Google Scholar] [CrossRef] [PubMed]
- Talbott, R.L.; Sparger, E.E.; Lovelace, K.M.; Fitch, W.M.; Pedersen, N.C.; Luciw, P.A.; Elder, J.H. Nucleotide sequence and genomic organization of feline immunodeficiency virus. Proc. Natl. Acad. Sci. USA 1989, 86, 5743–5747. [Google Scholar] [CrossRef] [PubMed]
- Egberink, H.F.; Ederveen, J.; Montelaro, R.C.; Pedersen, N.C.; Horzinek, M.C.; Koolen, M.J.M. Intracellular proteins of feline immunodeficiency virus and their antigenic relationship with equine infectious anaemia virus proteins. J. Gen. Virol. 1990, 71, 739–743. [Google Scholar] [CrossRef] [PubMed]
- WITNESS® FeLV-FIV Test Kit. Available online: https://www.zoetisus.com/products/cats/witness_felv-fiv.aspx (accessed on 4 June 2019).
- Pinsky, N.A.; Huddleston, J.M.; Jacobson, R.M.; Wollan, P.C.; Poland, G.A. Effect of multiple freeze-thaw cycles on detection of measles, mumps, and rubella virus antibodies. Clin. Diagn. Lab. Immunol. 2003, 10, 19–21. [Google Scholar] [CrossRef] [PubMed]
- Granados, A.; Petrich, A.; McGeer, A.; Gubbay, J.B. Measuring influenza rna quantity after prolonged storage or multiple freeze/thaw cycles. J. Virol. Methods 2017, 247, 45–50. [Google Scholar] [CrossRef] [PubMed]
- Hartmann, K.; Griessmayr, P.; Schulz, B.; Greene, C.E.; Vidyashankar, A.N.; Jarrett, O.; Egberink, H.F. Quality of different in-clinic test systems for feline immunodeficiency virus and feline leukaemia virus infection. J. Feline Med. Surg. 2007, 9, 439–445. [Google Scholar] [CrossRef] [PubMed]
- Levy, J.K.; Crawford, P.C.; Tucker, S.J. Performance of 4 point-of-care screening tests for feline leukemia virus and feline immunodeficiency virus. J. Vet. Intern. Med. 2017, 31, 521–526. [Google Scholar] [CrossRef]
- SNAP FIV/FeLV Combo Test. Available online: https://www.idexx.com/en/veterinary/snap-tests/snap-fivfelv-combo-test/ (accessed on 4 June 2019).
- Uhl, E.W.; Heaton-Jones, T.G.; Pu, R.; Yamamoto, J.K. Fiv vaccine development and its importance to veterinary and human medicine: A review: Fiv vaccine 2002 update and review. Vet. Immunol. Immunopathol. 2002, 90, 113–132. [Google Scholar] [CrossRef]
- Westman, M.; Malik, R.; Norris, J. Diagnosing feline immunodeficiency virus (fiv) and feline leukaemia virus (felv) infection: An update for clinicians. Aust. Vet. J. 2019, 97, 47–55. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. The application of the principle of glp to in vitro studies. In Handbook: Good Laboratory Practice (GLP): Quality Practices for Regulated Non-Clinical Research and Development, 2nd ed.; World Health Organization: Geneva, Switzerland, 2009; pp. 276–287. [Google Scholar]
- Brown, E.W.; Olmsted, R.A.; Martenson, J.S.; O’Brien, S.J. Exposure to fiv and fipv in wild and captive cheetahs. Zoo Biol. 1993, 12, 135–142. [Google Scholar] [CrossRef]
- Brown, E.W.; Miththapala, S.; O’Brien, S.J. Prevalence of exposure to feline immunodeficiency virus in exotic felid species. J. Zoo Wildl. Med. 1993, 24, 357–364. [Google Scholar]
- Filoni, C.; Catao-Dias, J.L.; Bay, G.; Durigon, E.L.; Jorge, R.S.; Lutz, H.; Hofmann-Lehmann, R. First evidence of feline herpesvirus, calicivirus, parvovirus, and ehrlichia exposure in brazilian free-ranging felids. J. Wildl. Dis. 2006, 42, 470–477. [Google Scholar] [CrossRef]
- Filoni, C.; Catão-Dias, J.L.; Cattori, V.; Willi, B.; Meli, M.L.; Corrêa, S.H.R.; Marques, M.C.; Adania, C.H.; Silva, J.C.R.; Marvulo, M.F.V.; et al. Surveillance using serological and molecular methods for the detection of infectious agents in captive brazilian neotropic and exotic felids. J. Vet. Diagn. Invest. 2012, 24, 166–173. [Google Scholar] [CrossRef]
All Samples | WB-Negative/Inconclusive Samples 1 | WB-Positive Samples 1 | WB-Positive 1, ELISA-Positive Samples | WB-Positive 1 Samples with Ambiguous ELISA Results | WB-Positive 1, ELISA-Negative Samples | |
---|---|---|---|---|---|---|
Total | 1194 | 411/247 | 536 | 441 | 25 | 70 |
Sex | ||||||
- m | 192 | 65/36 | 91 | 74 | 2 | 15 |
- mc | 289 | 64/53 | 172 | 155 | 3 | 14 |
- f | 104 | 44/26 | 34 | 24 | 0 | 10 |
- fs | 127 | 67/22 | 38 | 31 | 1 | 6 |
- unk | 482 | 171/110 | 201 | 157 | 19 | 25 |
Age (y) | ||||||
- < 6 months 2 | 46 | 23/12 | 11 | 6 | 1 | 4 |
- 6 months to < 2 y | 113 | 49/25 | 39 | 29 | 0 | 10 |
- 2 to < 6 y | 210 | 70/48 | 92 | 74 | 4 | 14 |
- 6 to < 10 y | 151 | 44/31 | 76 | 63 | 0 | 13 |
- 10 to < 14 y | 125 | 45/25 | 55 | 50 | 0 | 5 |
- 14 to < 18 y | 47 | 18/14 | 15 | 8 | 0 | 7 |
- 18 to < 23 y | 8 | 6/1 | 1 | 1 | 0 | 0 |
- unk | 494 | 156/91 | 247 | 210 | 20 | 17 |
Origin | ||||||
- CH | 641 | 235/145 | 261 | 216 | 7 | 38 |
- DE | 475 | 134/88 | 253 | 215 | 11 | 27 |
- FR | 53 | 30/9 | 14 | 2 | 7 | 5 |
- AT | 5 | 3/2 | 0 | 0 | 0 | 0 |
- FI | 9 | 5/3 | 1 | 1 | 0 | 0 |
- IT | 2 | 1/0 | 1 | 1 | 0 | 0 |
- unk | 9 | 3/0 | 6 | 6 | 0 | 0 |
Collection (y) | ||||||
1998–2003 | 252 | 99/28 | 125 | 117 | 3 | 5 |
2004–2008 | 211 | 44/53 | 114 | 83 | 7 | 24 |
2009–2013 | 276 | 124/56 | 96 | 84 | 8 | 4 |
2014–2019 | 455 | 144/110 | 201 | 157 | 7 | 37 |
WB-Positive | WB-Negative | WB-Inconclusive 2 | Total | |
---|---|---|---|---|
ELISA-Positive (OD <50% of pc 1) | 441 | 11 | 36 | 488 |
ELISA-Negative (<10% of pc) | 70 | 375 | 205 | 650 |
Ambiguous Result (10–50% of pc) | 25 | 25 | 6 | 56 |
Total | 536 | 411 | 247 | 1194 |
Sample ID | Age of Cat (Years) | Sex of Cat | Year of Sample Collection | Origin of Sample (Country) | ELISA (% of pc) | SNAPTM POCT | WITNESSR POCT |
---|---|---|---|---|---|---|---|
1322 | 15 | m | 1999 | CH | 64.0 | neg | neg |
1383 | unk | m | 2000 | CH | 60.0 | nt | nt |
1436 | unk | unk | 2000 | CH | 133.7 | nt | pos |
1607 | 9 | m | 2004 | DE | 149.4 | pos | pos |
1758 | 14 | fs | 2007 | DE | 70.7 | pos | pos |
1892 | 3 | mc | 2009 | CH | 75.0 | neg | neg |
1995 | 6 | f | 2011 | CH | 107.9 | pos | pos |
2021 | 12 | fs | 2011 | CH | 51.0 | nt | nt |
2022 | 10 | unk | 2011 | CH | 51.0 | nt | nt |
2023 | 0.4 | m | 2011 | CH | 108.8 | pos | pos |
41673826 | 7 | fs | 2017 | CH | 102.5 | nt | pos |
Sample ID | Age of Cat (Years) | Sex of Cat | Year of Sample Collection | Origin of Sample (Country) | SNAPTM POCT | WITNESSR POCT | ELISA (% of pc) | RT-PCR |
---|---|---|---|---|---|---|---|---|
1343 | unk | unk | 1999 | CH | neg | neg | 1.5 | neg |
1359 | 1 | m | 1999 | CH | neg | neg | 1.7 | neg |
1537 | 4 | mc | 2002 | DE | neg | neg | 0.0 | neg |
1554 | 8 | fs | 2003 | CH | neg | neg | 3.1 | neg |
1574 | 7 | mc | 2003 | CH | neg | neg | 1.3 | neg |
1599 | 5 | f | 2004 | DE | neg | neg | 0.0 | neg |
1621 | unk | unk | 2004 | CH | nt | neg | 0.0 | neg |
1633 | 3 | fs | 2004 | DE | neg | neg | 3.3 | neg |
1634 | 8 | f | 2004 | DE | nt | nt | 1.5 | neg |
1648 | unk | unk | 2005 | CH | nt | neg | 0.0 | neg |
1656 | 1 | m | 2005 | DE | nt | nt | 0.0 | neg |
1666 | unk | unk | 2005 | CH | neg | neg | 0.0 | neg |
1674 | 0.2 1 | m | 2005 | CH | neg | neg | 0.0 | neg |
1678 | 2 | mc | 2005 | DE | nt | nt | 0.0 | neg |
1679 | 0.25 1 | m | 2005 | DE | nt | neg | 0.0 | nt |
1683 | 0.5 | m | 2005 | DE | neg | neg | 3.0 | neg |
1686 | unk | m | 2005 | DE | neg | neg | 0.0 | neg |
1690 | 3 | unk | 2005 | CH | neg | neg | 0.6 | neg |
1691 | 13 | mc | 2005 | DE | nt | nt | 0.0 | neg |
1692 | unk | unk | 2005 | CH | nt | nt | 0.0 | neg |
1698 | 8 | m | 2005 | DE | nt | neg | 0.0 | neg |
1699 | 8 | mc | 2005 | DE | neg | nt | 0.0 | nt |
1700 | 5 | mc | 2005 | DE | neg | neg | 0.0 | neg |
1701 | 14 | fs | 2006 | DE | neg | nt | 0.0 | nt |
1703 | 13 | mc | 2006 | DE | nt | nt | 0.0 | neg |
1704 | 2 | mc | 2006 | CH | neg | neg | 0.0 | neg |
1710 | 3 | mc | 2006 | DE | neg | nt | 0.0 | neg |
1781 | 6 | f | 2007 | DE | neg | neg | 0.0 | pos 2 |
1812 | 2 | f | 2008 | DE | neg | neg | 2.5 | neg |
1886 | unk | unk | 2009 | FR | pos | pos | 9.0 | pos 2 |
1922 | unk | unk | 2010 | DE | nt | neg | 0.0 | neg |
1925 | unk | unk | 2010 | FR | nt | neg | 0.0 | neg |
00005100 | 0.25 1 | m | 2013 | CH | pos | pos4 | 6.0 | nt |
00006038 | unk | unk | 2014 | DE | neg | neg | 0.0 | neg |
00007702 | unk | unk | 2014 | DE | neg | neg | 0.0 | neg |
00007792 | 0.5 | m | 2014 | DE | nt | neg | 1.6 | neg |
00008569 | 9 | mc | 2015 | DE | neg | neg | 0.0 | neg |
00009944 | 6 | mc | 2015 | CH | neg | neg | 0.0 | neg |
00009955 | unk | unk | 2015 | FR | pos | nt | 8.0 | nt |
00010012 | 1 | m | 2015 | CH | neg | neg | 0.0 | neg |
00010489 | 0.6 | mc | 2015 | CH | nt | neg | 0.9 | neg |
00010545 | 0.31 | f | 2015 | CH | neg | neg | 2.0 | neg |
41385749 | 10 | unk | 2015 | CH | neg | neg | 0.0 | pos 3 |
41386411 | 12 | unk | 2015 | CH | neg | neg | 0.2 | neg |
41387194 | 2 | unk | 2015 | CH | neg | neg | 0.4 | neg |
41387409 | 10 | unk | 2015 | CH | neg | neg | 0.2 | neg |
41388050 | 16 | unk | 2015 | CH | neg | neg | 0.3 | neg |
41388399 | 6 | unk | 2015 | CH | neg | neg | 0.1 | neg |
41392409 | 16 | unk | 2016 | CH | neg | neg | 1.5 | neg |
00010770 | unk | f | 2016 | DE | neg | neg | 0.0 | neg |
41397627 | 8 | unk | 2016 | CH | neg | neg | 0.1 | neg |
41398102 | 6 | unk | 2016 | CH | neg | neg | 0.2 | neg |
41404918 | 14 | m | 2016 | CH | neg | neg | 2.0 | neg |
41406670 | 1 | m | 2016 | CH | neg | neg | 0.0 | neg |
41406844 | 0.5 | f | 2016 | CH | neg | neg | 0.2 | neg |
00011456 | 3 | fs | 2016 | CH | neg | neg | 1.1 | neg |
41561426 | 16 | f | 2016 | CH | neg | neg | 0.3 | neg |
41577198 | 14 | m | 2016 | CH | neg | neg | 0.3 | neg |
00012612 | 4 | fs | 2016 | CH | neg | neg | 9.9 | neg |
00013274 | unk | unk | 2017 | FR | nt | neg | 0.0 | neg |
00013276 | unk | unk | 2017 | FR | nt | neg | 4.1 | neg |
00013381 | 7 | mc | 2017 | CH | neg | neg | 1.0 | neg |
00014059 | 0.8 | f | 2017 | DE | neg | neg | 3.0 | neg |
00014227 | unk | unk | 2017 | DE | neg | neg | 1.6 | neg |
00014598 | 2 | m | 2017 | CH | nt | neg | 0.0 | neg |
41663426 | 16 | mc | 2017 | CH | neg | neg | 0.0 | neg |
41669714 | 7 | m | 2017 | CH | pos | neg | 3.6 | pos 2 |
00016295 | unk | unk | 2018 | DE | pos | neg | 5.3 | neg |
00018980 | 0.7 | fs | 2019 | CH | neg | neg | 5.0 | neg |
51028174 | 2 | f | 2019 | CH | nt | neg | 8.0 | neg |
Sample ID | Age of Cat (Years) | Sex of Cat | Year of Sample Collection | Origin of Sample (Country) | ELISA (% of pc) | SNAPTM POCT | WITNESSR POCT | RT-PCR |
---|---|---|---|---|---|---|---|---|
1600 | 2 | mc | 2004 | DE | 111.0 | pos | pos | pos 1,2 |
1622 | 2 | mc | 2004 | DE | 132.8 | pos | pos | pos 1,2 |
1637 | 2 | mc | 2004 | CH | 182.3 | pos | pos | pos 1,2 |
00015713 | 8 | mc | 2017 | CH | 179.2 | pos | pos | pos 1,2 |
00016945 | 12 | fs | 2018 | CH | 265.5 | pos | pos | pos 1,2,3 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Frankenfeld, J.; Meili, T.; Meli, M.L.; Riond, B.; Helfer-Hungerbuehler, A.K.; Bönzli, E.; Pineroli, B.; Hofmann-Lehmann, R. Decreased Sensitivity of the Serological Detection of Feline Immunodeficiency Virus Infection Potentially Due to Imported Genetic Variants. Viruses 2019, 11, 697. https://doi.org/10.3390/v11080697
Frankenfeld J, Meili T, Meli ML, Riond B, Helfer-Hungerbuehler AK, Bönzli E, Pineroli B, Hofmann-Lehmann R. Decreased Sensitivity of the Serological Detection of Feline Immunodeficiency Virus Infection Potentially Due to Imported Genetic Variants. Viruses. 2019; 11(8):697. https://doi.org/10.3390/v11080697
Chicago/Turabian StyleFrankenfeld, Julia, Theres Meili, Marina L. Meli, Barbara Riond, A. Katrin Helfer-Hungerbuehler, Eva Bönzli, Benita Pineroli, and Regina Hofmann-Lehmann. 2019. "Decreased Sensitivity of the Serological Detection of Feline Immunodeficiency Virus Infection Potentially Due to Imported Genetic Variants" Viruses 11, no. 8: 697. https://doi.org/10.3390/v11080697