Combining a Fusion Inhibitory Peptide Targeting the MERS-CoV S2 Protein HR1 Domain and a Neutralizing Antibody Specific for the S1 Protein Receptor-Binding Domain (RBD) Showed Potent Synergism against Pseudotyped MERS-CoV with or without Mutations in RBD
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cells, Peptides, Human mAb m336, and Plasmids
2.2. Production of Pseudoviruses
2.3. Inhibition of Pseudotyped MERS-CoV Infection
2.4. Inhibition of MERS-CoV S Protein-Mediated Cell–Cell Fusion
2.5. Inhibitory Activity of Sera from Mice Treated with m336 Alone, HR2P-M2 Alone, or m336/HR2P-M2 Combined
2.6. Inhibitor Combination Assay
2.7. Statistical Analysis
3. Results
3.1. Combining HR2P-M2 with m336 Exhibited Strong Synergism against MERS-CoV Pseudovirus Infection
3.2. Combining HR2P-M2 with m336 Displayed Strong Synergism against MERS-CoV S Protein-Mediated Cell–Cell Fusion
3.3. MERS-CoV Pseudoviruses with Mutations in RBD Mutant of MERS-CoV Were Resistant to RBD-Specific mAb m336, While They Were Equally Sensitive to the HR1-Targeting Peptide HR2P-M2
3.4. Combining m336 with HR2P-M2 Exhibited Potent Synergism against MERS-CoV Pseudoviruses with or without Mutations in RBD or Those in the HR1 Domain
3.5. Sera from Mice Treated with the m336/HR2P-M2 Combination Showed More Efficacy in Inhibiting MERS-CoV Pseudovirus Infection than Either HR2P-M2 or m336 Alone
4. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zaki, A.M.; van Boheemen, S.; Bestebroer, T.M.; Osterhaus, A.D.; Fouchier, R.A. Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. N. Engl. J. Med. 2012, 367, 1814–1820. [Google Scholar] [CrossRef] [PubMed]
- de Groot, R.J.; Baker, S.C.; Baric, R.S.; Brown, C.S.; Drosten, C.; Enjuanes, L.; Fouchier, R.A.; Galiano, M.; Gorbalenya, A.E.; Memish, Z.A.; et al. Middle East respiratory syndrome coronavirus (MERS-CoV): Announcement of the Coronavirus Study Group. J. Virol. 2013, 87, 7790–7792. [Google Scholar] [CrossRef] [PubMed]
- Belouzard, S.; Millet, J.K.; Licitra, B.N.; Whittaker, G.R. Mechanisms of coronavirus cell entry mediated by the viral spike protein. Viruses 2012, 4, 1011–1033. [Google Scholar] [CrossRef] [PubMed]
- Wang, N.; Shi, X.; Jiang, L.; Zhang, S.; Wang, D.; Tong, P.; Guo, D.; Fu, L.; Cui, Y.; Liu, X.; et al. Structure of MERS-CoV spike receptor-binding domain complexed with human receptor DPP4. Cell Res. 2013, 23, 986–993. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, L.; Liu, Q.; Zhu, Y.; Chan, K.H.; Qin, L.; Li, Y.; Wang, Q.; Chan, J.F.; Du, L.; Yu, F.; et al. Structure-based discovery of Middle East respiratory syndrome coronavirus fusion inhibitor. Nat. Commun. 2014, 5, 3067. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Du, L.; Zhao, G.; Kou, Z.; Ma, C.; Sun, S.; Poon, V.K.; Lu, L.; Wang, L.; Debnath, A.K.; Zheng, B.J.; et al. Identification of a receptor-binding domain in the S protein of the novel human coronavirus Middle East respiratory syndrome coronavirus as an essential target for vaccine development. J. Virol. 2013, 87, 9939–9942. [Google Scholar] [CrossRef]
- Raj, V.S.; Mou, H.; Smits, S.L.; Dekkers, D.H.; Muller, M.A.; Dijkman, R.; Muth, D.; Demmers, J.A.; Zaki, A.; Fouchier, R.A.; et al. Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC. Nature 2013, 495, 251–254. [Google Scholar] [CrossRef]
- Gao, J.; Lu, G.; Qi, J.; Li, Y.; Wu, Y.; Deng, Y.; Geng, H.; Li, H.; Wang, Q.; Xiao, H.; et al. Structure of the fusion core and inhibition of fusion by a heptad repeat peptide derived from the S protein of Middle East respiratory syndrome coronavirus. J. Virol. 2013, 87, 13134–13140. [Google Scholar] [CrossRef]
- Tao, X.; Garron, T.; Agrawal, A.S.; Algaissi, A.; Peng, B.H.; Wakamiya, M.; Chan, T.S.; Lu, L.; Du, L.; Jiang, S.; et al. Characterization and Demonstration of the Value of a Lethal Mouse Model of Middle East Respiratory Syndrome Coronavirus Infection and Disease. J. Virol. 2016, 90, 57–67. [Google Scholar] [CrossRef]
- Ying, T.; Du, L.; Ju, T.W.; Prabakaran, P.; Lau, C.C.; Lu, L.; Liu, Q.; Wang, L.; Feng, Y.; Wang, Y.; et al. Exceptionally potent neutralization of Middle East respiratory syndrome coronavirus by human monoclonal antibodies. J. Virol. 2014, 88, 7796–7805. [Google Scholar] [CrossRef]
- Houser, K.V.; Gretebeck, L.; Ying, T.; Wang, Y.; Vogel, L.; Lamirande, E.W.; Bock, K.W.; Moore, I.N.; Dimitrov, D.S.; Subbarao, K. Prophylaxis With a Middle East Respiratory Syndrome Coronavirus (MERS-CoV)-Specific Human Monoclonal Antibody Protects Rabbits From MERS-CoV Infection. J. Infect. Dis. 2016, 213, 1557–1561. [Google Scholar] [CrossRef] [PubMed]
- Agrawal, A.S.; Ying, T.; Tao, X.; Garron, T.; Algaissi, A.; Wang, Y.; Wang, L.; Peng, B.H.; Jiang, S.; Dimitrov, D.S.; et al. Passive Transfer of A Germline-like Neutralizing Human Monoclonal Antibody Protects Transgenic Mice Against Lethal Middle East Respiratory Syndrome Coronavirus Infection. Sci. Rep. 2016, 6, 31629. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van Doremalen, N.; Falzarano, D.; Ying, T.; de Wit, E.; Bushmaker, T.; Feldmann, F.; Okumura, A.; Wang, Y.; Scott, D.P.; Hanley, P.W.; et al. Efficacy of antibody-based therapies against Middle East respiratory syndrome coronavirus (MERS-CoV) in common marmosets. Antiviral Res. 2017, 143, 30–37. [Google Scholar] [CrossRef] [PubMed]
- Ying, T.; Prabakaran, P.; Du, L.; Shi, W.; Feng, Y.; Wang, Y.; Wang, L.; Li, W.; Jiang, S.; Dimitrov, D.S.; et al. Junctional and allele-specific residues are critical for MERS-CoV neutralization by an exceptionally potent germline-like antibody. Nat. Commun. 2015, 6, 8223. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Du, L.; Zhao, G.; Yang, Y.; Qiu, H.; Wang, L.; Kou, Z.; Tao, X.; Yu, H.; Sun, S.; Tseng, C.T.; et al. A conformation-dependent neutralizing monoclonal antibody specifically targeting receptor-binding domain in Middle East respiratory syndrome coronavirus spike protein. J. Virol. 2014, 88, 7045–7053. [Google Scholar] [CrossRef] [PubMed]
- Tai, W.; Wang, Y.; Fett, C.A.; Zhao, G.; Li, F.; Perlman, S.; Jiang, S.; Zhou, Y.; Du, L. Recombinant Receptor-Binding Domains of Multiple Middle East Respiratory Syndrome Coronaviruses (MERS-CoVs) Induce Cross-Neutralizing Antibodies against Divergent Human and Camel MERS-CoVs and Antibody Escape Mutants. J. Virol. 2017, 91. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.; Cheon, S.; Min, C.K.; Sohn, K.M.; Kang, Y.J.; Cha, Y.J.; Kang, J.I.; Han, S.K.; Ha, N.Y.; Kim, G.; et al. Spread of Mutant Middle East Respiratory Syndrome Coronavirus with Reduced Affinity to Human CD26 during the South Korean Outbreak. mBio 2016, 7, e00019. [Google Scholar] [CrossRef]
- Kim, D.W.; Kim, Y.J.; Park, S.H.; Yun, M.R.; Yang, J.S.; Kang, H.J.; Han, Y.W.; Lee, H.S.; Kim, H.M.; Kim, H.; et al. Variations in Spike Glycoprotein Gene of MERS-CoV, South Korea, 2015. Emerg. Infect. Dis. 2016, 22, 100–104. [Google Scholar] [CrossRef] [Green Version]
- Zhao, G.; Du, L.; Ma, C.; Li, Y.; Li, L.; Poon, V.K.; Wang, L.; Yu, F.; Zheng, B.J.; Jiang, S.; et al. A safe and convenient pseudovirus-based inhibition assay to detect neutralizing antibodies and screen for viral entry inhibitors against the novel human coronavirus MERS-CoV. Virol. J. 2013, 10, 266. [Google Scholar] [CrossRef] [Green Version]
- Gunaratne, G.S.; Yang, Y.; Li, F.; Walseth, T.F.; Marchant, J.S. NAADP-dependent Ca(2+) signaling regulates Middle East respiratory syndrome-coronavirus pseudovirus translocation through the endolysosomal system. Cell Calcium 2018, 75, 30–41. [Google Scholar] [CrossRef]
- Wang, L.; Shi, W.; Chappell, J.D.; Joyce, M.G.; Zhang, Y.; Kanekiyo, M.; Becker, M.M.; van Doremalen, N.; Fischer, R.; Wang, N.; et al. Importance of neutralizing monoclonal antibodies targeting multiple antigenic sites on MERS-CoV Spike to avoid neutralization escape. J. Virol. 2018. [Google Scholar] [CrossRef]
- Chou, T.C. Theoretical basis, experimental design, and computerized simulation of synergism and antagonism in drug combination studies. Pharmacol. Rev. 2006, 58, 621–681. [Google Scholar] [CrossRef] [PubMed]
- Qi, Q.; Wang, Q.; Chen, W.; Yu, F.; Du, L.; Dimitrov, D.S.; Lu, L.; Jiang, S. Anti-HIV antibody and drug combinations exhibit synergistic activity against drug-resistant HIV-1 strains. J. Infect. 2017, 75, 68–71. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Wang, Q.; Yu, F.; Lu, L.; Jiang, S. Synergistic effect resulting from combinations of a bifunctional HIV-1 antagonist with antiretroviral drugs. J. Acquir. Immune Defic. Syndr. 2014, 67, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Cotten, M.; Watson, S.J.; Zumla, A.I.; Makhdoom, H.Q.; Palser, A.L.; Ong, S.H.; Al Rabeeah, A.A.; Alhakeem, R.F.; Assiri, A.; Al-Tawfiq, J.A.; et al. Spread, circulation, and evolution of the Middle East respiratory syndrome coronavirus. mBio 2014, 5. [Google Scholar] [CrossRef] [PubMed]
- Channappanavar, R.; Lu, L.; Xia, S.; Du, L.; Meyerholz, D.K.; Perlman, S.; Jiang, S. Protective Effect of Intranasal Regimens Containing Peptidic Middle East Respiratory Syndrome Coronavirus Fusion Inhibitor Against MERS-CoV Infection. J. Infect. Dis. 2015, 212, 1894–1903. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zumla, A.; Hui, D.S.; Perlman, S. Middle East respiratory syndrome. Lancet 2015, 386, 995–1007. [Google Scholar] [CrossRef] [Green Version]
- van Boheemen, S.; de Graaf, M.; Lauber, C.; Bestebroer, T.M.; Raj, V.S.; Zaki, A.M.; Osterhaus, A.D.; Haagmans, B.L.; Gorbalenya, A.E.; Snijder, E.J.; et al. Genomic characterization of a newly discovered coronavirus associated with acute respiratory distress syndrome in humans. mBio 2012, 3. [Google Scholar] [CrossRef]
- Assiri, A.; McGeer, A.; Perl, T.M.; Price, C.S.; Al Rabeeah, A.A.; Cummings, D.A.; Alabdullatif, Z.N.; Assad, M.; Almulhim, A.; Makhdoom, H.; et al. Hospital outbreak of Middle East respiratory syndrome coronavirus. N. Engl. J. Med. 2013, 369, 407–416. [Google Scholar] [CrossRef]
- Lu, L.; Xia, S.; Ying, T.; Jiang, S. Urgent development of effective therapeutic and prophylactic agents to control the emerging threat of Middle East respiratory syndrome (MERS). Emerg. Microbes Infect. 2015, 4, e37. [Google Scholar] [CrossRef]
- Xia, S.; Liu, Q.; Wang, Q.; Sun, Z.; Su, S.; Du, L.; Ying, T.; Lu, L.; Jiang, S. Middle East respiratory syndrome coronavirus (MERS-CoV) entry inhibitors targeting spike protein. Virus Res. 2014, 194, 200–210. [Google Scholar] [CrossRef] [PubMed]
- Zhao, G.; He, L.; Sun, S.; Qiu, H.; Tai, W.; Chen, J.; Li, J.; Chen, Y.; Guo, Y.; Wang, Y.; et al. A Novel Nanobody Targeting Middle East Respiratory Syndrome Coronavirus (MERS-CoV) Receptor-Binding Domain Has Potent Cross-Neutralizing Activity and Protective Efficacy against MERS-CoV. J. Virol. 2018, 92. [Google Scholar] [CrossRef] [PubMed]
- Kleine-Weber, H.; Elzayat, M.T.; Wang, L.; Graham, B.S.; Muller, M.A.; Drosten, C.; Pohlmann, S.; Hoffmann, M. Mutations in the spike protein of MERS-CoV transmitted in Korea increase resistance towards antibody-mediated neutralization. J. Virol. 2018. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Ramratnam, B.; Tenner-Racz, K.; He, Y.; Vesanen, M.; Lewin, S.; Talal, A.; Racz, P.; Perelson, A.S.; Korber, B.T.; et al. Quantifying residual HIV-1 replication in patients receiving combination antiretroviral therapy. N. Engl. J. Med. 1999, 340, 1605–1613. [Google Scholar] [CrossRef] [PubMed]
- Hogg, R.S.; Rhone, S.A.; Yip, B.; Sherlock, C.; Conway, B.; Schechter, M.T.; O’Shaughnessy, M.V.; Montaner, J.S. Antiviral effect of double and triple drug combinations amongst HIV-infected adults: Lessons from the implementation of viral load-driven antiretroviral therapy. AIDS 1998, 12, 279–284. [Google Scholar] [CrossRef] [PubMed]
- Richman, D.D.; Margolis, D.M.; Delaney, M.; Greene, W.C.; Hazuda, D.; Pomerantz, R.J. The challenge of finding a cure for HIV infection. Science 2009, 323, 1304–1307. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Lu, H.; Neurath, A.R.; Jiang, S. Combination of candidate microbicides cellulose acetate 1,2-benzenedicarboxylate and UC781 has synergistic and complementary effects against human immunodeficiency virus type 1 infection. Antimicrob. Agents Chemother. 2005, 49, 1830–1836. [Google Scholar] [CrossRef]
- Pan, C.; Cai, L.; Lu, H.; Qi, Z.; Jiang, S. Combinations of the first and next generations of human immunodeficiency virus (HIV) fusion inhibitors exhibit a highly potent synergistic effect against enfuvirtide- sensitive and -resistant HIV type 1 strains. J. Virol. 2009, 83, 7862–7872. [Google Scholar] [CrossRef]
- Pan, C.; Lu, H.; Qi, Z.; Jiang, S. Synergistic efficacy of combination of enfuvirtide and sifuvirtide, the first- and next-generation HIV-fusion inhibitors. AIDS 2009, 23, 639–641. [Google Scholar] [CrossRef] [Green Version]
% Inhibition | CI | HR2P-M2 | m336 | ||||
---|---|---|---|---|---|---|---|
Concentration (μM) | Fold of | Concentration (nM) | Fold of | ||||
Alone | in Mixture | Enhancement | Alone | in Mixture | Enhancement | ||
50 | 0.197 | 0.574 | 0.069 | 8.36 | 0.066 | 0.005 | 12.94 |
60 | 0.183 | 0.874 | 0.097 | 9.05 | 0.099 | 0.007 | 13.88 |
70 | 0.168 | 1.381 | 0.140 | 9.87 | 0.155 | 0.010 | 14.98 |
80 | 0.152 | 2.415 | 0.220 | 10.96 | 0.268 | 0.016 | 16.44 |
90 | 0.131 | 5.598 | 0.436 | 12.85 | 0.610 | 0.032 | 18.92 |
% Inhibition | CI | HR2P-M2 | m336 | ||||
---|---|---|---|---|---|---|---|
Concentration (μM) | Fold of | Concentration (nM) | Fold of | ||||
Alone | in Mixture | Enhancement | Alone | in Mixture | Enhancement | ||
50 | 0.271 | 0.511 | 0.110 | 4.64 | 0.440 | 0.024 | 17.96 |
60 | 0.274 | 0.713 | 0.156 | 4.57 | 0.625 | 0.035 | 18.04 |
70 | 0.278 | 1.025 | 0.228 | 4.50 | 0.918 | 0.051 | 18.12 |
80 | 0.282 | 1.596 | 0.362 | 4.41 | 1.466 | 0.080 | 18.22 |
90 | 0.288 | 3.106 | 0.726 | 4.28 | 2.965 | 0.161 | 18.38 |
MERS-CoV Pseudovirus | IC50 (nM) of m336 | RR50 (Fold of Resistance) | p | IC50 (μM) of HR2P-M2 | RR50 (Fold of Resistance) | p |
---|---|---|---|---|---|---|
Wild-type | 0.055 ± 0.009 | — | — | 0.553 ± 0.056 | — | — |
D509G | 0.116 ± 0.020 | 2.11 | <0.01 | 0.619 ± 0.079 | 1.12 | >0.05 |
D510G | 0.450 ± 0.085 | 8.18 | <0.05 | 0.679 ± 0.144 | 1.23 | >0.05 |
Q522H | 0.148 ± 0.051 | 2.69 | <0.01 | 0.677 ± 0.071 | 1.22 | >0.05 |
I529T | 0.215 ± 0.055 | 3.91 | <0.01 | 0.574 ± 0.209 | 1.04 | >0.05 |
% Inhibition | CI | HR2P-M2 | m336 | ||||
---|---|---|---|---|---|---|---|
Concentration (μM) | Fold of | Concentration (μM) | Fold of | ||||
Alone | in Mixture | Enhancement | Alone | in Mixture | Enhancement | ||
Wild type | |||||||
50 | 0.197 | 0.574 | 0.069 | 8.36 | 0.066 | 0.005 | 12.94 |
60 | 0.183 | 0.874 | 0.097 | 9.05 | 0.099 | 0.007 | 13.88 |
70 | 0.168 | 1.381 | 0.140 | 9.87 | 0.155 | 0.010 | 14.98 |
80 | 0.152 | 2.415 | 0.220 | 10.96 | 0.268 | 0.016 | 16.44 |
90 | 0.131 | 5.598 | 0.436 | 12.85 | 0.610 | 0.032 | 18.92 |
D509G in RBD | |||||||
50 | 0.296 | 0.912 | 0.155 | 5.88 | 0.273 | 0.034 | 7.91 |
60 | 0.29 | 1.335 | 0.217 | 6.15 | 0.379 | 0.048 | 7.87 |
70 | 0.282 | 2.023 | 0.313 | 6.47 | 0.544 | 0.070 | 7.83 |
80 | 0.274 | 3.358 | 0.489 | 6.87 | 0.844 | 0.109 | 7.77 |
90 | 0.263 | 7.199 | 0.956 | 7.53 | 1.635 | 0.213 | 7.69 |
D510G in RBD | |||||||
50 | 0.137 | 0.962 | 0.088 | 10.96 | 0.429 | 0.020 | 21.96 |
60 | 0.145 | 1.523 | 0.153 | 9.96 | 0.763 | 0.034 | 22.43 |
70 | 0.155 | 2.512 | 0.280 | 8.97 | 1.429 | 0.062 | 22.97 |
80 | 0.169 | 4.625 | 0.586 | 7.90 | 3.075 | 0.130 | 23.63 |
90 | 0.194 | 11.59 | 1.777 | 6.52 | 9.74 | 0.395 | 24.67 |
Q522H in RBD | |||||||
50 | 0.135 | 0.799 | 0.045 | 17.59 | 0.129 | 0.010 | 12.76 |
60 | 0.143 | 1.243 | 0.067 | 18.67 | 0.166 | 0.015 | 11.21 |
70 | 0.153 | 2.012 | 0.101 | 19.93 | 0.219 | 0.022 | 9.74 |
80 | 0.168 | 3.619 | 0.168 | 21.57 | 0.306 | 0.037 | 8.21 |
90 | 0.199 | 8.757 | 0.36 | 24.30 | 0.508 | 0.08 | 6.34 |
I529T in RBD | |||||||
50 | 0.256 | 0.864 | 0.098 | 8.81 | 0.153 | 0.022 | 7.03 |
60 | 0.242 | 1.295 | 0.139 | 9.32 | 0.23 | 0.031 | 7.45 |
70 | 0.227 | 2.013 | 0.203 | 9.90 | 0.358 | 0.045 | 7.92 |
80 | 0.211 | 3.449 | 0.323 | 10.67 | 0.614 | 0.072 | 8.55 |
90 | 0.188 | 7.752 | 0.649 | 11.94 | 1.383 | 0.144 | 9.58 |
Q1020H in HR1 | |||||||
50 | 0.186 | 0.762 | 0.086 | 8.83 | 0.088 | 0.006 | 13.82 |
60 | 0.189 | 0.954 | 0.106 | 9.04 | 0.100 | 0.008 | 12.84 |
70 | 0.192 | 1.218 | 0.131 | 9.27 | 0.115 | 0.010 | 11.85 |
80 | 0.198 | 1.642 | 0.172 | 9.56 | 0.137 | 0.013 | 10.74 |
90 | 0.208 | 2.571 | 0.257 | 10.01 | 0.176 | 0.019 | 9.27 |
Q1020R in HR1 | |||||||
50 | 0.293 | 0.69 | 0.119 | 5.79 | 0.073 | 0.009 | 8.30 |
60 | 0.28 | 0.905 | 0.143 | 6.32 | 0.087 | 0.011 | 8.19 |
70 | 0.268 | 1.216 | 0.175 | 6.95 | 0.104 | 0.013 | 8.06 |
80 | 0.254 | 1.743 | 0.223 | 7.80 | 0.131 | 0.017 | 7.92 |
90 | 0.238 | 2.997 | 0.323 | 9.29 | 0.184 | 0.024 | 7.70 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, C.; Hua, C.; Xia, S.; Li, W.; Lu, L.; Jiang, S. Combining a Fusion Inhibitory Peptide Targeting the MERS-CoV S2 Protein HR1 Domain and a Neutralizing Antibody Specific for the S1 Protein Receptor-Binding Domain (RBD) Showed Potent Synergism against Pseudotyped MERS-CoV with or without Mutations in RBD. Viruses 2019, 11, 31. https://doi.org/10.3390/v11010031
Wang C, Hua C, Xia S, Li W, Lu L, Jiang S. Combining a Fusion Inhibitory Peptide Targeting the MERS-CoV S2 Protein HR1 Domain and a Neutralizing Antibody Specific for the S1 Protein Receptor-Binding Domain (RBD) Showed Potent Synergism against Pseudotyped MERS-CoV with or without Mutations in RBD. Viruses. 2019; 11(1):31. https://doi.org/10.3390/v11010031
Chicago/Turabian StyleWang, Cong, Chen Hua, Shuai Xia, Weihua Li, Lu Lu, and Shibo Jiang. 2019. "Combining a Fusion Inhibitory Peptide Targeting the MERS-CoV S2 Protein HR1 Domain and a Neutralizing Antibody Specific for the S1 Protein Receptor-Binding Domain (RBD) Showed Potent Synergism against Pseudotyped MERS-CoV with or without Mutations in RBD" Viruses 11, no. 1: 31. https://doi.org/10.3390/v11010031