Estimating Aboveground Biomass and Carbon Stocks in Periurban Andean Secondary Forests Using Very High Resolution Imagery
Abstract
:1. Introduction
- (i)
- identify an exploitable relationship between VIs derived from VHR satellite imagery and AGB estimated in the field in Andean periurban secondary forests;
- (ii)
- assess the effect of data processing on the performance of the biomass estimation models.
2. Experimental Section
2.1. Study Area
2.2. In situ Biomass Estimation
2.3. Remote Sensing-Derived Biomass Estimation
2.3.1. Data Pre-Processing
- Data group A: data radiometrically calibrated to radiance units.
- Data group B: TOA reflectance data
- Data group C: data atmospherically corrected to reflectance units.
- Data group D: data normalized to relative reflectance values.
- Data group E: data corrected from topographic effect.
2.3.2. Aboveground Biomass Estimation and Carbon Mapping
3. Results
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Grace, J. Understanding and managing the global carbon cycle. J. Ecol. 2004, 92, 189–202. [Google Scholar] [CrossRef]
- Farquhar, G.D. Carbon Dioxide and Vegetation. Science 1997, 278, 1411. [Google Scholar] [CrossRef]
- UNFCCC. Methodological guidance for activities relating to reducing emissions from deforestation and forest degradation and the role of conservation, sustainable management of forests and enhancement of forest carbon stocks in developing countries. In Decision 4/CP.15; UNFCoC Change: Copenhagen, Denmark, 2009. [Google Scholar]
- Daily, G.C. Nature’s Services: Societal Dependence on Natural Ecosystems; Island Press: Washington, DC, USA, 1997. [Google Scholar]
- Denman, K.L.; Brasseur, G.; Chidthaisong, A.; Ciais, P.; Cox, P.M.; Dickinson, R.E.; Hauglustaine, D.; Heinze, C.; Holland, E.; Jacob, D.; et al. Couplings Between Changes in the Climate System and Biogeochemistry. In Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Solomon, S., Qin, D.M., Eds.; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Dobbs, C.; Kendal, D.; Nitschke, C.R. Multiple ecosystem services and disservices of the urban forest establishing their connections with landscape structure and sociodemographics. Ecol. Indic. 2014, 43, 44–55. [Google Scholar] [CrossRef]
- Pan, Y.; Birdsey, R.A.; Fang, J.; Houghton, R.; Kauppi, P.E.; Kurz, W.A.; Phillips, O.L.; Shvidenko, A.; Lewis, S.L.; Canadell, J.G.; et al. A large and persistent carbon sink in the world’s forests. Science 2011, 333, 988–993. [Google Scholar] [CrossRef] [PubMed]
- Bare, M.C.; Ashton, M.S. Growth of native tree species planted in montane reforestation projects in the Colombian and Ecuadorian Andes differs among site and species. New For. 2016, 47, 1–23. [Google Scholar] [CrossRef]
- Aide, T.M.; Clark, M.L.; Grau, H.R.; López-Carr, D.; Levy, M.A.; Redo, D.; Bonilla-Moheno, M.; Riner, G.; Andrade-Núñez, M.J.; Muñiz, M. Deforestation and reforestation of Latin America and the Caribbean (2001–2010). Biotropica 2013, 45, 262–271. [Google Scholar] [CrossRef]
- Antonio-Fragala, F.; Obregón-Neira, N. Recharge Estimation in Aquifers of the Bogota Savannah. Ing. Univ. 2011, 15, 145–169. [Google Scholar]
- Grau, H.R.; Aide, M. Globalization and land-use transitions in Latin America. Ecol. Soc. 2008, 13, 16. [Google Scholar]
- Escobedo, F.J.; Clerici, N.; Staudhammer, C.L.; Corzo, G.T. Socio-ecological dynamics and inequality in Bogotá, Colombia’s public urban forests and their ecosystem services. Urban For. Urban Green. 2015, 14, 1040–1053. [Google Scholar] [CrossRef]
- He, R.; Yang, J.; Song, X. Quantifying the Impact of Different Ways to Delimit Study Areas on the Assessment of Species Diversity of an Urban Forest. Forests 2016, 7, 42. [Google Scholar] [CrossRef]
- Lewis, S.L.; Malhi, Y.; Phillips, O.L. Fingerprinting the impacts of global change on tropical forests. Philos. Trans. R. Soc. B 2004, 359, 437–462. [Google Scholar] [CrossRef] [PubMed]
- Melillo, J.M.; Mcguire, A.D.; Kicklighter, D.W.; Moore, B., III; Vorosmarty, C.J.; Schloss, A.L. Global climate change and terrestrial net primary production. Nature 1993, 363, 234–240. [Google Scholar] [CrossRef]
- Houghton, R.A. Aboveground forest biomass and the global carbon balance. Glob. Chang. Biol. 2005, 11, 945–958. [Google Scholar] [CrossRef]
- Mahli, Y.; Wood, D.; Bakers, T.R.; Wright, J.; Phillips, O.L.; Cochrane, T.; Meir, P.; Chave, J.; Almeida, S.; Arroyo, L.; et al. The regional variation of aboveground life biomass in old-growth Amazonian forests. Glob. Chang. Biol. 2006, 12, 1107–1138. [Google Scholar] [CrossRef]
- Saatchi, S.S.; Houghton, R.A.; Dos Santos Alvalá, R.C.; Soares, J.V.; Yu, Y. Distribution of aboveground live biomass in the Amazon. Glob. Chang. Biol. 2007, 13, 816–837. [Google Scholar] [CrossRef]
- Phillips, J.; Duque, Á.; Scott, C.; Wayson, C.; Galindo, G.; Cabrera, E.; Chave, J.; Peña, M.; Álvarez, E.; Cárdenas, D.; Duivenvoorden, J. Live aboveground carbon stocks in natural forests of Colombia. For. Ecol. Manag. 2016, 374, 119–128. [Google Scholar] [CrossRef]
- Gentry, A.J. Seasonally Dry Tropical Forests. In Diversity and Floristic Composition of Neotropical Dry Forests; Bullock, S.H., Mooney, H.A., Medina, E., Eds.; Cambridge University Press: Cambridge, UK, 2009; pp. 146–194. [Google Scholar]
- Cuatrecasas, J. Aspectos de la vegetación natural de Colombia. Perez Arbelaezia 1989, 2, 155–285. [Google Scholar]
- SISAC-DANE. República de Colombia. Encuesta Nacional Agropecuaria. Resultados 1995; Sistema de Información del Sector Agrario Colombiano SISAC-Departamento Nacional de Estadística DANE: Bogotá, Colombia, 1996.
- Sánchez-Cuervo, A.M.; Aide, T.M.; Clark, M.L.; Etter, A. Land Cover Change in Colombia: Surprising Forest Recovery Trends between 2001 and 2010. PLoS ONE 2012, 7, e43943. [Google Scholar] [CrossRef] [PubMed]
- Gilroy, J.J.; Woodcock, P.; Edwards, F.A.; Wheeler, C.; Baptiste, B.L.G.; Medina, C.A.; Haugaasen, T.; Edwards, D.P. Cheap carbon and biodiversity co-benefits from forest regeneration in a hotspot of endemism. Nat. Clim. Chang. 2014, 4, 503–507. [Google Scholar] [CrossRef]
- Chave, J.; Aandalo, C.; Brown, S.; Cairns, M.; Chambers, J.C.; Eamus, D.; Fölster, H.; Fromard, F.; Higuchi, N.; Kira, T.; et al. Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia 2005, 145, 87–99. [Google Scholar] [CrossRef] [PubMed]
- Volkova, L.; Bi, H.; Murphy, S.; Weston, C.J. Empirical Estimates of Aboveground Carbon in Open Eucalyptus Forests of South-Eastern Australia and Its Potential Implication for National Carbon Accounting. Forests 2015, 6, 3395–3411. [Google Scholar] [CrossRef]
- Beets, P.N.; Kimberley, M.O.; Oliver, G.R.; Pearce, S.H.; Graham, J.D.; Brandon, A. Allometric Equations for Estimating Carbon Stocks in Natural Forest in New Zealand. Forests 2012, 3, 818–839. [Google Scholar] [CrossRef]
- Goetz, S.J.; Baccini, A.; Laporte, N.T.; Johns, T.; Walker, W.; Kellndorfer, J.; Houghton, R.A.; Sun, M. Mapping and monitoring carbon stocks with satellite observations: A comparison of methods. Carbon Balance Manag. 2009, 4. [Google Scholar] [CrossRef] [PubMed]
- Lu, D. The potential and challenge of remote sensing-based biomass estimation. Int. J. Remote Sens. 2006, 27, 1297–1328. [Google Scholar] [CrossRef]
- Wang, X.; Shao, G.; Chen, H.; Lewis, B.J.; Qi, G.; Yu, D.; Zhou, L.; Dai, L. An Application of Remote Sensing Data in Mapping Landscape-Level Forest Biomass for Monitoring the Effectiveness of Forest Policies in Northeastern China. Environ. Manag. 2013, 52, 612–620. [Google Scholar] [CrossRef] [PubMed]
- Avitabile, V.; Baccini, A.; Friedl, M.A.; Schmullius, C. Capabilities and limitations of Landsat and land cover data for aboveground woody biomass estimation of Uganda. Remote Sens. Environ. 2012, 117, 366–380. [Google Scholar] [CrossRef]
- Powell, S.L.; Cohen, W.B.; Healey, S.P.; Kennedy, R.E.; Moisen, G.G.; Pierce, K.B.; Ohmann, J.L. Quantification of Live Aboveground Forest Biomass Dynamics with Landsat Time-series and Field Inventory Data: A Comparison of Empirical Modeling Approaches. Remote Sens. Environ. 2010, 114, 1053–1068. [Google Scholar] [CrossRef]
- Labreque, S.; Fournier, R.A.; Luther, J.E.; Piercey, D. A comparison of four methods to map biomass from Landsat-TM and inventory data in western Newfoundland. For. Ecol. Manag. 2006, 226, 129–144. [Google Scholar] [CrossRef]
- Lucas, R.M.; Honzak, M.; do Amaral, I.; Curran, P.; Foody, G.M.; Amaral, S. The contribution of remotely sensed data in the assessment of the floristic composition, total biomass and structure of tropical regenerating forests. In Regeneracao Florestal: Pesquisas na Amazonia; Gascon, C., Moutinho, P., Eds.; Inpa Press: Manaus, Brazil, 1998; pp. 61–82. [Google Scholar]
- Nelson, R.F.; Kimes, D.S.; Salas, W.A.; Routhier, M. Secondary Forest Age and Tropical Forest Biomass Estimation Using Thematic Mapper Imagery Single-year tropical forest age classes, a surrogate for standing biomass, cannot be reliably identified using single-date TM imagery. Bioscience 2000, 50, 419–431. [Google Scholar] [CrossRef]
- Foody, G.M.; Boyd, D.S.; Cutler, M. Predictive relations of tropical forest biomass from Landsat TM data and their transferability between regions. Remote Sens. Environ. 2003, 85, 463–474. [Google Scholar] [CrossRef]
- Boyd, D.S. The relationship between the biomass of Cameroonian tropical forests and radiation reflected in middle infrared wavelengths (3.0–5.0 mu m). Int. J. Remote Sens. 1999, 20, 1017–1023. [Google Scholar] [CrossRef]
- Lu, D. Aboveground biomass estimation using Landsat TM data in the Brazilian Amazon. Int. J. Remote Sens. 2005, 26, 2509–2525. [Google Scholar] [CrossRef]
- Bannari, A.; Morin, D.; Huette, A.R.; Bonn, F. A review of vegetation indices. Remote Sens. Rev. 1995, 13, 95–120. [Google Scholar] [CrossRef]
- Zhang, C.; Lu, D.; Chen, X.; Zhang, Y.; Maisupova, B.; Tao, Y. The spatiotemporal patterns of vegetation coverage and biomass of the temperate deserts in Central Asia and their relationships with climate controls. Remote Sens. Environ. 2016, 175, 271–281. [Google Scholar] [CrossRef]
- Osuri, A.M.; Madhusudan, M.D.; Kumar, V.S.; Chengappa, S.K.; Kushalappa, C.G.; Sankaran, M. Spatio-temporal variation in forest cover and biomass across sacred groves in a human-modified landscape of India’s Western Ghats. Biol. Conserv. 2014, 178, 193–199. [Google Scholar] [CrossRef]
- Viana, H.; Aranha, J.; Lopes, D.; Cohen, W.B. Estimation of crown biomass of Pinus pinaster stands and shrubland above-ground biomass using forest inventory data, remotely sensed imagery and spatial prediction models. Ecol. Model. 2012, 226, 22–35. [Google Scholar] [CrossRef]
- Ji, L.; Peters, A.J. Performance evaluation of spectral vegetation indices using a statistical sensitivity function. Remote Sens. Environ. 2007, 106, 59–65. [Google Scholar] [CrossRef]
- Thenkabail, P.S.; Stucky, N.; Griscom, B.W.; Ashton, M.S.; Diels, D.; van der Meer, B.; Enclona, E. Biomass estimations and carbon stock calculations in the oil palm plantations of African derived savannas using IKONOS data. Int. J. Remote Sen. 2004, 25, 5447–5472. [Google Scholar] [CrossRef]
- Zhou, J.; Zhao, Z.; Zhao, Q.; Zhao, J.; Wang, H. Quantification of aboveground forest biomass using quickbird imagery, topographic variables, and field data. J. Appl. Remote Sens. 2013, 7, 073484. [Google Scholar] [CrossRef]
- Zhu, Y.; Liu, K.; Liu, L.; Wang, S.; Liu, H. Retrieval of Mangrove Aboveground Biomass at the Individual Species Level with WorldView-2 Images. Remote Sens. 2015, 7, 12192–12214. [Google Scholar] [CrossRef]
- Pereira, P.; Zullo, J.; Gonçalves, R.R.; Romani, L.A.S.; Pinto, H.S. Coffee Crop’s Biomass and Carbon Stock Estimation With Usage of High Resolution Satellites Images. IEEE J. Sel. Top. Appl. 2013, 6, 1786–1795. [Google Scholar]
- Mendoza, J.E.; Etter, A. Multitemporal analysis (1940–1996) of land cover changes in the southwestern Bogotá Highplain. Landsc. Urban Plan. 2002, 59, 147–158. [Google Scholar] [CrossRef]
- Departamento Administrativo Nacional de Estadística (DANE). Available online: http://www.dane.gov.co/ (accessed on 1 December 2015).
- Montañez, G.; Arcila, O.; Pacheco, J.C. Hacia Dónde va la Sabana de Bogotá? Modernización, Conflicto, Ambiente y Sociedad; Universidad Nacional de Colombia. Centro de Estudios Sociales (SENA): Bogotá, Colombia, 1994. [Google Scholar]
- Sierra, C.A.; del Valle, J.I.; Orrego, A.; Moreno, F.H.; Harmon, M.E.; Zapata, M.; Colorado, G.J.; Herrera, M.A.; Lara, W.; Restrepo, D.E.; et al. Total carbon stocks in a tropical forest landscape of the Porce region Colombia. For. Ecol. Manag. 2007, 243, 299–309. [Google Scholar] [CrossRef]
- Pérez, M.C.; Díaz, J.J. Estimación del Carbono Contenido en la Biomasa Forestal Aérea de dos Bosques Andinos en los Departamentos de Santander y Cundinamarca. Master’s Thesis, Universidad Distrital Francisco José de Caldas, Bogotá, Colombia, 2010. [Google Scholar]
- Chander, G.; Markham, B.L.; Helder, D.L. Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors. Remote. Sens. Environ. 2009, 113, 893–903. [Google Scholar] [CrossRef]
- Lira, J. Tratamiento Digital de Imágenes Multiespectrales, 2nd ed.; Universidad Nacional Autónoma de México: México D.F, México, 2010; p. 605. [Google Scholar]
- Richards, J.A. Remote Sensing Digital Image Analysis; Springer-Verlag: Berlin, Germany, 1999; p. 240. [Google Scholar]
- Berk, A.; Bernstein, L.S.; Anderson, G.P.; Acharya, P.K.; Robertson, D.C.; Chetwynd, J.H.; Adler-Golden, S.M. MODTRAN Cloud and Multiple Scattering Upgrades with Application to AVIRIS. Remote Sens. Environ. 1998, 65, 367–375. [Google Scholar] [CrossRef]
- Matthew, M.W.; Adler-Golden, S.M.; Berk, A.; Richtsmeier, S.C.; Levine, R.Y.; Bernstein, L.S.; Acharya, P.K.; Anderson, G.P.; Felde, G.W.; Hoke, M.P.; et al. Status of Atmospheric Correction Using a MODTRAN4-based Algorithm. Proc. Soc. Photo-Opt. Instrum. Eng. 2000, 4049, 199–207. [Google Scholar] [CrossRef]
- Hall, F.G.; Strebel, D.E.; Nickeson, J.E.; Goetz, S.J. Radiometric rectification: Toward a common radiometric response among multidate, multisensor images. Remote Sens. Environ. 1991, 35, 11–27. [Google Scholar] [CrossRef]
- Chavez, P.S. An improved dark-object subtraction technique for atmospheric scattering correction of multiespectral data. Remote Sens. Environ. 1988, 24, 459–479. [Google Scholar] [CrossRef]
- Roberts, D.A.; Yamaguchi, Y.; Lyon, R.J.P. Comparison of various techniques for calibration of AIS data. In Proceedings of the Second AIS Data Analysis Workshop, Pasadena, CA, USA, 6–8 May 1986; Vane, G., Goetz, A.F.H., Eds.; JPL Publ. 86-35. Jet Propulsion Laboratory: Pasadena, CA, USA, 1986; pp. 21–30. [Google Scholar]
- Teillet, P.M.; Guindon, B.; Goodenough, D.G. On the slope-aspect correction of multispectral scanner data. Can. J. Remote Sens. 1982, 8, 84–106. [Google Scholar] [CrossRef]
- Soenen, S.A.; Peddle, D.R.; Coburn, C.A. SCS+ C: A Modified Sun-Canopy-Sensor Topographic Correction in Forested Terrain. IEEE Trans. Geosci. Remote Sens. 2005, 43, 2148–2159. [Google Scholar] [CrossRef]
- Meyer, P.; Itten, K.I.; Kellenberger, T.; Sandmeier, S.; Sandmeier, R. Radiometric corrections of topographically induced effects on Landsat TM data in an alpine environment. ISPRS J. Photogramm. 1993, 48, 17–28. [Google Scholar] [CrossRef]
- Wu, J.; Bauer, M.E.; Wang, D.; Manson, S.M. A comparison of illumination geometry-based methods for topographic correction of QuickBird images of an undulant area. ISPRS J. Photogramm. 2008, 63, 223–236. [Google Scholar] [CrossRef]
- Anaya, J.A.; Chuvieco, E.; Palacios-Orueta, A. Aboveground biomass assessment in Colombia: A remote sensing approach. For. Ecol. Manag. 2009, 257, 1237–1246. [Google Scholar] [CrossRef]
- Zheng, D.; Rademacher, J.; Chen, J.; Crow, T.; Bresee, M.; Le Moine, J.; Ryu, S. Estimating aboveground biomass using Landsat 7 ETM+ data across a managed landscape in northern Wisconsin, USA. Remote Sens. Environ. 2004, 93, 402–411. [Google Scholar] [CrossRef]
- Shang, Z.; Zhou, G.; Du, H.; Xu, X.; Shi, Y.; Lü, Y.; Zhou, Y.; Gu, C. Moso bamboo forest extraction and aboveground carbon storage estimation based on multi-source remotely sensed images. Int. J. Remote Sens. 2013, 34, 5351–5368. [Google Scholar] [CrossRef]
- Yan, F.; Wu, B.; Wang, Y. Estimating aboveground biomass in Mu Us Sandy Land using Landsat spectral derived vegetation indices over the past 30 years. J. Arid Land 2013, 5, 521–530. [Google Scholar] [CrossRef]
- Rouse, J.W.; Haas, R.W.; Schell, J.A.; Deering, D.W.; Harlan, J.C. Monitoring the Vernal Advacement and Retrogradation (Greenwave Effect) of Natural Vegetation; NASA/GSFCT Type III Final Report; Greenbelt, MD, USA, 1974. [Google Scholar]
- Pearson, R.L.; Miller, L.D. Remote mapping of standing crop biomass for estimation of the productivity of the shortgrass prairie, Pawnee National Grasslands, Colorado. In Proceedings of the 8th International Symposium on Remote Sensing of the Environment II, Ann Arbor, MI, USA, 2–6 October 1972; pp. 1355–1379.
- Chamard, P.; Courel, M.F.; Ducousso, M.; Guénégou, M.C.; Le Rhun, J.; Levasseur, J.E.; Loisel, C.; Togola, M. Utilisation des Bandes Spectrales du vert et du Rouge pour une Meilleure Évaluation des Formations Végétales Actives. In Télédétection et Cartographie; AUPELF-UREF: Sherbrooke, QC, Canada, 1991; pp. 203–209. [Google Scholar]
- Perry, C.R.; Lautenschlager, L.F. Functional equivalence of spectral vegetation indices. Remote Sens. Environ. 1984, 14, 169–182. [Google Scholar] [CrossRef]
- Thomas, S.C.; Martin, A.R. Carbon content of tree tissues: A synthesis. Forests 2012, 3, 332–352. [Google Scholar] [CrossRef]
- Poorter, L.; Bongers, F.; Aide, T.M.; Almeyda Zambrano, A.M.; Balvanera, P.; Becknell, J.M.; Boukili, V.; Brancalion, P.H.S.; Broadbent, E.N.; Chazdon, R.L.; et al. Biomass resilience of Neotropical secondary forests. Nature 2016, 530, 211–214. [Google Scholar] [CrossRef] [PubMed]
- Klempner, S.L.; Bartlett, B.; Schott, J.R. Ground truth-based variability analysis of atmospheric inversion in the presence of clouds. Proc. Soc. Photo-Opt. Instrum. Eng. 2006, 6301, 630109. [Google Scholar] [CrossRef]
- Kayadibi, Ö. Evaluation of imaging spectroscopy and atmospheric correction of multispectral images (Aster and LandsaT 7 ETM+). In Proceedings of the IEEE 2011 5th International Conference on Recent Advances in Space Technologies (RAST), Istanbul, Turkey, 9–11 June 2011; pp. 154–159.
- Green, A.A.; Craig, M.D. Analysis of aircraft spectrometer data with logarithmic residuals. In Proceedings of the Third AIS workshop, Pasadena, CA, USA, 8–10 April 1985; pp. 111–129.
- Galvão, L.S.; Breunig, F.M.; Teles, T.S.; Gaida, W.; Balbinot, R. Investigation of terrain illumination effects on vegetation indices and VI derived phenological metrics in subtropical deciduous forests. GISci. Remote Sens. 2016, 53, 360–381. [Google Scholar] [CrossRef]
- Matsushita, B.; Yang, W.; Chen, J.; Onda, Y.; Qiu, G. Sensitivity of the enhanced vegetation index (EVI) and normalized difference vegetation index (NDVI) to topographic effects: A case study in high-density cypress forest. Sensors 2007, 7, 2636–2651. [Google Scholar] [CrossRef]
- Li, F.; Jupp, D.L.; Thankappan, M.; Lymburner, L.; Mueller, N.; Lewis, A.; Held, A. A physics-based atmospheric and BRDF correction for Landsat data over mountainous terrain. Remote Sens. Environ. 2012, 124, 756–770. [Google Scholar] [CrossRef]
- Hugli, H.; Frei, W. Understanding anisotropic reflectance in mountainous terrain. Photogramm. Eng. Remote Sens. 1983, 49, 671–683. [Google Scholar]
- Viera, S.A.; Alves, F.; Aidar, M.; Spinelli Araújo, L.; Baker, T.; Ferreira Batista, J.L.; Cruz Campos, M.; Barbosa Camargo, P.; Chave, J.; Carvalho Delitti, W.B.; et al. Estimation of biomass and carbon stocks: The case of the Atlantic Forest. Biota Neotrop. 2008, 8, 21–29. [Google Scholar] [CrossRef]
- Stas, S.M. Above-Ground Biomass and Carbon Stocks in a Secondary Forest in Comparison with Adjacent Primary Forest on Limestone in Seram, the Moluccas, Indonesia; CIFORHQ 5258; Center for International Forestry Research (CIFOR): Bogor, Indonesia, 2014; p. 19. [Google Scholar]
- Food and Agriculture Organization. The State of the World’s Forests; FAO: Rome, Italy, 2005. [Google Scholar]
- Norden, N.; Chazdon, R.L.; Chao, A.; Jiang, Y.H.; Vílchez-Alvarado, B. Resilience of tropical rain forests: Tree community reassembly in secondary forests. Ecol. Lett. 2009, 12, 385–394. [Google Scholar] [CrossRef] [PubMed]
- Chazdon, R.L.; Peres, C.A.; Dent, D.; Sheil, D.; Lugo, A.E.; Lamb, D.; Stork, N.E.; Miller, S.E. The potential for species conservation in tropical secondary forests. Conserv. Biol. 2009, 23, 1406–1417. [Google Scholar] [CrossRef] [PubMed]
Plot ID | Successional Status | Number of Individuals | Number of Species | Above-Ground Biomass (Mg·ha−1) |
---|---|---|---|---|
Guatavita 1 | Early secondary | 168 | 19 | 38.2 |
Guatavita 2 | Early secondary | 139 | 15 | 23.8 |
Guasca 3 | Late secondary | 120 | 16 | 180.7 |
Guasca 4 | Mid-secondary | 185 | 14 | 77.2 |
Guasca 6 | Mid-secondary | 175 | 17 | 54.0 |
Tabio 7 | Mid-secondary | 226 | 23 | 82.8 |
Tabio 8 | Mid-secondary | 203 | 14 | 65.9 |
Torca 13 | Late secondary | 138 | 32 | 111.6 |
Location | Plot ID | Sensor | Date (day/month/year) | Off-Nadir | View Azimuth | Sun Azimuth | Sun Elevation Angle |
---|---|---|---|---|---|---|---|
Guatavita | 1,2 | Pleiades-1A | 14/02/2013 | 19.1° | 179.9° | 123.5° | 57.7° |
Tabio | 7,8 | Pleiades-1A | 14/02/2013 | 29.7° | 180.2° | 123.5° | 57.7° |
Guasca | 3,4,6 | GeoEye-1 | 29/12/2013 | 21.7° | 242.8° | 145.1° | 55.6° |
Torca | 13 | GeoEye-1 | 29/12/2013 | 21.4° | 239.7° | 145.0 | 55.5° |
Locality | Average Visibility (km) | Average Temperature (°C) | Average Height (m) | Aerosol Model | Atmospheric Model |
---|---|---|---|---|---|
Guasca | 13 | 13.4 | 3061 | Rural | SAS |
Torca | 11.6 | 13.8 | 2716 | Rural | SAS |
Guatavita | 9 | 13.5 | 2885 | Rural | SAS |
Tabio | 9 | 13.6 | 2614 | Rural | SAS |
Vegetation Index | Equation | Reference |
---|---|---|
Normalized Difference Vegetation Index (NDVI) | [69] | |
Vegetation index number (VIN) | [70] | |
Ratio Vegetation Index (RVI) | [70] | |
Normalized Difference Greenness Index (NDGI) | [71] | |
Transformed Vegetation Index (TVI) | [72] |
A | B | C | D | E | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Index | R2 | RMSE | p* | R2 | RMSE | p* | R2 | RMSE | p* | R2 | RMSE | p* | R2 | RMSE | p* | |
NDVI | lineal | 0.18 | 41.6 | 0.292 | 0.17 | 42.0 | 0.317 | 0.43 | 34.8 | 0.079 | 0.29 | 38.8 | 0.171 | 0.45 | 34.2 | 0.069 |
semi log | 0.25 | 43.3 | 0.205 | 0.24 | 43.7 | 0.218 | 0.53 | 35.7 | 0.041 | 0.53 | 40.7 | 0.040 | 0.56 | 34.9 | 0.033 | |
log-log | 0.26 | 43.0 | 0.198 | 0.24 | 43.5 | 0.214 | 0.55 | 35.6 | 0.035 | 0.55 | 40.2 | 0.035 | 0.57 | 34.8 | 0.029 | |
RVI | lineal | 0.20 | 41.1 | 0.262 | 0.18 | 41.6 | 0.291 | 0.44 | 34.6 | 0.075 | 0.3 | 38.5 | 0.161 | 0.46 | 33.9 | 0.066 |
semi log | 0.27 | 42.5 | 0.182 | 0.26 | 43.1 | 0.199 | 0.55 | 35.4 | 0.034 | 0.55 | 40.2 | 0.035 | 0.58 | 34.5 | 0.028 | |
log-log | 0.27 | 42.8 | 0.188 | 0.25 | 43.3 | 0.204 | 0.48 | 34.4 | 0.057 | 0.48 | 41.9 | 0.056 | 0.51 | 33.5 | 0.046 | |
VIN | lineal | 0.12 | 43.2 | 0.405 | 0.1 | 43.6 | 0.445 | 0.42 | 35.1 | 0.083 | 0.21 | 40.9 | 0.252 | 0.42 | 35.0 | 0.082 |
semi log | 0.18 | 45.3 | 0.289 | 0.17 | 45.7 | 0.316 | 0.3 | 34.9 | 0.159 | 0.39 | 43.1 | 0.096 | 0.3 | 34.7 | 0.156 | |
log-log | 0.21 | 44.7 | 0.258 | 0.19 | 45.2 | 0.284 | 0.34 | 37.4 | 0.129 | 0.48 | 41.5 | 0.057 | 0.36 | 37.0 | 0.116 | |
NDGI | lineal | 0.41 | 35.3 | 0.087 | 0.43 | 34.9 | 0.08 | 0.47 | 55.2 | 0.059 | 0.39 | 36.0 | 0.1 | 0.48 | 33.1 | 0.056 |
semi log | 0.49 | 36.6 | 0.054 | 0.52 | 36.9 | 0.045 | 0.44 | 33.3 | 0.072 | 0.4 | 36.8 | 0.091 | 0.45 | 33.0 | 0.069 | |
log-log | 0.51 | 36.1 | 0.046 | 0.56 | 35.8 | 0.033 | 0.52 | 33.9 | 0.043 | 0.48 | 36.6 | 0.056 | 0.52 | 33.8 | 0.043 | |
TVI | lineal | 0.19 | 41.4 | 0.281 | 0.17 | 41.9 | 0.308 | 0.43 | 34.7 | 0.078 | 0.29 | 38.7 | 0.167 | 0.45 | 34.1 | 0.068 |
semi log | 0.26 | 43.0 | 0.196 | 0.25 | 43.5 | 0.211 | 0.53 | 35.6 | 0.039 | 0.54 | 40.5 | 0.038 | 0.56 | 34.8 | 0.031 | |
log-log | 0.26 | 42.9 | 0.195 | 0.25 | 43.4 | 0.21 | 0.54 | 35.6 | 0.037 | 0.54 | 40.4 | 0.037 | 0.57 | 34.8 | 0.030 |
Data Group | Model | R2 | RMSE (Mg·ha−1) | p * |
---|---|---|---|---|
Group A | log AGB = 2.758 × NDGI + 1.098 | 0.49 | 36.6 | 0.054 |
log AGB = −2.912 × RVI + 2.875 | 0.27 | 42.5 | 0.182 | |
log AGB = 2.379 × NDVI + 0.692 | 0.25 | 43.3 | 0.205 | |
log AGB = 0,2119 × VIN + 1.195 | 0.18 | 45.3 | 0.289 | |
log AGB = 4.913 × TVI − 3.023 | 0.26 | 43.0 | 0.196 | |
Group B | log AGB = 3.581 × NDGI + 1.173 | 0.52 | 36.9 | 0.045 |
log AGB = −4.857 × RVI + 3.009 | 0.26 | 43.1 | 0.199 | |
log AGB = 3.371 × NDVI − 0.236 | 0.24 | 43.7 | 0.218 | |
log AGB = 0.1519 × VIN + 1.160 | 0.17 | 45.7 | 0.316 | |
log AGB = 7.379 × TVI − 5.950 | 0.25 | 43.5 | 0.211 | |
Group C | log AGB = 1.245 × NDGI + 1.522 | 0.44 | 33.3 | 0.072 |
log AGB = −3.129 × RVI + 2.191 | 0.55 | 35.4 | 0.034 | |
log AGB = 1.900 × NDVI + 0.311 | 0.53 | 35.7 | 0.041 | |
log AGB = 0.004 × VIN + 1.704 | 0.30 | 34.9 | 0.159 | |
log AGB = 4.363 × TVI − 3.139 | 0.54 | 35.6 | 0.039 | |
Group D | log AGB = 2.837 × NDGI + 1.432 | 0.40 | 36.8 | 0.091 |
log AGB = −2.912 × RVI + 2.249 | 0.55 | 40.2 | 0.035 | |
log AGB = 1.970 × NDVI + 0.343 | 0.53 | 40.7 | 0.040 | |
log AGB = 0.053 × VIN + 1.362 | 0.39 | 43.1 | 0.096 | |
log AGB = 4.355 × TVI − 3.044 | 0.54 | 40.5 | 0.038 | |
Group E | log AGB = 1.263 × NDGI + 1.512 | 0.45 | 33.0 | 0.069 |
log AGB =−3.208 × RVI + 2.185 | 0.58 | 34.5 | 0.028 | |
log AGB = 1.949 × NDVI + 0.257 | 0.56 | 34.9 | 0.033 | |
log AGB = 0.004 × VIN + 1.702 | 0.30 | 34.7 | 0.156 | |
log AGB = 4.473 × TVI − 3.280 | 0.57 | 34.8 | 0.031 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Clerici, N.; Rubiano, K.; Abd-Elrahman, A.; Posada Hoestettler, J.M.; Escobedo, F.J. Estimating Aboveground Biomass and Carbon Stocks in Periurban Andean Secondary Forests Using Very High Resolution Imagery. Forests 2016, 7, 138. https://doi.org/10.3390/f7070138
Clerici N, Rubiano K, Abd-Elrahman A, Posada Hoestettler JM, Escobedo FJ. Estimating Aboveground Biomass and Carbon Stocks in Periurban Andean Secondary Forests Using Very High Resolution Imagery. Forests. 2016; 7(7):138. https://doi.org/10.3390/f7070138
Chicago/Turabian StyleClerici, Nicola, Kristian Rubiano, Amr Abd-Elrahman, Juan Manuel Posada Hoestettler, and Francisco J. Escobedo. 2016. "Estimating Aboveground Biomass and Carbon Stocks in Periurban Andean Secondary Forests Using Very High Resolution Imagery" Forests 7, no. 7: 138. https://doi.org/10.3390/f7070138
APA StyleClerici, N., Rubiano, K., Abd-Elrahman, A., Posada Hoestettler, J. M., & Escobedo, F. J. (2016). Estimating Aboveground Biomass and Carbon Stocks in Periurban Andean Secondary Forests Using Very High Resolution Imagery. Forests, 7(7), 138. https://doi.org/10.3390/f7070138