Developing Two Additive Biomass Equations for Three Coniferous Plantation Species in Northeast China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Destructive Tree Sampling
2.3. Allometric Equations Development and Error Structure Evaluation
2.4. Additive Model Specification
- The additive system of log-transformed equations with three constraints based on the multiplicative error structure of W = a × Db is specified as follows:
- Based on the multiplicative error structure of W = a × Db × Hc, the following model specification was adopted for nine species with the variable H:
2.5. Model Assessment and Validation
3. Results
3.1. Biomass Partitioning
3.2. Biomass Additive Systems
3.3. Model Validation
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Appendix
Tree Species | D Class | System 1 | System 2 | ||||||
---|---|---|---|---|---|---|---|---|---|
MPE | MPE% | MAB | MAB% | MPE | MPE% | MAB | MAB% | ||
Korean pine | Total | ||||||||
<10 | −0.06 | −2.41 | 0.13 | 5.77 | 0.02 | 1.01 | 0.13 | 5.23 | |
10–15 | 0.01 | 0.27 | 0.10 | 2.59 | −0.01 | −0.25 | 0.10 | 2.53 | |
15–20 | 0.03 | 0.54 | 0.10 | 2.14 | 0.02 | 0.41 | 0.09 | 2.00 | |
20–25 | 0.00 | −0.09 | 0.08 | 1.56 | 0.00 | −0.05 | 0.08 | 1.47 | |
>25 | 0.00 | −0.03 | 0.05 | 0.91 | 0.01 | 0.22 | 0.05 | 0.82 | |
Aboveground | |||||||||
<10 | −0.07 | −3.31 | 0.13 | 7.02 | 0.01 | 0.32 | 0.13 | 6.55 | |
10–15 | 0.06 | 1.49 | 0.10 | 2.65 | 0.03 | 0.70 | 0.09 | 2.51 | |
15–20 | 0.04 | 0.88 | 0.10 | 2.13 | 0.03 | 0.71 | 0.09 | 2.02 | |
20–25 | −0.01 | −0.20 | 0.09 | 1.89 | 0.00 | −0.09 | 0.09 | 1.80 | |
>25 | −0.01 | −0.23 | 0.06 | 1.07 | 0.01 | 0.17 | 0.05 | 1.00 | |
Root | |||||||||
<10 | −0.03 | −2.99 | 0.18 | 16.58 | 0.07 | 6.43 | 0.25 | 26.95 | |
10–15 | −0.18 | −7.67 | 0.32 | 14.74 | −0.17 | −7.31 | 0.32 | 14.75 | |
15–20 | −0.05 | −1.73 | 0.24 | 7.98 | −0.05 | −1.73 | 0.24 | 8.01 | |
20–25 | −0.01 | −0.29 | 0.19 | 5.15 | −0.02 | −0.57 | 0.19 | 5.23 | |
>25 | 0.04 | 0.93 | 0.07 | 1.59 | 0.02 | 0.57 | 0.05 | 1.30 | |
Stem | |||||||||
<10 | −0.09 | −4.78 | 0.16 | 9.27 | 0.02 | 1.20 | 0.16 | 8.18 | |
10–15 | 0.06 | 1.72 | 0.11 | 3.11 | 0.01 | 0.32 | 0.10 | 3.04 | |
15–20 | 0.05 | 1.15 | 0.13 | 2.99 | 0.03 | 0.69 | 0.10 | 2.42 | |
20–25 | −0.01 | −0.32 | 0.09 | 2.00 | −0.01 | −0.27 | 0.07 | 1.51 | |
>25 | −0.03 | −0.67 | 0.06 | 1.22 | 0.00 | 0.10 | 0.06 | 1.16 | |
Branch | |||||||||
<10 | 0.03 | −11.62 | 0.06 | 21.32 | −0.08 | 28.28 | 0.12 | 33.31 | |
10–15 | 0.00 | −0.25 | 0.14 | 8.51 | 0.06 | 3.24 | 0.13 | 7.06 | |
15–20 | −0.04 | −1.34 | 0.22 | 8.61 | 0.00 | 0.04 | 0.22 | 8.54 | |
20–25 | −0.05 | −1.52 | 0.28 | 9.41 | −0.03 | −0.99 | 0.28 | 9.19 | |
>25 | 0.05 | 1.11 | 0.13 | 3.24 | 0.03 | 0.78 | 0.15 | 3.61 | |
Foliage | |||||||||
<10 | 0.00 | −1.49 | 0.21 | 60.76 | −0.07 | 48.73 | 0.23 | 41.52 | |
10–15 | 0.06 | 3.79 | 0.17 | 11.12 | 0.08 | 5.21 | 0.18 | 11.87 | |
15–20 | 0.00 | 0.22 | 0.20 | 9.29 | 0.02 | 0.93 | 0.19 | 9.04 | |
20–25 | −0.03 | −1.08 | 0.21 | 8.32 | −0.01 | −0.52 | 0.21 | 8.28 | |
>25 | −0.03 | −1.05 | 0.11 | 3.35 | −0.02 | −0.77 | 0.11 | 3.29 | |
Crown | |||||||||
<10 | 0.01 | 2.36 | 0.12 | 18.26 | −0.08 | −15.26 | 0.17 | 30.08 | |
10–15 | 0.03 | 1.30 | 0.10 | 4.31 | 0.07 | 3.16 | 0.12 | 4.66 | |
15–20 | −0.01 | −0.47 | 0.20 | 6.41 | 0.01 | 0.43 | 0.19 | 6.04 | |
20–25 | −0.04 | −0.99 | 0.24 | 6.90 | −0.02 | −0.55 | 0.24 | 6.74 | |
>25 | 0.02 | 0.47 | 0.11 | 2.53 | 0.01 | 0.33 | 0.13 | 2.81 | |
Larch | Total | ||||||||
<10 | −0.03 | −1.10 | 0.12 | 4.02 | −0.06 | −2.06 | 0.07 | 2.44 | |
10–15 | −0.02 | −0.50 | 0.17 | 4.27 | 0.05 | 1.18 | 0.13 | 3.22 | |
15–20 | 0.07 | 1.54 | 0.21 | 4.41 | 0.02 | 0.37 | 0.09 | 1.84 | |
20–25 | 0.08 | 1.38 | 0.12 | 2.14 | 0.00 | −0.06 | 0.06 | 1.05 | |
>25 | −0.03 | −0.44 | 0.10 | 1.60 | 0.02 | 0.38 | 0.05 | 0.85 | |
Aboveground | |||||||||
<10 | −0.04 | −1.56 | 0.12 | 4.37 | −0.07 | −2.46 | 0.07 | 2.59 | |
10–15 | −0.03 | −0.91 | 0.15 | 4.04 | 0.05 | 1.24 | 0.12 | 3.31 | |
15–20 | 0.09 | 1.89 | 0.24 | 5.22 | 0.03 | 0.55 | 0.09 | 2.07 | |
20–25 | 0.09 | 1.65 | 0.14 | 2.60 | 0.00 | −0.08 | 0.06 | 1.19 | |
>25 | −0.04 | −0.69 | 0.12 | 2.05 | 0.02 | 0.32 | 0.05 | 0.92 | |
Root | |||||||||
<10 | 0.02 | 1.63 | 0.15 | 12.87 | −0.02 | −1.96 | 0.12 | 9.39 | |
10–15 | 0.02 | 0.84 | 0.27 | 12.14 | 0.03 | 1.36 | 0.26 | 11.40 | |
15–20 | 0.00 | −0.13 | 0.14 | 4.70 | −0.03 | −0.96 | 0.14 | 4.46 | |
20–25 | 0.02 | 0.53 | 0.08 | 2.02 | −0.01 | −0.22 | 0.08 | 2.11 | |
>25 | 0.01 | 0.31 | 0.04 | 0.93 | 0.04 | 0.77 | 0.06 | 1.23 | |
Stem | |||||||||
<10 | −0.02 | −0.94 | 0.16 | 6.54 | −0.05 | −2.16 | 0.07 | 3.01 | |
10–15 | −0.07 | −2.17 | 0.21 | 6.28 | 0.04 | 1.21 | 0.15 | 4.62 | |
15–20 | 0.09 | 2.06 | 0.29 | 6.70 | 0.03 | 0.63 | 0.10 | 2.35 | |
20–25 | 0.09 | 1.65 | 0.17 | 3.24 | −0.02 | −0.38 | 0.08 | 1.45 | |
>25 | −0.04 | −0.75 | 0.14 | 2.48 | 0.03 | 0.48 | 0.07 | 1.12 | |
Branch | |||||||||
<10 | −0.12 | −16.70 | 0.12 | 23.24 | −0.11 | −14.41 | 0.16 | 25.94 | |
10–15 | 0.10 | 5.58 | 0.22 | 12.62 | 0.05 | 2.76 | 0.14 | 8.43 | |
15–20 | −0.08 | −3.68 | 0.20 | 9.03 | −0.05 | −2.07 | 0.14 | 6.57 | |
20–25 | 0.04 | 1.48 | 0.20 | 7.23 | 0.10 | 3.46 | 0.22 | 7.75 | |
>25 | −0.05 | −1.65 | 0.15 | 4.67 | −0.08 | −2.51 | 0.14 | 4.34 | |
Foliage | |||||||||
<10 | −0.08 | −24.25 | 0.08 | 31.10 | −0.08 | −25.80 | 0.08 | 31.82 | |
10–15 | 0.01 | 1.65 | 0.18 | 24.90 | 0.01 | 0.63 | 0.19 | 26.89 | |
15–20 | −0.04 | −2.86 | 0.19 | 17.20 | −0.04 | −3.19 | 0.20 | 18.06 | |
20–25 | 0.04 | 2.35 | 0.20 | 12.99 | 0.03 | 2.10 | 0.20 | 12.98 | |
>25 | 0.00 | −0.12 | 0.10 | 5.72 | −0.02 | −1.05 | 0.11 | 5.96 | |
Crown | |||||||||
<10 | −0.10 | −8.34 | 0.10 | 9.09 | −0.10 | −7.85 | 0.11 | 9.39 | |
10–15 | 0.08 | 3.79 | 0.16 | 7.66 | 0.04 | 2.02 | 0.13 | 5.99 | |
15–20 | −0.06 | −2.49 | 0.16 | 6.31 | −0.04 | −1.50 | 0.13 | 5.05 | |
20–25 | 0.05 | 1.55 | 0.17 | 5.47 | 0.09 | 2.91 | 0.18 | 5.61 | |
>25 | −0.04 | −1.18 | 0.12 | 3.59 | −0.07 | −1.95 | 0.12 | 3.49 | |
Mongolian pine | Total | ||||||||
<10 | 0.02 | 0.96 | 0.15 | 6.02 | 0.03 | 1.06 | 0.04 | 1.55 | |
10–15 | 0.00 | 0.05 | 0.15 | 3.76 | −0.02 | −0.60 | 0.10 | 2.71 | |
15–20 | 0.09 | 1.96 | 0.14 | 2.89 | 0.04 | 0.83 | 0.09 | 1.81 | |
20–25 | 0.01 | 0.16 | 0.11 | 2.04 | 0.02 | 0.37 | 0.06 | 1.17 | |
>25 | −0.07 | −1.13 | 0.07 | 1.21 | 0.00 | 0.08 | 0.06 | 1.04 | |
Aboveground | |||||||||
<10 | 0.01 | 0.31 | 0.21 | 10.59 | 0.03 | 1.17 | 0.05 | 2.37 | |
10–15 | 0.02 | 0.55 | 0.17 | 4.75 | −0.01 | −0.21 | 0.11 | 3.06 | |
15–20 | 0.10 | 2.25 | 0.16 | 3.42 | 0.04 | 0.85 | 0.11 | 2.41 | |
20–25 | 0.01 | 0.22 | 0.12 | 2.35 | 0.02 | 0.48 | 0.06 | 1.17 | |
>25 | −0.08 | −1.38 | 0.09 | 1.50 | 0.00 | 0.04 | 0.07 | 1.17 | |
Root | |||||||||
<10 | 0.05 | 3.77 | 0.06 | 5.00 | 0.03 | 1.92 | 0.04 | 3.34 | |
10–15 | −0.09 | −4.22 | 0.16 | 8.36 | −0.10 | −4.58 | 0.16 | 8.20 | |
15–20 | 0.03 | 1.02 | 0.06 | 2.07 | 0.04 | 1.22 | 0.07 | 2.26 | |
20–25 | −0.02 | −0.74 | 0.12 | 3.63 | −0.02 | −0.61 | 0.12 | 3.73 | |
>25 | 0.01 | 0.17 | 0.05 | 1.29 | 0.01 | 0.32 | 0.05 | 1.23 | |
Stem | |||||||||
<10 | −0.03 | −1.36 | 0.31 | 19.87 | 0.02 | 1.28 | 0.05 | 2.95 | |
10–15 | 0.01 | 0.24 | 0.24 | 7.16 | −0.03 | −0.93 | 0.14 | 4.16 | |
15–20 | 0.13 | 2.96 | 0.21 | 4.70 | 0.05 | 1.08 | 0.13 | 3.05 | |
20–25 | 0.01 | 0.28 | 0.16 | 3.23 | 0.04 | 0.80 | 0.07 | 1.52 | |
>25 | −0.13 | −2.28 | 0.13 | 2.44 | −0.01 | −0.10 | 0.07 | 1.24 | |
Branch | |||||||||
<10 | 0.07 | 23.61 | 0.10 | 36.20 | 0.08 | 28.71 | 0.14 | 47.77 | |
10–15 | −0.03 | −1.84 | 0.22 | 14.89 | 0.01 | 0.35 | 0.21 | 14.14 | |
15–20 | −0.08 | −3.36 | 0.21 | 9.62 | −0.05 | −2.04 | 0.18 | 8.28 | |
20–25 | −0.08 | −2.69 | 0.19 | 7.09 | −0.10 | −3.52 | 0.20 | 7.19 | |
>25 | 0.10 | 2.63 | 0.16 | 4.16 | 0.02 | 0.61 | 0.12 | 3.23 | |
Foliage | |||||||||
<10 | 0.02 | 11.78 | 0.15 | 52.96 | 0.04 | 21.00 | 0.15 | 42.08 | |
10–15 | 0.00 | −0.21 | 0.22 | 17.40 | 0.05 | 4.08 | 0.20 | 16.09 | |
15–20 | −0.06 | −3.19 | 0.23 | 12.91 | 0.00 | 0.09 | 0.20 | 11.10 | |
20–25 | 0.03 | 1.11 | 0.20 | 8.23 | 0.02 | 0.67 | 0.18 | 7.53 | |
>25 | 0.10 | 3.24 | 0.19 | 6.08 | 0.02 | 0.74 | 0.16 | 5.37 | |
Crown | |||||||||
<10 | 0.05 | 5.36 | 0.12 | 16.01 | 0.07 | 7.06 | 0.14 | 18.08 | |
10–15 | −0.01 | −0.46 | 0.18 | 8.34 | 0.03 | 1.53 | 0.17 | 8.10 | |
15–20 | −0.06 | −1.97 | 0.16 | 5.68 | −0.01 | −0.47 | 0.12 | 4.19 | |
20–25 | −0.03 | −0.91 | 0.16 | 4.72 | −0.05 | −1.48 | 0.16 | 4.77 | |
>25 | 0.10 | 2.46 | 0.15 | 3.53 | 0.03 | 0.63 | 0.11 | 2.53 |
References
- Wang, X.; Fang, J.; Zhu, B. Forest biomass and root-shoot allocation in northeast China. For. Ecol. Manag. 2008, 255, 4007–4020. [Google Scholar] [CrossRef]
- Schall, P.; Lödige, C.; Beck, M.; Ammer, C. Biomass allocation to roots and shoots is more sensitive to shade and drought in European beech than in Norway spruce seedlings. For. Ecol. Manag. 2012, 266, 246–253. [Google Scholar] [CrossRef]
- Cai, S.; Kang, X.; Zhang, L. Allometric models for aboveground biomass of ten tree species in northeast China. Ann. For. Res. 2013, 56, 105–122. [Google Scholar]
- Cienciala, E.; Centeio, A.; Blazek, P.; Gomes Soares, M.D.C.; Russ, R. Estimation of stem and tree level biomass models for Prosopis juliflora/pallida applicable to multi-stemmed tree species. Trees 2013, 27, 1061–1070. [Google Scholar] [CrossRef]
- Bond-Lamberty, B.; Wang, C.; Gower, S.T. Net primary production and net ecosystem production of a boreal black spruce wildfire chronosequence. Glob. Chang. Biol. 2004, 10, 473–487. [Google Scholar] [CrossRef]
- Pregitzer, K.S.; Euskirchen, E.S. Carbon cycling and storage in world forests: Biome patterns related to forest age. Glob. Chang. Biol. 2004, 10, 2052–2077. [Google Scholar] [CrossRef]
- Mu, C.; Lu, H.; Wang, B.; Bao, X.; Cui, W. Short-term effects of harvesting on carbon storage of boreal Larix gmelinii-Carex schmidtii forested wetlands in Daxing’anling, northeast China. For. Ecol. Manag. 2013, 293, 140–148. [Google Scholar] [CrossRef]
- Konopka, B.; Pajtik, J.; Noguchi, K.; Lukac, M. Replacing Norway spruce with European beech: A comparison of biomass and net primary production patterns in young stands. For. Ecol. Manag. 2013, 302, 185–192. [Google Scholar] [CrossRef]
- Bond-Lamberty, B.; Wang, C.; Gower, S.T. Aboveground and belowground biomass and sapwood area allometric equations for six boreal tree species of northern Manitoba. Can J. For. Res. 2002, 32, 1441–1450. [Google Scholar] [CrossRef]
- Bi, H.; Turner, J.; Lambert, M.J. Additive biomass equations for native eucalypt forest trees of temperate Australia. Trees 2004, 18, 467–479. [Google Scholar] [CrossRef]
- Wang, C. Biomass allometric equations for 10 co-occurring tree species in Chinese temperate forests. For. Ecol. Manag. 2006, 222, 9–16. [Google Scholar] [CrossRef]
- Alvarez, E.; Duque, A.; Saldarriaga, J.; Cabrera, K.; Salas, G.D.L.; Valle, I.D.; Lema, A.; Moreno, F.; Orrego, S.; Rodríguez, L. Tree above-ground biomass allometries for carbon stocks estimation in the natural forests of Colombia. For. Ecol. Manag. 2012, 267, 297–308. [Google Scholar] [CrossRef]
- Lambert, M.C.; Ung, C.H.; Raulier, F. Canadian national tree aboveground biomass equations. Can. J. For. Res. 2005, 35, 1996–2018. [Google Scholar] [CrossRef]
- Jenkins, J.C.; Chojnacky, D.C.; Heath, L.S.; Birdsey, R.A. National-scale biomass estimators for United States tree species. For. Sci. 2003, 49, 12–35. [Google Scholar]
- Kenzo, T.; Furutani, R.; Hattori, D.; Kendawang, J.J.; Tanaka, S.; Sakurai, K.; Ninomiya, I. Allometric equations for accurate estimation of above-ground biomass in logged-over tropical rainforests in Sarawak, Malaysia. J. For. Res. 2009, 14, 365–372. [Google Scholar] [CrossRef]
- Fatemi, F.R.; Yanai, R.D.; Hamburg, S.P.; Vadeboncoeur, M.A.; Arthur, M.A.; Briggs, R.D.; Levine, C. Allometric equations for young northern hardwoods: The importance of age-specific equations for estimating aboveground biomass. Can. J. For. Res. 2011, 41, 881–891. [Google Scholar] [CrossRef]
- Blujdea, V.N.B.; Pilli, R.; Dutca, I.; Ciuvat, L.; Abrudan, I.V. Allometric biomass equations for young broadleaved trees in plantations in Romania. For. Ecol. Manag. 2012, 264, 172–184. [Google Scholar] [CrossRef]
- Brown, S. Measuring carbon in forests: Current status and future challenges. Environ. Pollut. 2002, 116, 363–372. [Google Scholar] [CrossRef]
- Ter-Mikaelian, M.T.; Korzukhin, M.D. Biomass equations for sixty-five North American tree species. For. Ecol. Manag. 1997, 97, 1–24. [Google Scholar] [CrossRef]
- Cole, T.G.; Ewel, J.J. Allometric equations for four valuable tropical tree species. For. Ecol. Manag. 2006, 229, 351–360. [Google Scholar] [CrossRef]
- Wang, X.; Fang, J.; Tang, Z.; Zhu, B. Climatic control of primary forest structure and D-height allometry in Northeast China. For. Ecol. Manag. 2006, 234, 264–274. [Google Scholar] [CrossRef]
- Zhou, X.; Brandle, J.R.; Schoeneberger, M.M.; Awada, T. Developing above-ground woody biomass equations for open-grown, multiple-stemmed tree species: Shelterbelt-grown Russian-olive. Ecol. Model. 2007, 202, 311–323. [Google Scholar] [CrossRef]
- Zhang, C.; Peng, D.L.; Huang, G.S.; Zeng, W.S. Developing aboveground biomass equations both compatible with tree volume equations and additive systems for single-trees in poplar plantations in Jiangsu province, China. Forests 2016, 7, 32. [Google Scholar] [CrossRef]
- Peria, P.L.; Verónica, G.; Pastur, G.M.; Lencinas, M.V. Carbon accumulation along a stand development sequence of Nothofagus antarctica forests across a gradient in site quality in Southern Patagonia. For. Ecol. Manag. 2010, 260, 229–237. [Google Scholar] [CrossRef]
- Verónica, G.; Louis, P.P.; Gerardo, R. Allometric relations for biomass partitioning of Nothofagus antarctica trees of different crown classes over a site quality gradient. For. Ecol. Manag. 2010, 259, 1118–1126. [Google Scholar]
- Battulga, P.; Tsogtbaatar, J.; Dulamsuren, C.; Hauck, M. Equations for estimating the above-ground biomass of Larix sibirica in the forest-steppe of Mongolia. J. For. Res. 2013, 24, 431–437. [Google Scholar] [CrossRef]
- Menendez-Miguelez, M.; Canga, E.; Barrio-Anta, M.; Majada, J.; Alvarez-Alvarez, P. A three level system for estimating the biomass of Castanea sativa Mill. coppice stands in north-west Spain. For. Ecol. Manag. 2013, 291, 417–426. [Google Scholar] [CrossRef]
- Bi, H.; Murphy, S.; Volkova, L.; Weston, C.; Fairman, T.; Li, Y.; Law, R.; Norris, J.; Lei, X.; Caccamo, G. Additive biomass equations based on complete weighing of sample trees for open eucalypt forest species in south-eastern Australia. For. Ecol. Manag. 2015, 349, 106–121. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, C.; Xia, F.; Zhao, X.; Wu, L.; Gadow, K.V. Biomass structure and allometry of Abies nephrolepis (Maxim) in Northeast China. Silva Fenn. 2011, 45, 211–226. [Google Scholar] [CrossRef]
- Lai, J.; Yang, B.; Lin, D.; Kerkhoff, A.J.; Ma, K. The allometry of coarse root biomass: Log-transformed linear regression or nonlinear regression? PLoS ONE 2013, 8, e77007. [Google Scholar] [CrossRef] [PubMed]
- Xiao, X.; White, E.P.; Hooten, M.B.; Durham, S.L. On the use of log-transformation vs. nonlinear regression for analyzing biological power laws. Ecology 2011, 92, 1887–1894. [Google Scholar] [CrossRef] [PubMed]
- Ballantyne, F.T. Evaluating model fit to determine if logarithmic transformations are necessary in allometry: A comment on the exchange between Packard (2009) and Kerkhoff and Enquist (2009). J. Theor. Biol. 2013, 317, 418–421. [Google Scholar] [CrossRef] [PubMed]
- Dong, L.; Zhang, L.; Li, F. A compatible system of biomass equations for three conifer species in Northeast, China. For. Ecol. Manag. 2014, 329, 306–317. [Google Scholar] [CrossRef]
- Parresol, B.R. Assessing tree and stand biomass: A review with examples and critical comparisons. For. Sci. 1999, 45, 573–593. [Google Scholar]
- Parresol, B.R. Additivity of nonlinear biomass equations. Can. J. For. Res. 2001, 31, 865–878. [Google Scholar] [CrossRef]
- Tang, S.; Li, Y.; Wang, Y. Simultaneous equations, error-in-variable models, and model integration in systems ecology. Ecol. Mod. 2001, 142, 285–294. [Google Scholar] [CrossRef]
- Carvalho, J.P.; Parresol, B.R. Additivity in tree biomass components of Pyrenean oak (Quercus pyrenaica Willd.). For. Ecol. Manag. 2003, 179, 269–276. [Google Scholar] [CrossRef]
- Návar, J. Biomass component equations for Latin American species and groups of species. Ann. For. Sci. 2009, 66, 208–216. [Google Scholar] [CrossRef]
- Russell, M.B.; Burkhart, H.E.; Amateis, R.L. Biomass partitioning in a miniature-scale loblolly pine spacing trial. Can. J. For. Res. 2009, 39, 320–329. [Google Scholar] [CrossRef]
- Castedo-Dorado, F.; Gomez-Garcia, E.; Dieguez-Aranda, U.; Barrio-Anta, M.; Crecente-Campo, F. Aboveground stand-level biomass estimation: A comparison of two methods for major forest species in northwest Spain. Ann. For. Sci. 2012, 69, 735–746. [Google Scholar] [CrossRef]
- Li, H.; Zhao, P. Improving the accuracy of tree-level aboveground biomass equations with height classification at a large regional scale. For. Ecol. Manag. 2013, 289, 153–163. [Google Scholar] [CrossRef]
- Son, Y.; Hwang, J.W.; Kim, Z.S.; Lee, W.K.; Kim, J.S. Allometry and biomass of Korean pine (Pinus koraiensis) in central Korea. Bioresour. Technol. 2001, 78, 251–255. [Google Scholar] [CrossRef]
- Fu, L.; Zeng, W.; Zhang, H.; Wang, G.; Lei, Y.; Tang, S. Generic linear mixed-effects individual-tree biomass models for Pinus massoniana in southern China. South For. 2014, 76, 47–56. [Google Scholar]
- Zeng, W.S. Using nonlinear mixed model and dummy variable model approaches to construct origin-based single tree biomass equations. Trees 2014, 29, 275–283. [Google Scholar] [CrossRef]
- SAS Institute Inc. SAS/ETS® 9.3. User’s Guide; SAS Institute Inc.: Cary, NC, USA, 2011. [Google Scholar]
- Balboa-Murias, M.Á.; Rodríguez-Soalleiro, R.; Merino, A.; Álvarez-González, J.G. Temporal variations and distribution of carbon stocks in aboveground biomass of radiata pine and maritime pine pure stands under different silvicultural alternatives. For. Ecol. Manag. 2006, 237, 29–38. [Google Scholar] [CrossRef]
- Dong, L.; Zhang, L.; Li, F. A Three-step proportional weighting system of nonlinear biomass equations. For. Sci. 2015, 61, 35–45. [Google Scholar]
- Quint, T.C.; Dech, J.P. Allometric models for predicting the aboveground biomass of Canada yew (Taxus canadensis Marsh.) from visual and digital cover estimates. Can. J. For. Res. 2010, 40, 2003–2014. [Google Scholar] [CrossRef]
- Kozak, A.; Kozak, R. Does cross validation provide additional information in the evaluation of regression models? Can. J. For. Res. 2003, 33, 976–987. [Google Scholar] [CrossRef]
- Madgwick, H.; Satoo, T. On estimating the aboveground weights of tree stands. Ecology 1975, 56, 1446–1450. [Google Scholar] [CrossRef]
- Zianis, D.; Xanthopoulos, G.; Kalabokidis, K.; Kazakis, G.; Ghosn, D.; Roussou, O. Allometric equations for aboveground biomass estimation by size class for Pinus brutia Ten. trees growing in North and South Aegean Islands, Greece. Eur. J. For. Res. 2011, 130, 145–160. [Google Scholar] [CrossRef]
- Cairns, M.A.; Brown, S.; Helmer, E.H.; Baumgardner, G.A. Root biomass allocation in the world’s upland forests. Oecologia 1997, 111, 1–11. [Google Scholar] [CrossRef]
- Vega-Nieva, D.J.; Valero, E.; Picos, J.; Jiménez, E. Modeling the above and belowground biomass of planted and coppiced Eucalytpus globulus, stands in NW Spain. Ann. For. Sci. 2015, 72, 967–980. [Google Scholar] [CrossRef]
- Zianis, D.; Mencuccini, M. Aboveground biomass relationships for beech (Fagus moesiaca Cz.) trees in Vermio Mountain, Northern Greece, and generalised equations for Fagus sp. Ann. For. Sci. 2003, 60, 439–448. [Google Scholar] [CrossRef]
- Basuki, T.M.; Laake, P.E.V.; Skidmore, A.K.; Hussin, Y.A. Allometric equations for estimating the above-ground biomass in tropical lowland Dipterocarp forests. For. Ecol. Manag. 2009, 257, 1684–1694. [Google Scholar] [CrossRef]
- Strong, W.; Roi, G.L. Root-system morphology of common boreal forest trees in Alberta, Canada. Can. J. For. Res. 1983, 13, 1164–1173. [Google Scholar] [CrossRef]
- Nicoll, B.C.; Ray, D. Adaptive growth of tree root systems in response to wind action and site conditions. Tree Physiol. 1996, 16, 891–898. [Google Scholar] [CrossRef] [PubMed]
Forest Types | Plots | Density (Trees·ha−1) | Age (Years) | Dq (cm) | Slope (°) | Altitude (m) |
---|---|---|---|---|---|---|
Korean pine plantation | 36 | 650–1650 | 16–48 | 12.3–21.5 | 0–12 | 194–467 |
Larch plantation | 17 | 700–1850 | 12–53 | 15.7–29.6 | 0–10 | 120–385 |
Mongolian pine plantation | 30 | 452–1662 | 12–46 | 6.3–29.2 | 2–20 | 124–376 |
Tree Species | N | Statistic | D | H | Wt | Wa | Wr | Ws | Wb | Wf | Wc |
---|---|---|---|---|---|---|---|---|---|---|---|
Korean pine | 114 | Min | 5.4 | 5.4 | 5.6 | 4.0 | 1.6 | 3.4 | 0.3 | 0.3 | 0.6 |
Max | 33.4 | 16.2 | 491.2 | 384.1 | 107.0 | 246.5 | 99.3 | 38.3 | 137.6 | ||
Mean | 19.6 | 12.1 | 152.6 | 120.3 | 32.3 | 84.2 | 23.4 | 12.7 | 36.1 | ||
Std | 4.6 | 1.8 | 80.3 | 63.5 | 18.0 | 40.2 | 17.9 | 7.4 | 25.0 | ||
Larch | 90 | Min | 7.6 | 8.3 | 11.8 | 9.6 | 2.2 | 7.2 | 1.5 | 0.9 | 2.5 |
Max | 35.7 | 27.0 | 764.7 | 561.1 | 203.6 | 510.2 | 42.3 | 8.6 | 50.9 | ||
Mean | 19.8 | 18.2 | 224.6 | 178.1 | 46.5 | 158.9 | 14.8 | 4.3 | 19.2 | ||
Std | 6.0 | 5.1 | 158.4 | 122.1 | 37.6 | 113.0 | 9.0 | 1.8 | 10.6 | ||
Mongolian pine | 85 | Min | 6.0 | 3.5 | 6.6 | 4.0 | 2.6 | 2.5 | 0.7 | 0.8 | 1.5 |
Max | 38.7 | 22.3 | 685.9 | 607.1 | 78.8 | 441.2 | 108.2 | 57.6 | 165.8 | ||
Mean | 18.6 | 14.4 | 156.0 | 131.4 | 24.6 | 105.0 | 16.8 | 9.5 | 26.4 | ||
Std | 7.1 | 4.5 | 134.2 | 117.0 | 17.7 | 90.9 | 18.4 | 9.2 | 27.4 |
Tree Species | Equation Type | Total | Aboveground | Root | Stem | Branch | Foliage | Crown |
---|---|---|---|---|---|---|---|---|
Korean pine | W = a × Db | 16.15 | 32.41 | 6.27 | 17.77 | 73.70 | 37.88 | 59.70 |
W = a × Db × Hc | 10.90 | 27.52 | 6.67 | 9.69 | 78.07 | 40.24 | 64.69 | |
Larch | W = a × Db | 36.45 | 44.54 | 7.84 | 41.26 | 40.10 | 4.08 | 37.28 |
W = a × Db × Hc | 37.90 | 52.86 | 10.12 | 55.32 | 43.01 | 3.77 | 38.86 | |
Mongolian pine | W = a × Db | 19.42 | 16.08 | 30.05 | 11.99 | 69.39 | 73.90 | 61.74 |
W = a × Db × Hc | 35.62 | 43.21 | 27.62 | 39.85 | 68.71 | 67.93 | 55.01 |
Tree Species | System Types | Biomass Components | Parameters | Ra2 | RMSE | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Estimate | SE | p Value | Estimate | SE | p Value | Estimate | SE | p Value | |||||
Korean pine | System 1 | Total | - | - | - | - | - | - | - | - | - | 0.972 | 0.11 |
Aboveground | - | - | - | - | - | - | - | - | - | 0.971 | 0.12 | ||
Root | −3.2305 | 0.1741 | <0.0001 | 2.2295 | 0.0601 | <0.0001 | - | - | - | 0.865 | 0.26 | ||
Stem | −2.4644 | 0.1155 | <0.0001 | 2.2884 | 0.0392 | <0.0001 | - | - | - | 0.957 | 0.13 | ||
Branch | −6.6336 | 0.1800 | <0.0001 | 3.2232 | 0.0614 | <0.0001 | - | - | - | 0.908 | 0.29 | ||
Foliage | −5.2441 | 0.1635 | <0.0001 | 2.5788 | 0.0554 | <0.0001 | - | - | - | 0.897 | 0.24 | ||
Crown | - | - | - | - | - | - | - | - | - | 0.916 | 0.25 | ||
System 2 | Total | - | - | - | - | - | - | - | - | - | 0.975 | 0.11 | |
Aboveground | - | - | - | - | - | - | - | - | - | 0.974 | 0.11 | ||
Root | −3.6081 | 0.2375 | <0.0001 | 2.2338 | 0.1012 | <0.0001 | 0.1476 | 0.1571 | <0.3497 | 0.868 | 0.26 | ||
Stem | −3.0787 | 0.1431 | <0.0001 | 2.0435 | 0.0496 | <0.0001 | 0.5406 | 0.0797 | <0.0001 | 0.970 | 0.11 | ||
Branch | −6.0711 | 0.2512 | <0.0001 | 3.4359 | 0.0836 | <0.0001 | −0.4892 | 0.1427 | <0.0009 | 0.913 | 0.28 | ||
Foliage | −4.9679 | 0.2389 | <0.0001 | 2.6265 | 0.0790 | <0.0001 | −0.1735 | 0.1338 | <0.1974 | 0.900 | 0.23 | ||
Crown | - | - | - | - | - | - | - | - | - | 0.920 | 0.24 | ||
Larch | System 1 | Total | - | - | - | - | - | - | - | - | - | 0.966 | 0.18 |
Aboveground | - | - | - | - | - | - | - | - | - | 0.958 | 0.19 | ||
Root | −5.3510 | 0.1439 | <0.0001 | 2.9914 | 0.0496 | <0.0001 | - | - | - | 0.964 | 0.19 | ||
Stem | −3.7797 | 0.1531 | <0.0001 | 2.8778 | 0.0515 | <0.0001 | - | - | - | 0.946 | 0.24 | ||
Branch | −3.7266 | 0.1401 | <0.0001 | 2.1147 | 0.0476 | <0.0001 | - | - | - | 0.898 | 0.23 | ||
Foliage | −2.3186 | 0.1495 | <0.0001 | 1.2549 | 0.0509 | <0.0001 | - | - | - | 0.820 | 0.20 | ||
Crown | - | - | - | - | - | - | - | - | - | 0.911 | 0.19 | ||
System 2 | Total | - | - | - | - | - | - | - | - | - | 0.989 | 0.10 | |
Aboveground | - | - | - | - | - | - | - | - | - | 0.989 | 0.10 | ||
Root | −5.4519 | 0.1365 | <0.0001 | 2.6643 | 0.0902 | <0.0001 | 0.3755 | 0.1004 | <0.0003 | 0.967 | 0.18 | ||
Stem | −4.5363 | 0.0959 | <0.0001 | 1.7008 | 0.0688 | <0.0001 | 1.4804 | 0.0713 | <0.0001 | 0.987 | 0.12 | ||
Branch | −3.3632 | 0.1260 | <0.0001 | 2.6728 | 0.1041 | <0.0001 | −0.7052 | 0.1082 | <0.0001 | 0.919 | 0.21 | ||
Foliage | −2.2879 | 0.1505 | <0.0001 | 1.3369 | 0.1113 | <0.0001 | −0.0922 | 0.1205 | <0.4466 | 0.821 | 0.20 | ||
Crown | - | - | - | - | - | - | - | - | - | 0.925 | 0.18 | ||
Mongolian pine | System 1 | Total | - | - | - | - | - | - | - | - | - | 0.978 | 0.15 |
Aboveground | - | - | - | - | - | - | - | - | - | 0.971 | 0.18 | ||
Root | −2.6309 | 0.0876 | <0.0001 | 1.9513 | 0.0310 | <0.0001 | - | - | - | 0.963 | 0.16 | ||
Stem | −3.5715 | 0.0310 | <0.0001 | 2.7203 | 0.0488 | <0.0001 | - | - | - | 0.952 | 0.24 | ||
Branch | −4.8200 | 0.1365 | <0.0001 | 2.5112 | 0.0468 | <0.0001 | - | - | - | 0.956 | 0.22 | ||
Foliage | −3.9112 | 0.1496 | <0.0001 | 2.0327 | 0.0520 | <0.0001 | - | - | - | 0.923 | 0.25 | ||
Crown | - | - | - | - | - | - | - | - | - | 0.961 | 0.19 | ||
System 2 | Total | - | - | - | - | - | - | - | - | - | 0.987 | 0.11 | |
Aboveground | - | - | - | - | - | - | - | - | - | 0.985 | 0.13 | ||
Root | −2.5406 | 0.0886 | <0.0001 | 1.9752 | 0.0886 | <0.0001 | −0.0606 | 0.0611 | <0.3242 | 0.962 | 0.16 | ||
Stem | −3.7044 | 0.0882 | <0.0001 | 1.9074 | 0.0599 | <0.0001 | 0.9412 | 0.0596 | <0.0001 | 0.981 | 0.15 | ||
Branch | −4.9247 | 0.1252 | <0.0001 | 2.8783 | 0.1252 | <0.0001 | −0.3612 | 0.0823 | <0.0001 | 0.963 | 0.21 | ||
Foliage | −3.9908 | 0.0823 | <0.0001 | 2.5358 | 0.0878 | <0.0001 | −0.5262 | 0.0883 | <0.0001 | 0.940 | 0.22 | ||
Crown | - | - | - | - | - | - | - | - | - | 0.971 | 0.17 |
Tree Species | Components | System 1 | System 2 | ||||||
---|---|---|---|---|---|---|---|---|---|
MPE | MPE% | MAB | MAB% | MPE | MPE% | MAB | MAB% | ||
Korean pine | Total | 0.01 | 0.14 | 0.09 | 1.99 | 0.01 | 0.14 | 0.09 | 1.87 |
Aboveground | 0.01 | 0.30 | 0.09 | 2.18 | 0.01 | 0.31 | 0.09 | 2.07 | |
Root | −0.04 | −1.33 | 0.21 | 7.43 | −0.04 | −1.35 | 0.21 | 7.82 | |
Stem | 0.01 | 0.31 | 0.11 | 2.70 | 0.01 | 0.20 | 0.09 | 2.24 | |
Branch | −0.03 | −1.03 | 0.22 | 8.94 | −0.01 | −0.23 | 0.22 | 9.11 | |
Foliage | −0.01 | −0.25 | 0.19 | 10.45 | 0.01 | 0.29 | 0.19 | 9.75 | |
Crown | −0.01 | −0.45 | 0.20 | 6.47 | 0.00 | 0.11 | 0.19 | 6.75 | |
Larch | Total | 0.03 | 0.62 | 0.14 | 3.02 | 0.01 | 0.26 | 0.08 | 1.66 |
Aboveground | 0.03 | 0.66 | 0.16 | 3.41 | 0.01 | 0.26 | 0.08 | 1.80 | |
Root | 0.01 | 0.40 | 0.13 | 4.89 | 0.00 | 0.07 | 0.12 | 4.59 | |
Stem | 0.03 | 0.54 | 0.20 | 4.58 | 0.01 | 0.21 | 0.09 | 2.26 | |
Branch | 0.00 | −0.08 | 0.19 | 9.01 | 0.01 | 0.45 | 0.17 | 7.96 | |
Foliage | 0.00 | 0.26 | 0.17 | 15.68 | 0.00 | −0.30 | 0.17 | 16.32 | |
Crown | 0.00 | 0.16 | 0.15 | 5.89 | 0.01 | 0.44 | 0.14 | 5.35 | |
Mongolian pine | Total | 0.02 | 0.37 | 0.12 | 2.91 | 0.02 | 0.34 | 0.08 | 1.85 |
Aboveground | 0.02 | 0.47 | 0.15 | 3.85 | 0.02 | 0.37 | 0.09 | 2.10 | |
Root | −0.01 | −0.44 | 0.10 | 4.02 | −0.01 | −0.47 | 0.09 | 3.88 | |
Stem | 0.01 | 0.32 | 0.20 | 6.02 | 0.01 | 0.33 | 0.10 | 2.68 | |
Branch | −0.02 | −0.70 | 0.19 | 11.88 | −0.02 | −0.75 | 0.18 | 12.24 | |
Foliage | 0.01 | 0.49 | 0.21 | 15.60 | 0.02 | 1.29 | 0.19 | 13.47 | |
Crown | 0.00 | 0.06 | 0.16 | 6.71 | 0.01 | 0.24 | 0.14 | 6.23 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dong, L.; Zhang, L.; Li, F. Developing Two Additive Biomass Equations for Three Coniferous Plantation Species in Northeast China. Forests 2016, 7, 136. https://doi.org/10.3390/f7070136
Dong L, Zhang L, Li F. Developing Two Additive Biomass Equations for Three Coniferous Plantation Species in Northeast China. Forests. 2016; 7(7):136. https://doi.org/10.3390/f7070136
Chicago/Turabian StyleDong, Lihu, Lianjun Zhang, and Fengri Li. 2016. "Developing Two Additive Biomass Equations for Three Coniferous Plantation Species in Northeast China" Forests 7, no. 7: 136. https://doi.org/10.3390/f7070136
APA StyleDong, L., Zhang, L., & Li, F. (2016). Developing Two Additive Biomass Equations for Three Coniferous Plantation Species in Northeast China. Forests, 7(7), 136. https://doi.org/10.3390/f7070136