Beyond the Growing Season: Variability of 13C-CO2 Fluxes in Temperate Forests and Peatlands
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Sites
- (1)
- a forest stand in the Oborniki Forest District (52.7° N; 16.5° E), representing mesic mixed forest and mesic pine forest, and
- (2)
- the Rzecin transitional peatland, classified as a fen (52.4° N; 16.2° E).
2.2. Chamber Measurements of 13C-CO2 Fluxes
2.3. Microclimatic Measurements
2.4. Statistical Analysis
3. Results
3.1. Environmental Conditions During Measurement Periods
3.2. Magnitude and Variability of Winter 13C-CO2 Fluxes
3.3. Differences Between Forest and Peatland
3.4. Relationships Between 13C-CO2 Fluxes and Temperature
3.5. Influence of Freezing Conditions in the Peatland
3.6. Soil Moisture Content at the Forest Site
4. Discussion
4.1. Winter CO2 Emissions as a Key Component of Annual Carbon Balance
4.2. Forest–Peatland Contrast in Winter Fluxes
4.3. Temperature and Freeze–Thaw Controls on Winter 13C–CO2 Emissions
4.4. Interpretation of 13C-CO2 Fluxes and Isotopic Processes
4.5. Role of Soil Moisture, Snow and Microclimate
4.6. Climatic Implications and Limitations
5. Conclusions
- Both ecosystems remained active 13C-CO2 sources during the cold half-year.
- 2.
- Winter 13C-CO2 fluxes were substantially higher in the studied forest than in the peatland.
- 3.
- Controls on winter 13C-CO2 emissions differed between the forest and the peatland.
- 4.
- Soil moisture effects were ecosystem-specific and constrained by data availability.
- 5.
- Plot-scale 13C-CO2 flux measurements provide complementary constraints to ecosystem-scale approaches.
- 6.
- Future work should integrate isotopes, microclimate and modelling to refine winter carbon budgets.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Contosta, A.R.; Burakowski, E.A.; Varner, R.K.; Frey, S.D. Winter soil respiration in a humid temperate forest: The roles of moisture, temperature, and snowpack. J. Geophys. Res. Biogeosci. 2016, 121, 3072–3088. [Google Scholar] [CrossRef]
- Rafat, A.; Rezanezhad, F.; Quinton, W.L.; Humphreys, E.R.; Webster, K.; Van Cappellen, P. Non-growing season carbon emissions in a northern peatland are projected to increase under global warming. Commun. Earth Environ. 2021, 2, 111. [Google Scholar] [CrossRef]
- Mavrovic, A.; Sonnentag, O.; Lemmetyinen, J.; Voigt, C.; Rutter, N.; Mann, P.; Sylvain, J.-D.; Roy, A. Environmental controls of winter soil carbon dioxide fluxes in boreal and tundra environments. Biogeosciences 2023, 20, 5087–5108. [Google Scholar] [CrossRef]
- Arndt, K.A.; Hashemi, J.; Natali, S.M.; Schiferl, L.D.; Virkkala, A.-M. Recent Advances and Challenges in Monitoring and Modeling Non-Growing Season Carbon Dioxide Fluxes from the Arctic Boreal Zone. Curr. Clim. Change Rep. 2023, 9, 27–40. [Google Scholar] [CrossRef]
- Kurganova, I.; Teepe, R.; Loftfield, N. Influence of freeze-thaw events on carbon dioxide emission from soils at different moisture and land use. Carbon Balance Manag. 2007, 2, 2. [Google Scholar] [CrossRef]
- Harenda, K.; Lamentowicz, M.; Samson, M.; Chojnicki, B. The Role of Peatlands and Their Carbon Storage Function in the Context of Climate Change. In Interdisciplinary Approaches for Sustainable Development Goals; GeoPlanet: Earth and Planetary Sciences; Springer: Cham, Switzerland, 2018; pp. 169–187. [Google Scholar] [CrossRef]
- Byun, E.; Rezanezhad, F.; Fairbairn, L.; Slowinski, S.; Basiliko, N.; Price, J.S.; Quinton, W.L.; Roy-Léveillée, P.; Webster, K.; Van Cappellen, P. Temperature, moisture and freeze–thaw controls on CO2 production in soil incubations from northern peatlands. Sci. Rep. 2021, 11, 23219. [Google Scholar] [CrossRef]
- Mander, Ü.; Öpik, M.; Espenberg, M. Global peatland greenhouse gas dynamics: State of the art, processes, and perspectives. New Phytol. 2025, 246, 94–102. [Google Scholar] [CrossRef]
- Davidson, E.A.; Belk, E.; Boone, R.D. Soil water content and temperature as independent or confounded factors controlling soil respiration in a temperate mixed hardwood forest. Glob. Change Biol. 1998, 4, 217–227. [Google Scholar] [CrossRef]
- van der Velde, I.R.; Miller, J.B.; Schaefer, K.; van der Werf, G.R.; Krol, M.C.; Peters, W. Terrestrial cycling of 13CO2 by photosynthesis, respiration, and biomass burning: A model–data comparison. Biogeosciences 2014, 11, 6553–6573. [Google Scholar] [CrossRef]
- Juszczak, R.; Humphreys, E.; Acosta, M.; Michalak-Galczewska, M.; Kayzer, D.; Olejnik, J. Ecosystem respiration in a heterogeneous temperate peatland and its sensitivity to peat temperature and water table depth. Plant Soil 2013, 366, 505–520. [Google Scholar] [CrossRef]
- Poczta, P.; Urbaniak, M.; Sachs, T.; Harenda, K.M.; Klarzyńska, A.; Juszczak, R.; Schüttemeyer, D.; Czernecki, B.; Kryszak, A.; Chojnicki, B.H. A multi-year study of ecosystem production and its relation to biophysical factors over a temperate peatland. Agric. For. Meteorol. 2023, 338, 109529. [Google Scholar] [CrossRef]
- Wang, C.; Han, Y.; Chen, J.; Wang, X.; Zhang, Q.; Bond-Lamberty, B. Seasonality of soil CO2 efflux in a temperate forest: Biophysical effects of snowpack and spring freeze–thaw cycles. Agric. For. Meteorol. 2013, 177, 83–92, PNNL-SA-91383. [Google Scholar] [CrossRef]
- Segura, J. Microbial Life in Boreal Soils: On the Availability and Fate of Carbon Substrates for Microbial Activity in Boreal Soils. Ph.D. Thesis, Swedish University of Agricultural Sciences, Umeå, Sweden, April 2018. [Google Scholar]
- Andersson, S.; Wikberg, H.; Pesonen, E.; Maunu, S.L.; Serimaa, R. Studies of crystallinity of Scots pine and Norway spruce cellulose. Trees 2004, 18, 346–353. [Google Scholar] [CrossRef]
- Waldrop, M.P.; McFarland, J.W.; Manies, K.L.; Leewis, M.C.; Blazewicz, S.J.; Jones, M.C.; Neumann, R.B.; Keller, J.K.; Cohen, L.; Euskirchen, E.S.; et al. Carbon fluxes and microbial activities from boreal peatlands experiencing permafrost thaw. J. Geophys. Res. Biogeosci. 2021, 126, e2020JG005869. [Google Scholar] [CrossRef]
- Oelbermann, M.; English, M.; Schiff, S. Evaluating carbon dynamics and microbial activity in arctic soils under warmer temperatures. Can. J. Soil Sci. 2008, 88, 31–44. [Google Scholar] [CrossRef]
- Wilson, G.; Green, M.; Brown, J.; Campbell, J.; Groffman, P.; Durán, J.; Morse, J. Snowpack affects soil microclimate throughout the year. Clim. Change 2020, 163, 705–722. [Google Scholar] [CrossRef]
- Xu, X.K. Effect of freeze–thaw disturbance on soil C and N dynamics and GHG fluxes of East Asia forests: Review and future perspectives. Soil Sci. Plant Nutr. 2022, 68, 413–424. [Google Scholar] [CrossRef]
- Ekblad, A.; Högberg, P. Natural abundance of 13C in CO2 respired from forest soils reveals speed of link between tree photosynthesis and root respiration. Oecologia 2001, 127, 305–308. [Google Scholar] [CrossRef]
- Millard, P.; Midwood, A.J.; Hunt, J.E.; Whitehead, D.; Boutton, T.W. Partitioning soil surface CO2 efflux into autotrophic and heterotrophic components using natural gradients in soil δ13C. Soil Biol. Biochem. 2008, 40, 1575–1582. [Google Scholar] [CrossRef]
- Bahn, M.; Schmitt, M.; Siegwolf, R.; Richter, A.; Bruggemann, N. Does photosynthesis affect grassland soil-respired CO2 and its carbon isotope composition on a diurnal timescale? New Phytol. 2009, 182, 451–460. [Google Scholar] [CrossRef] [PubMed]
- Diao, H.; Wang, A.; Yuan, F.; Guan, D.; Wu, J. Autotrophic respiration modulates the carbon isotope composition of soil respiration in a mixed forest. Sci. Total Environ. 2022, 807, 150834. [Google Scholar] [CrossRef]
- Wordell-Dietrich, P.; Wotte, A.; Rethemeyer, J.; Bachmann, J.; Helfrich, M.; Kirfel, K.; Leuschner, C.; Don, A. Vertical partitioning of CO2 production in a forest soil. Biogeosciences 2020, 17, 6341–6356. [Google Scholar] [CrossRef]
- Davidson, G.R. The stable isotopic composition and measurement of carbon in soil CO2. Geochim. Cosmochim. Acta 1995, 59, 2485–2489. [Google Scholar] [CrossRef]
- Bowling, D.R.; Burns, S.P.; Conway, T.J.; Monson, R.K.; White, J.W.C. Ecological processes dominate the 13C land disequilibrium in a Rocky Mountain subalpine forest. Glob. Biogeochem. Cycles 2014, 28, 352–370. [Google Scholar] [CrossRef]
- Bowling, D.R.; Schädel, C.; Smith, K.R.; Richardson, A.D.; Bahn, M.; Arain, M.A.; Varlagin, A.; Ouimette, A.P.; Frank, J.M.; Barr, A.G.; et al. Phenology of photosynthesis in winter-dormant temperate and boreal forests: Long-term observations from flux towers and quantitative evaluation of phenology models. J. Geophys. Res. Biogeosci. 2024, 129, e2023JG007839. [Google Scholar] [CrossRef]
- Liu, H.; Branham, J.E.; Strack, M. Freeze–thaw cycles alter soil hydro-physical properties and dissolved organic carbon release from peat. Front. Environ. Sci. 2022, 10, 930052. [Google Scholar] [CrossRef]
- Kantola, N.; Welker, J.M.; Leffler, A.J.; Lämsä, J.; Paavola, R.; Suominen, O.; Väisänen, M. Impacts of winter climate change on northern forest carbon balance. Sci. Total Environ. 2025, 995, 180089. [Google Scholar] [CrossRef] [PubMed]
- Oborniki Forest District. Available online: https://oborniki.poznan.lasy.gov.pl/ (accessed on 20 January 2025).
- Harenda, K.M.; Markowicz, K.M.; Poczta, P.; Stachlewska, I.S.; Bojanowski, J.S.; Czernecki, B.; McArthur, A.; Schütemeyer, D.; Chojnicki, B.H. Estimation of the effects of aerosol optical properties on peatland production in Rzecin, Poland. Agric. For. Meteorol. 2022, 316, 108861. [Google Scholar] [CrossRef]
- Hoffmann, M.; Jurisch, N.; Borraz, E.A.; Hagemann, U.; Drösler, M.; Sommer, M.; Augustin, J. Automated modelling of ecosystem CO2 fluxes based on periodic closer chamber measurements: A standardized conceptual and practical approach. Agric. For. Meteorol. 2015, 200, 30–45. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2024; Available online: https://www.R-project.org/ (accessed on 15 December 2025).
- Schindlbacher, A.; Jandl, R.; Schindlbacher, S. Natural variations in snow cover do not affect the annual soil CO2 efflux from a mid-elevation temperate forest. Glob. Change Biol. 2013, 20, 622–632. [Google Scholar] [CrossRef]
- Liu, B.; Mou, C.; Yan, G.; Xu, L.; Jiang, S.; Xing, Y.; Han, S.; Yu, J.; Wang, Q. Annual soil CO2 efflux in a cold temperate forest in northeastern China: Effects of winter snowpack and artificial nitrogen deposition. Sci. Rep. 2016, 6, 18957. [Google Scholar] [CrossRef] [PubMed]
- Baldocchi, D.D. Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystems: Past, present and future. Glob. Change Biol. 2003, 9, 479–492. [Google Scholar] [CrossRef]
- Pastorello, G.; Trotta, C.; Canfora, E.; Chu, H.; Christianson, D.; Cheah, Y.-W.; Poindexter, C.; Chen, J.; Elbashandy, A.; Humphrey, M.; et al. The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data. Sci. Data 2020, 7, 225. [Google Scholar] [CrossRef]
- Roehm, C.L.; Roulet, N.T. Seasonal contribution of CO2 fluxes in the annual C budget of a northern bog. Glob. Biogeochem. Cycles 2003, 17, 1029. [Google Scholar] [CrossRef]
- Vigricas, E.; Čiuldienė, D.; Armolaitis, K.; Valujeva, K.; Laiho, R.; Jauhiainen, J.; Schindler, T.; Bārdule, A.; Lazdiņš, A.; Butlers, A.; et al. Total soil CO2 efflux from drained Terric Histosols. Plants 2024, 13, 139. [Google Scholar] [CrossRef] [PubMed]
- Lafleur, P.M.; Roulet, N.T.; Admiral, S. Annual cycle of CO2 exchange at a bog peatland. J. Geophys. Res. 2001, 106, 3071–3082. [Google Scholar] [CrossRef]
- Lund, M.; Lindroth, A.; Christensen, T.R.; Ström, L. Annual CO2 balance of a temperate bog. Tellus B Chem. Phys. Meteorol. 2007, 59, 804–811. [Google Scholar] [CrossRef]
- Saher, A.; Kim, G.; Ahn, J.; Chae, N.; Chung, H.; Son, Y. Factors Affecting CO2, CH4, and N2O Fluxes in Temperate Forest Soils. Forests 2025, 16, 1723. [Google Scholar] [CrossRef]
- Song, C.; Luo, F.; Zhang, L.; Yi, L.; Wang, C.; Yang, Y.; Li, J.; Chen, K.; Wang, W.; Li, Y.; et al. Nongrowing Season CO2 Emissions Determine the Distinct Carbon Budgets of Two Alpine Wetlands on the Northeastern Qinghai—Tibet Plateau. Atmosphere 2021, 12, 1695. [Google Scholar] [CrossRef]
- Qin, L.; Lv, G.H.; He, X.M.; Yang, J.J.; Wang, H.L.; Zhang, X.N.; Ma, H.Y. Winter soil CO2 efflux and its contribution to annual soil respiration in different ecosystems of Ebinur Lake Area. Eurasian Soil Sci. 2015, 48, 871–880. [Google Scholar] [CrossRef]
- Helbig, M.; Živković, T.; Alekseychik, P.; Aurela, M.; El-Madany, T.S.; Euskirchen, E.S.; Flanagan, L.B.; Griffis, T.J.; Hanson, P.J.; Hattakka, J.; et al. Warming response of peatland CO2 sink is sensitive to seasonality in warming trends. Nat. Clim. Change 2022, 12, 743–749. [Google Scholar] [CrossRef]
- Zhao, W.; Yang, M.; Wang, Q.; Hao, T.; Zhu, J.; Chen, Z.; Yu, G. A new pattern expanding current temperature models: A negative correlation between soil respiration and temperature in cold environments. CATENA 2026, 262, 109653. [Google Scholar] [CrossRef]
- Garnett, M.H.; Hardie, S.M.L. Isotope (14C and 13C) analysis of deep peat CO2 using a passive sampling technique. Soil Biol. Biochem. 2009, 41, 2477–2483. [Google Scholar] [CrossRef]
- Staněk, L.; Neruda, J.; Ulrich, R. Changes in the concentration of CO2 in forest soils resulting from the traffic of logging machines. J. For. Sci. 2025, 71, 250–267. [Google Scholar] [CrossRef]
- Omar, P.J.; Gupta, N.; Tripathi, R.P.; Shekhar, S. A study of change in agricultural and forest land in Gwalior city using satellite imagery. SAMRIDDHI A J. Phys. Sci. Eng. Technol. 2017, 9, 109–112. [Google Scholar] [CrossRef]
- Cerling, T.E.; Solomon, D.K.; Quade, J.; Bowman, J.R. On the isotopic composition of carbon in soil carbon dioxide. Geochim. Cosmochim. Acta 1991, 55, 3403–3405. [Google Scholar] [CrossRef]
- Backstrand, K.; Crill, P.M.; Jackowicz-Korczyński, M.; Mastepanov, M.; Christensen, T.R.; Bastviken, D. Annual carbon gas budget for a subarctic peatland, northern Sweden. Biogeosciences 2009, 6, 5705–5740. [Google Scholar] [CrossRef]
- Lellei-Kovács, E.; Kovács-Láng, E.; Botta-Dukát, Z.; Kalapos, T.; Emmett, B.; Beier, C. Thresholds and interactive effects of soil moisture on the temperature response of soil respiration. Eur. J. Soil Biol. 2011, 47, 247–255. [Google Scholar] [CrossRef]
- Jassey, V.E.J.; Signarbieux, C. Effects of climate warming on Sphagnum photosynthesis in peatlands depend on peat moisture and species-specific anatomical traits. Glob. Change Biol. 2019, 25, 3859–3870. [Google Scholar] [CrossRef]
- Anthony, T.L.; Silver, W.L. Hot spots and hot moments of greenhouse gas emissions in agricultural peatlands. Biogeochemistry 2024, 167, 461–477. [Google Scholar] [CrossRef]
- Tiemeyer, B.; Albiac Borraz, E.; Augustin, J.; Bechtold, M.; Beetz, S.; Beyer, C.; Drösler, M.; Ebli, M.; Eickenscheidt, T.; Fiedler, S.; et al. High emissions of greenhouse gases from grasslands on peat and other organic soils. Glob. Change Biol. 2016, 22, 4134–4149. [Google Scholar] [CrossRef]
- Strack, M.; Zuback, Y.C.A. Annual carbon balance of a restored peatland. Biogeosciences 2012, 9, 17203–17233. [Google Scholar] [CrossRef]
- Mander, Ü.; Espenberg, M.; Melling, L.; Kull, A. Peatland restoration pathways to mitigate greenhouse gas emissions and retain peat carbon. Biogeochemistry 2024, 167, 523–543. [Google Scholar] [CrossRef] [PubMed]
- Bezyk, Y.; Sówka, I.; Górka, M. Assessment of urban CO2 budget: Anthropogenic and biogenic inputs. Urban Clim. 2021, 39, 100949. [Google Scholar] [CrossRef]
- Bezyk, Y.; Dorodnikov, M.; Górka, M.; Sówka, I.; Sawiński, T. Temperature and soil moisture control CO2 flux and CH4 oxidation in urban ecosystems. Geochemistry 2023, 83, 125989. [Google Scholar] [CrossRef]
- Alm, J.; Saarnio, S.; Nykänen, H.; Silvola, J.; Martikainen, P. Winter CO2, CH4 and N2O fluxes on some natural and drained boreal peatlands. Biogeochemistry 1999, 44, 163–186. [Google Scholar] [CrossRef]



| Site | Season | Soil/Peat Temperature (°C) | Air Temperature (°C) * | Soil Moisture (%) | Soil Water Content (m3·m−3) |
|---|---|---|---|---|---|
| Peatland | 01.10.2018–31.03.2019 | 3.70 ± 3.54 | 3.79 ± 5.72 (4.78) | - | - |
| 01.10.2019–31.03.2020 | 4.47 ± 3.22 | 4.49 ± 5.28 (5.81) | - | - | |
| 01.10.2020–31.03.2021 | 3.53 ± 4.16 | 2.89 ± 6.05 (3.87) | - | - | |
| Forest | 01.10.2023–31.03.2024 | 7.23 ± 3.37 | 5.0 ± 6.16 (5.51) | 8.0 ± 3.0 | 0.24 ± 0.08 |
| 01.10.2024–31.03.2025 | 5.86 ± 2.91 | 3.68 ± 5.27 (4.32) | 7.0 ± 3.0 | 0.21 ± 0.11 |
| Forest | Peatland | |||
|---|---|---|---|---|
| 13C-CO2 vs. Ts | 13C-CO2 vs. Tair | 13C-CO2 vs. Ts | 13C-CO2 vs. Tair | |
| ρ | 0.30 | 0.44 | −0.43 | −0.09 |
| p | 0.34 | 0.15 | 0.023 | 0.65 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Harenda, K.M.; Stróżecki, M.; Górka, M. Beyond the Growing Season: Variability of 13C-CO2 Fluxes in Temperate Forests and Peatlands. Forests 2026, 17, 55. https://doi.org/10.3390/f17010055
Harenda KM, Stróżecki M, Górka M. Beyond the Growing Season: Variability of 13C-CO2 Fluxes in Temperate Forests and Peatlands. Forests. 2026; 17(1):55. https://doi.org/10.3390/f17010055
Chicago/Turabian StyleHarenda, Kamila M., Marcin Stróżecki, and Maciej Górka. 2026. "Beyond the Growing Season: Variability of 13C-CO2 Fluxes in Temperate Forests and Peatlands" Forests 17, no. 1: 55. https://doi.org/10.3390/f17010055
APA StyleHarenda, K. M., Stróżecki, M., & Górka, M. (2026). Beyond the Growing Season: Variability of 13C-CO2 Fluxes in Temperate Forests and Peatlands. Forests, 17(1), 55. https://doi.org/10.3390/f17010055

