The Hygroscopicity and Strength Properties of Thermally Modified Gigantochloa scortechinii Bamboo from Peninsular Malaysia
Abstract
1. Introduction
2. Experimental
2.1. Material Preparation
2.2. Heat Treatment
2.3. Physical Properties Test
2.3.1. Weight Loss
2.3.2. Moisture Content
2.3.3. Density
2.3.4. Equilibrium Moisture Content Test
2.4. Water Absorption Test
2.5. Mechanical Properties Test
2.6. Chemical Composition Test
2.7. Statistical Analysis
3. Results and Discussion
3.1. Physical Properties
3.1.1. Weight Loss Rate (WLR), Moisture Loss Rate (MLR) and Density Loss Rate (DLR)
3.1.2. Equilibrium Moisture Content
3.1.3. Dimensional Stability
3.2. Mechanical Properties
3.3. Chemical Composition
4. Conclusions
- 1.
- This study investigated the effect of heat treatment on the physical, mechanical and chemical properties of bamboo. The findings show that thermal modification significantly reduces equilibrium moisture content (EMC) and swelling behavior of Gigantochloa scortechinii bamboo. Treatment at 210 °C resulted in the lowest moisture uptake and the highest anti-swelling, as well as moisture exclusion efficiencies, indicating substantial improvements in dimensional stability.
- 2.
- These improvements are closely related to the thermal degradation of hemicellulose, which contributes to bamboo’s hydrophilic nature. An increase in α-cellulose and a decrease in holocellulose content indicate a modification in the chemical structure that reduces hygroscopicity.
- 3.
- The modulus of rupture (MOR) and modulus of elasticity (MOE) of heat-treated bamboo showed varying effects at different treatment temperature. A slight enhancement in MOE was observed at intermediate temperatures (170–190 °C), while both MOR and MOE declined at 210 °C, implying a loss in structural integrity due to thermal degradation.
- 4.
- This study demonstrates that thermal treatment at 190 °C for two hours significantly reduces the hygroscopicity of G. scortechinii bamboo without diminishing its strength properties, thereby enhancing its suitability for value-added applications.
- 5.
- Through proper optimisation of heat treatment parameters, this method offers a sustainable, chemically-free approach to improving bamboo quality, highlighting the potential of G. scortechinii as a viable alternative to timber and contributing to the advancement of Malaysia’s bamboo-based industry.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Singhal, P.; Rudra, S.G.; Singh, R.K.; Satya, S.; Naik, S.N. Impact of drying techniques on physical quality of bamboo shoots: Implications on tribal’s livelihoods. Indian J. Tradit. Knowl. 2018, 17, 353–359. [Google Scholar]
- Xu, Q.F.; Liang, C.F.; Chen, J.H.; Li, Y.C.; Qin, H.; Fuhrmann, J.J. Rapid bamboo invasion (expansion) and its effects on biodiversity and soil processes +. Glob. Ecol. Conserv. 2020, 21, e00787. [Google Scholar] [CrossRef]
- Osman, S.; Lecturer, S.; Ahmad, M.; Zakaria, M.N.; Alam, S.; Fatomer, B.; Bakar, A.; Abu, F.; Bahari, S.A.; Hosseinpourpia, R. Variation of Chemical Properties, Crystalline Structure and Calorific Values of Native Malaysian bamboo Species. Wood Fiber Sci. 2022, 54, 173–186. [Google Scholar] [CrossRef]
- Kamaruzaman, O.; Mahpar, A.; Mohamad Zamakhsary, M. Credit Opportunity for Bamboo Plantation in Malaysia. In Proceedings of the Asean Bamboo Symposium, Kuala Lumpur, Malaysia, 27–29 September 2016; p. 5. [Google Scholar]
- Mohd Yusof, N.; Md Tahir, P.; Lee, S.H.; Anwar Uyup, M.K.; James, R.M.S.; Osman Al-Edrus, S.S.; Kristak, L.; Reh, R.; Lubis, M.A.R. Effects of Adhesive Types and Structural Configurations on Shear Performance of Laminated Board from Two Gigantochloa Bamboos. Forests 2023, 14, 460. [Google Scholar] [CrossRef]
- Shao, Z.P.; Zhou, L.; Liu, Y.M.; Wu, Z.M.; Arnaud, C. Differences in structure and strength between internode and node sections of Moso bamboo. J. Trop. For. Sci. 2010, 22, 133–138. [Google Scholar]
- Nordahlia, A.S.; Anwar, U.M.K.; Hamdan, H.; Abd Latif, M.; Mohd Fahmi, A. Anatomical, physical, and mechanical properties of thirteen Malaysian bamboo species. BioResources 2019, 14, 3925–3943. [Google Scholar] [CrossRef]
- Mohamad Omar, M.K.; Mohd Jamil, A.W. Mechanical properties. In Properties of Acacia Mangium Planted in Peninsular Malaysia; Project No. PD 306/04 (1); Lim, S.C., Gan, K.S., Tan, Y.E., Eds.; ITTO: Yokohama, Japan, 2011; pp. 23–45. [Google Scholar]
- Mohamad Omar, M.K.; Khairul, M. Mechanical properties. In Wood Properties and Uses of Planted Hopea odorata in Peninsular Malaysia; Nordahlia, A.S., Roszaini, K., Rafidah, J., How, S.S., Wan, A.I., Eds.; FRIM: Kepong, Malaysia, 2020; pp. 41–48. ISBN 978-967-2149-71-2. [Google Scholar]
- Anonymous. Holistic Approach Needed for Transformation of Bamboo Industry in Malaysia. 21 September 2023. Malaymail. Available online: https://www.malaymail.com/news/money/2023/09/21/holistic-approach-needed-for-transformation-of-bamboo-industry-in-malaysia-says-dpm-fadillah/92205 (accessed on 25 May 2025).
- Anonymous. Bamboo Import and Export 2023. Trendeconomy. Available online: https://trendeconomy.com/data/commodity_h2/140110#:~:text=In%202023%2C%20the%20world%20exports,trade%20statistics%20of%2060%20countries (accessed on 25 May 2025).
- Yang, T.-C.; Yang, Y.-H.; Yeh, C.-H. Thermal decomposition behavior of thin Makino bamboo (Phyllostachys makinoi) slivers under nitrogen atmosphere. Mater. Today Commun. 2021, 26, 102054. [Google Scholar] [CrossRef]
- Bui, Q.B.; Grillet, A.C.; Tran, H.D. A bamboo treatment procedure: Effects on the durability and mechanical performance. Sustainability 2017, 9, 1444. [Google Scholar] [CrossRef]
- Huang, Y.; Ji, Y.; Yu, W. Development of bamboo scrimber: A literature review. J. Wood Sci. 2019, 65, 25. [Google Scholar] [CrossRef]
- Marco, F.; Greco, S.; Mentrasti, L.; Molari, L.; Valdrè, G. Thermal treatment of bamboo with flame: Influence on the mechanical characteristics. Adv. Bamboo Sci. 2023, 2, 100015. [Google Scholar] [CrossRef]
- Salim, R.; Ashaari, Z.; WSamsi, H.; Wahab, R.; Alamjuri, R.H. Effect of Oil Heat Treatment on Physical Properties of Semantan Bamboo (Gigantochloa scortechinii Gamble). Mod. Appl. Sci. 2010, 4, 107. [Google Scholar] [CrossRef]
- Marasigan, O.S.; Razal, R.A.; Alipon, M.A. Effect of thermal treatment on the wettability of giant bamboo (Dendrocalamus asper) and Kawayan tinik (Bambusa blumeana) in the Philippines. J. Trop. For. Sci. 2020, 32, 369–378. [Google Scholar] [CrossRef]
- Lee, C.-H.; Yang, T.-H.; Cheng, Y.-W.; Lee, C.-J. Effects of thermal modification on the surface and chemical properties of Moso bamboo. Constr. Build. Mater. 2018, 178, 59–71. [Google Scholar] [CrossRef]
- Maulana, S.; Suwanda, A.A.; Murda, R.A.; Antov, P.; Komariah, R.N.; Maulana, M.I.; Augustina, S.; Lee, S.H.; Mahardika, M.; Rianjanu, A.; et al. Performance of Oriented Strand Board Made of Heat-Treated Bamboo (Dendrocalamus asper (Schult.) Backer) Strands. Polymers 2024, 16, 1692. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, Q.T.; Nguyen, T.; Nguyen, N. Effects of bleaching and heat treatments on Indosasa angustata bamboo in Vietnam. BioResources 2019, 14, 6608–6618. [Google Scholar] [CrossRef]
- Shangguan, W.; Gong, Y.; Zhao, R.; Ren, H. Effects of heat treatment on the properties of bamboo scrimber. J. Wood Sci. 2016, 62, 383–391. [Google Scholar] [CrossRef]
- Natividad, R.A.; Jimenez, J.P. Physical and Mechanical Properties of Thermally Modified Kauayan-Tinik (Bambusa blumena Schltes f.). In Proceedings of the 10th World Bamboo Congress, Damyang, Korea, 17–22 September 2015; Volume 1, pp. 17–22. [Google Scholar]
- Wang, X.; Cheng, D.; Huang, X.; Song, L.; Gu, W.; Liang, X.; Li, Y.; Xu, B. Effect of high-temperature saturated steam treatment on the physical, chemical, and mechanical properties of moso bamboo. J. Wood Sci. 2020, 66, 52. [Google Scholar] [CrossRef]
- Kamarudin, N.; Sugiyanto, K. The Effect of Heat Treatment on the Durability of Bamboo Gigantochloa scortechinii. Indones. J. For. Res. 2012, 9, 25–29. [Google Scholar] [CrossRef]
- Wahab, R.; Mohamad, A.; Hashim, W.S.; Othman, S. Effect of heat treatment using palm oil on properties and durability of Semantan bamboo. J. Bamboo Ratt. 2005, 4, 211–220. [Google Scholar] [CrossRef]
- ASTM D4446M-13; Standard Test Method for Anti-Swelling Effectiveness of Water-Repellent Formulations and Differential Swelling of Untreated Wood When Exposed to Liquid Environment. ASTM International: West Conshohocken, PA, USA, 2013.
- IS:8242-1976; Indian Standard Methods of Tests for Split Bamboos. Indian Standards Institution: New Delhi, India, 1976.
- Ghanaharan, R.; Janssen, J.A.; Oscar, A. Bending Strength of Guadua Bamboo: Comparison of Different Testing Procedures; INBAR Working Paper No. 3; International Network for Bamboo and Rattan: New Delhi, India, 1994. [Google Scholar]
- Wise, L.E.; Murphy, M.; D’Addieco, A.A. Chlorite holocellulose: Its fractionation and bearing on summative wood analysis and studies on the hemicellulose. Pap. Trade J. 1946, 122, 35–43. [Google Scholar]
- TAPPI. Alpha, Beta and Gamma-Cellulose in Pulp; TAPPI T 203 on-93; Technical Association of the Pulp and Paper Industry: Atlanta, GA, USA, 1993. [Google Scholar]
- TAPPI. Acid-Insoluble Lignin in Wood and Pulp; TAPPI 222 om-02; TAPPI Press: Atlanta, GA, USA, 2002. [Google Scholar]
- Tang, T.; Chen, X.; Zhang, B.; Liu, X.; Fei, B. Research on the physico-mechanical properties of moso bamboo with thermal treatment in tung oil and its influencing factors. Materials 2019, 12, 599. [Google Scholar] [CrossRef] [PubMed]
- Esteves, B.M.; Pereira, H.M. Wood modification by heat treatment: A review. BioResources 2008, 4, 370–404. [Google Scholar] [CrossRef]
- Hill, C.A.S. Wood Modification: Chemical, Thermal and Other Processes; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2006. [Google Scholar] [CrossRef]
- Zhang, Y.M.; Yu, Y.L.; Yu, W.J. Effect of thermal treatment on the physical and mechanical properties of Phyllostachys pubescen bamboo. Eur. J. Wood Wood Prod. 2013, 71, 61–67. [Google Scholar] [CrossRef]
- Poncsak, S.; Kocaefe, D.; Bouazara, M.; Pichette, A. Effect of high temperature treatment on the mechanical properties of birch (Betula papyrifera). Wood Sci. Technol. 2006, 40, 647–663. [Google Scholar] [CrossRef]
- Rowell, R.M. Chemical modification. In Encyclopedia of Forest Sciences, Phospholipid Technology and Applications; Burley, J., Evans, J., Youngquist, J.A., Eds.; Elsevier Science: Amsterdam, The Netherlands, 2004; Volume 3, pp. 1269–1274. [Google Scholar] [CrossRef]
- Hu, F.; Li, L.; Wu, Z.; Yu, L.; Liu, B.; Cao, Y.; Xu, H. Surface Characteristics of Thermally Modified Bamboo Fibers and Its Utilization Potential for Bamboo Plastic Composites. Materials 2022, 15, 4481. [Google Scholar] [CrossRef]
- Bao, Y.J.; Jiang, X.S.; Cheng, D.L.; Fu, S.W. The effects of heat treatment on physical-mechanical properties of bamboo. J. Bamboo Res. 2009, 28, 50–53. [Google Scholar]
- Campean, M.; Marinescu, I.; Ispas, M. Influence of drying temperature upon some mechanical properties of beech wood. Holz Roh Werkst. 2007, 65, 443–448. [Google Scholar] [CrossRef]
- Yang, X.; Zhang, T.; Jiang, C.; Wang, J.; Fei, B.; Liu, Z.; Jiang, Z. Directional laminated thermally modified bamboo: Physical, mechanical, and fire properties. BioResources 2018, 13, 5883–5893. [Google Scholar] [CrossRef]
- Maria Silva Brito, F.; Benigno Paes, J.; Tarcísio da Silva Oliveira, J.; Donária Chaves Arantes, M.; Dudecki, L. Chemical characterization and biological resistance of thermally treated bamboo. Constr. Build. Mater. 2020, 262, 120033. [Google Scholar] [CrossRef]
- Ayrilmis, N.; Jarusombuti, S.; Fueangvivat, V.; Bauchongkol, P. Effect of thermal-treatment of wood fibres on properties of flat-pressed wood plastic composites. Polym. Degrad. Stab. 2011, 96, 818–822. [Google Scholar] [CrossRef]
- Yuan, J.; Chen, Q.; Fang, C.; Zhang, S.; Liu, X.; Fei, B. Effect of chemical composition of bamboo fibers on water sorption. Cellulose 2021, 28, 7273–7282. [Google Scholar] [CrossRef]
- Hou, L.Y.; An, Z.H.; Zhao, R.J. Effects of steam heating treatment and xenon irradiation on surface color of Moso bamboo. J. Fujian For. Coll. 2011, 31, 177–180. [Google Scholar]
- Nuopponen, M.; Vuorinen, T.; Jamsa, S.; Viitaniemi, P. Chemical modifications in heat-treated softwood studied by FT-IR and UV resonance Raman (UVRR) spectroscopies. J. Wood Chem. Technol. 2004, 24, 13–26. [Google Scholar] [CrossRef]
Heat Transfer Media | Temperature (°C) | Duration (min) | References |
---|---|---|---|
Air | 50–230 | 60–180 | [14,17,18,19,20,21] |
Steam | 140–200 | 10–60 | [22,23] |
Oil | 100–220 | 30–180 | [13,16] |
Inert Gas | 180–220 | 120 | [12] |
EMC Level (%) | Temperature (°C) | Relative Humidity (%) |
---|---|---|
18 | 20 | 85 |
12 | 20 | 64 |
8 | 20 | 40 |
Temperature (°C) | WLR (%) | MLR (%) | DLR (%) |
---|---|---|---|
130 | 9.79 a | 76.66 a | 8.42 a |
(0.59) | (0.72) | (1.45) | |
150 | 11.16 b | 80.62 b | 11.15 b |
(0.14) | (0.19) | (1.67) | |
170 | 12.18 c | 93.90 c | 15.86 c |
(0.21) | (0.24) | (2.90) | |
190 | 15.45 d | 98.09 d | 18.34 d |
(0.17) | (0.18) | (1.27) | |
210 | 18.20 e | 100.06 e | 22.40 e |
(0.7) | (0.54) | (3.22) |
Temperature (°C) | MOR (MPa) | MOE (MPa) |
---|---|---|
UT | 129.18 a | 16,165 ab |
(24.76) | (2737) | |
130 | 120.41 a | 14,928 ab |
(32.66) | (2890) | |
150 | 122.68 a | 14,125 a |
(30.70) | (2475) | |
170 | 110.43 ab | 15,164 ab |
(28.35) | (2754) | |
190 | 123.66 a | 16,858 b |
(14.80) | (2058) | |
210 | 97.83 b | 15,762 ab |
(25.60) | (1640) |
Temperature | Chemical Content (%) | |||
---|---|---|---|---|
Holocellulose | A-Cellulose | Hemicellulose | Lignin | |
UT | 84.25 a | 36.09 a | 48.16 a | 21.86 ab |
(2.65) | (0.27) | (2.65) | (0.43) | |
130 | 82.25 ab | 46.09 b | 36.16 bc | 23.12 abc |
(3.22) | (1.4 | (3.22) | (0.51) | |
150 | 86.42 a | 46.22 b | 40.2 b | 23.79 bc |
(0.58) | (0.21) | (0.58) | (0.31) | |
170 | 80.41 ab | 47.21 b | 33.2 c | 21.42 a |
(1.39) | (1.65) | (1.39) | (0.43) | |
190 | 75.49 bc | 42.69 ab | 32.8 c | 23.18 abc |
(1.29) | (3.73) | (1.29) | (1.45) | |
210 | 68.94 c | 46.62 b | 22.32 d | 24.21 c |
(1.59) | (1.63) | (1.59) | (0.58) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zafhian, Z.; Roseley, A.S.M.; Salim, S.; Shing, S.H.; Rabidin, Z.A. The Hygroscopicity and Strength Properties of Thermally Modified Gigantochloa scortechinii Bamboo from Peninsular Malaysia. Forests 2025, 16, 1422. https://doi.org/10.3390/f16091422
Zafhian Z, Roseley ASM, Salim S, Shing SH, Rabidin ZA. The Hygroscopicity and Strength Properties of Thermally Modified Gigantochloa scortechinii Bamboo from Peninsular Malaysia. Forests. 2025; 16(9):1422. https://doi.org/10.3390/f16091422
Chicago/Turabian StyleZafhian, Zahidah, Adlin Sabrina Muhammad Roseley, Sabiha Salim, Sik Huei Shing, and Zairul Amin Rabidin. 2025. "The Hygroscopicity and Strength Properties of Thermally Modified Gigantochloa scortechinii Bamboo from Peninsular Malaysia" Forests 16, no. 9: 1422. https://doi.org/10.3390/f16091422
APA StyleZafhian, Z., Roseley, A. S. M., Salim, S., Shing, S. H., & Rabidin, Z. A. (2025). The Hygroscopicity and Strength Properties of Thermally Modified Gigantochloa scortechinii Bamboo from Peninsular Malaysia. Forests, 16(9), 1422. https://doi.org/10.3390/f16091422