Chemical Profiles and Nitric Oxide Inhibitory Activities of the Copal Resin and Its Volatile Fraction of Bursera bipinnata
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Extraction of Volatiles
2.3. Gas Chromatography/Mass Spectrometry (GC/MS) Analysis
2.4. General Information for Chemical Characterization
2.5. Phytochemical Study of the Non-Volatile Fraction of Bursera bipinnata Resin
2.6. In Vitro Nitric Oxide Inhibition Activity
2.6.1. Cell Culture
2.6.2. MTS Assay to Determine Cell Viability
2.6.3. Treatment of Macrophages with LPS
2.6.4. Determination of NO Concentration
2.6.5. Statistical Analysis
3. Results
3.1. Nitric Oxide Inhibition Activity of the Total Resin and Its Volatile Fraction of Bursera bipinnata
3.2. Chemical Profiles
3.2.1. Volatile Compounds Present in the Resin of B. bipinnata
3.2.2. Phytochemical Analysis of B. bipinnata Resin
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rzedowski, J.; Lemos, R.M.; Rzedowski, G.C. de Inventario del conocimiento taxonómico, así como de la diversidad y del endemismo regionales de las especies mexicanas de Bursera (Burseraceae). Acta Bot. Mex. 2005, 70, 85–111. [Google Scholar] [CrossRef]
- Case, R.J.; Tucker, A.O.; Maciarello, M.J.; Wheeler, K.A. Chemistry and Ethnobotany of Commercial Incense Copals Copal Blanco, Copal Oro, and Copal Negro, of North America. Econ. Bot. 2003, 57, 189–202. [Google Scholar] [CrossRef]
- López, A.M. Copal de Bursera bipinnata. Una resina mesoamericana de uso ritual. Rev. Trace 2016, 70, 45–77. [Google Scholar] [CrossRef]
- Purata, V.S.E. Uso y Manejo de Copales Aromáticos: Resinas y Aceites; CONABIO/RAISES: Mexico City, Mexico, 2008. [Google Scholar]
- Argueta, A.; Vázquez, M.C.G. Atlas de Las Plantas de La Medicina Tradicional Mexicana; Instituto Nacional Indigenista: Mexico City, Mexico, 1994. [Google Scholar]
- Gigliarelli, G.; Becerra, J.X.; Curini, M.; Marcotullio, M.C. Chemical Composition and Biological Activities of Fragrant Mexican Copal (Bursera spp.). Molecules 2015, 20, 22383–22394. [Google Scholar] [CrossRef]
- Crowley, K.J. 818. Some Terpenic Constituents of Bursera graveolens (H. B. K.) Tr. et Pl. Var. villosula Cuatr. J. Chem. Soc. 1964, 4254–4256. [Google Scholar] [CrossRef]
- Syamasundar, K.V.; Mallavarapu, G.R.; Krishna, E.M. Triterpenoids of the Resin of Bursera delpechiana. Phytochemistry 1991, 30, 362–363. [Google Scholar] [CrossRef]
- Peraza-Sánchez, S.R.; Salazar-Aguilar, N.E.; Peña-Rodríguez, L.M. A New Triterpene from the Resin of Bursera simaruba. J. Nat. Prod. 1995, 58, 271–274. [Google Scholar] [CrossRef]
- Lucero-Gómez, P.; Mathe, C.; Vieillescazes, C.; Bucio, L.; Belio, I.; Vega, R. Analysis of Mexican Reference Standards for Bursera Spp. Resins by Gas Chromatography–Mass Spectrometry and Application to Archaeological Objects. J. Archaeol. Sci. 2014, 41, 679–690. [Google Scholar] [CrossRef]
- Álvarez, Á.L.; Habtemariam, S.; Parra, F. Inhibitory Effects of Lupene-Derived Pentacyclic Triterpenoids from Bursera simaruba on HSV-1 and HSV-2 in Vitro Replication. Nat. Prod. Res. 2015, 29, 2322–2327. [Google Scholar] [CrossRef]
- Messina, F.; Curini, M.; Di Sano, C.; Zadra, C.; Gigliarelli, G.; Rascón-Valenzuela, L.A.; Robles Zepeda, R.E.; Marcotullio, M.C. Diterpenoids and Triterpenoids from the Resin of Bursera microphylla and Their Cytotoxic Activity. J. Nat. Prod. 2015, 78, 1184–1188. [Google Scholar] [CrossRef]
- Romero-Estrada, A.; Maldonado-Magaña, A.; González-Christen, J.; Bahena, S.M.; Garduño-Ramírez, M.L.; Rodríguez-López, V.; Alvarez, L. Anti-Inflammatory and Antioxidative Effects of Six Pentacyclic Triterpenes Isolated from the Mexican Copal Resin of Bursera copallifera. BMC Complement. Altern. Med. 2016, 16, 422. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Monroy, M.B.; León-Rivera, I.; Llanos-Romero, R.E.; García-Bores, A.M.; Guevara-Fefer, P. Cytotoxic Activity and Triterpenes Content of Nine Mexican Species of Bursera. Nat. Prod. Res. 2021, 35, 4881–4885. [Google Scholar] [CrossRef] [PubMed]
- Monroy-Ortíz, C.; Castillo-España, P. Plantas Medicinales Utilizadas En El Estado de Morelos; Universidad Autónoma del Estado de Morelos, CONABIO: Cuernavaca, Morelos, México, 2007; ISBN 968-878-277-7. [Google Scholar]
- Dorado, O.; Maldonado, B.; Arias, D.M.; Sorani, V.; Ramirez, R.; Leyva, E.; Valenzuela, E. Programa de Conservación y Manejo Reserva de La Biosfera Sierra de Huautla; Comisión Nacional de Áreas Naturales Protegidas: Mexico City, México, 2005; ISBN 968-817-744-X. [Google Scholar]
- Lucero-Gómez, P.; Mathe, C.; Vieillescazes, C.; Bucio-Galindo, L.; Belio-Reyes, I.; Vega-Aviña, R. Archaeobotanic: HPLC Molecular Profiles for the Discrimination of Copals in Mesoamerica. Application to the Study of Resin Materials from Objects of Aztec Offerings. ArcheoSci. Rev. D’archéométrie 2014, 38, 119–133. [Google Scholar] [CrossRef]
- Hernández, J.D.; García, L.; Hernández, A.; Alvarez, R.; Román, L.U. Glicósidos de luteolina y miricetina de Burseraceae. Rev. Soc. Química México 2002, 46, 295–300. [Google Scholar]
- Lautié, E.; Quintero, R.; Fliniaux, M.-A.; Villarreal, M.-L. Selection Methodology with Scoring System: Application to Mexican Plants Producing Podophyllotoxin Related Lignans. J. Ethnopharmacol. 2008, 120, 402–412. [Google Scholar] [CrossRef]
- Chib, R.; Kumar, M.; Rizvi, M.; Sharma, S.; Pandey, A.; Bani, S.; Andotra, S.S.; Taneja, S.C.; Shah, B.A. Anti-Inflammatory Terpenoids from Boswellia Ovalifoliolata. RSC Adv. 2014, 4, 8632–8637. [Google Scholar] [CrossRef]
- Romero-Estrada, A.; Boto, A.; González-Christen, J.; Romero-Estudillo, I.; Garduño-Ramírez, M.L.; Razo-Hernández, R.S.; Marquina, S.; Maldonado-Magaña, A.; Columba-Palomares, M.C.; Sánchez-Carranza, J.N.; et al. Synthesis, Biological Evaluation, and Molecular Docking Study of 3-Amino and 3-Hydroxy-Seco A Derivatives of α-Amyrin and 3-Epilupeol as Inhibitors of COX-2 Activity and NF-kB Activation. J. Nat. Prod. 2022, 85, 787–803. [Google Scholar] [CrossRef]
- Herath, H.M.; Athukoralage, P.S.; Jamie, J.F. A New Oleanane Triterpenoid from Gordonia Ceylanica. Nat. Prod. Lett. 2001, 15, 339–344. [Google Scholar] [CrossRef]
- Reyes, C.P.; Jiménez, I.A.; Bazzocchi, I.L. Pentacyclic Triterpenoids from Maytenus cuzcoina. Nat. Prod. Commun. 2017, 12, 1934578X1701200508. [Google Scholar] [CrossRef]
- Ito, K.; Ito, M. The Sedative Effect of Inhaled Terpinolene in Mice and Its Structure–Activity Relationships. J. Nat. Med. 2013, 67, 833–837. [Google Scholar] [CrossRef]
- Quintans-Júnior, L.; Moreira, J.C.F.; Pasquali, M.A.B.; Rabie, S.M.S.; Pires, A.S.; Schröder, R.; Rabelo, T.K.; Santos, J.P.A.; Lima, P.S.S.; Cavalcanti, S.C.H.; et al. Antinociceptive Activity and Redox Profile of the Monoterpenes (+)-Camphene, p-Cymene, and Geranyl Acetate in Experimental Models. Int. Sch. Res. Not. 2013, 2013, 459530. [Google Scholar] [CrossRef] [PubMed]
- Bechkri, S.; Alabdul Magid, A.; Voutquenne-Nazabadioko, L.; Berrehal, D.; Kabouche, A.; Lehbili, M.; Lakhal, H.; Abedini, A.; Gangloff, S.C.; Morjani, H.; et al. Triterpenes from Salvia argentea Var. aurasiaca and Their Antibacterial and Cytotoxic Activities. Fitoterapia 2019, 139, 104296. [Google Scholar] [CrossRef] [PubMed]
- Stolow, R.D.; Sachdev, K. The p-Menth-1-Ene-3,6-Diols. Tetrahedron 1965, 21, 1889–1895. [Google Scholar] [CrossRef]
- Stolow, R.D.; Sachdev, K. Absolute Configurations of the P-Menthane-2,5-Diones and p-Menthane-2,5-Diols. J. Org. Chem. 1971, 36, 960–966. [Google Scholar] [CrossRef]
- Yang, G.; Lee, K.; Lee, M.; Ham, I.; Choi, H.-Y. Inhibition of Lipopolysaccharide-Induced Nitric Oxide and Prostaglandin E2 Production by Chloroform Fraction of Cudrania Tricuspidata in RAW 264.7 Macrophages. BMC Complement. Altern. Med. 2012, 12, 250. [Google Scholar] [CrossRef]
- Matsunaga, S.; Tanaka, R.; Akagi, M. Triterpenoids from Euphorbia Maculata. Phytochemistry 1988, 27, 535–537. [Google Scholar] [CrossRef]
- Tanaka, R.; Matsunaga, S. Triterpene Dienols and Other Constituents from the Bark of Phyllanthus Flexuosus. Phytochemistry 1988, 27, 2273–2277. [Google Scholar] [CrossRef]
- Yan, H.-Y.; Wang, K.-W. Triterpenoids from Microtropis fokienensis. Chem. Nat. Compd. 2017, 53, 784–786. [Google Scholar] [CrossRef]
- Morikawa, T.; Oominami, H.; Matsuda, H.; Yoshikawa, M. New Terpenoids, Olibanumols D–G, from Traditional Egyptian Medicine Olibanum, the Gum-Resin of Boswellia carterii. J. Nat. Med. 2011, 65, 129–134. [Google Scholar] [CrossRef]
- Ikuta, A.; Morikawa, A. Triterpenes from Stauntonia hexaphylla Callus Tissues. J. Nat. Prod. 1992, 55, 1230–1233. [Google Scholar] [CrossRef]
- Drehmer, D.; Mesquita Luiz, J.P.; Hernandez, C.A.S.; Alves-Filho, J.C.; Hussell, T.; Townsend, P.A.; Moncada, S. Nitric Oxide Favours Tumour-Promoting Inflammation through Mitochondria-Dependent and -Independent Actions on Macrophages. Redox Biol. 2022, 54, 102350. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, Y. The regulatory role of nitric oxide in proinflammatory cytokine expression during the induction and resolution of inflammation. J. Leukoc. Biol. 2010, 88, 1157–1162. [Google Scholar] [CrossRef] [PubMed]
- Noguera, B.; Díaz, E.; García, M.V.; Feliciano, A.S.; López-Perez, J.L.; Israel, A. Anti-Inflammatory Activity of Leaf Extract and Fractions of Bursera simaruba (L.) Sarg (Burseraceae). J. Ethnopharmacol. 2004, 92, 129–133. [Google Scholar] [CrossRef] [PubMed]
- Abad, M.J.; Bermejo, P.; Carretero, E.; Martínez-Acitores, C.; Noguera, B.; Villar, A. Anti-inflammatory Activity of Some Medicinal Plant Extracts from Venezuela. J. Ethnopharmacol. 1996, 55, 63–68. [Google Scholar] [CrossRef]
- Sosa, S.; Balick, M.J.; Arvigo, R.; Esposito, R.G.; Pizza, C.; Altinier, G.; Tubaro, A. Screening of the Topical Anti-Inflammatory Activity of Some Central American Plants. J. Ethnopharmacol. 2002, 81, 211–215. [Google Scholar] [CrossRef]
- Carretero, M.E.; López-Pérez, J.L.; Abad, M.J.; Bermejo, P.; Tillet, S.; Israel, A.; Noguera-P, B. Preliminary Study of the Anti-Inflammatory Activity of Hexane Extract and Fractions from Bursera Simaruba (Linneo) Sarg. (Burseraceae) Leaves. J. Ethnopharmacol. 2008, 116, 11–15. [Google Scholar] [CrossRef]
- Zúñiga, B.; Guevara-Fefer, P.; Herrera, J.; Contreras, J.L.; Velasco, L.; Pérez, F.J.; Esquivel, B. Chemical composition and anti-inflammatory activity of the volatile fractions from the bark of eight Mexican Bursera species. Planta Medica 2005, 71, 825–828. [Google Scholar] [CrossRef]
- Acevedo, M.; Nuñez, P.; Gónzalez-Maya, L.; CardosoTaketa, A.; Villarreal, M.L. Cytotoxic and Anti-inflammatory Activities of Bursera species from Mexico. J. Clin. Toxicol. 2015, 5, 232. [Google Scholar] [CrossRef]
- Columba-Palomares, M.C.; Villarreal, M.L.; Marquina, S.; Romero-Estrada, A.; Rodríguez-López, V.; Zamilpa, A.; Alvarez, L. Antiproliferative and Anti-inflammatory Acyl Glucosyl Flavones from the Leaves of Bursera copallifera. J. Mex. Chem. Soc. 2018, 62, 214–224. [Google Scholar] [CrossRef]
- Yasukawa, K.; Yu, S.Y.; Yamanouchi, S.; Takido, M.; Akihisa, T.; Tamura, T. Some Lupane-Type Triterpenes Inhibit Tumor Promotion by 12-O-Tetradecanoylphorbol-13-Acetate in Two-Stage Carcinogenesis in Mouse Skin. Phytomedicine 1995, 1, 309–313. [Google Scholar] [CrossRef]
- Medeiros, R.; Otuki, M.F.; Avellar, M.C.W.; Calixto, J.B. Mechanisms Underlying the Inhibitory Actions of the Pentacyclic Triterpene α-Amyrin in the Mouse Skin Inflammation Induced by Phorbol Ester 12-O-Tetradecanoylphorbol-13-Acetate. Eur. J. Pharmacol. 2007, 559, 227–235. [Google Scholar] [CrossRef] [PubMed]
- Otuki, M.F.; Vieira-Lima, F.; Malheiros, Â.; Yunes, R.A.; Calixto, J.B. Topical Anti-inflammatory Effects of the Ether Extract from Protium Kleinii and α-Amyrin Pentacyclic Triterpene. Eur. J. Pharmacol. 2005, 507, 253–259. [Google Scholar] [CrossRef] [PubMed]
- Bonesi, M.; Menichini, F.; Tundis, R.; Loizzo, M.R.; Conforti, F.; Passalacqua, N.G.; Statti, G.A.; Menichini, F. Acetylcholinesterase and Butyrylcholinesterase Inhibitory Activity of Pinus Species Essential Oils and Their Constituents. J. Enzym. Inhib. Med. Chem. 2010, 25, 622–628. [Google Scholar] [CrossRef] [PubMed]
- Piccinelli, A.C.; Santos, J.A.; Konkiewitz, E.C.; Oesterreich, S.A.; Formagio, A.S.N.; Croda, J.; Ziff, E.B.; Kassuya, C.A.L. Antihyperalgesic and Antidepressive Actions of (R)-(+)-Limonene, α-Phellandrene, and Essential Oil from Schinus Terebinthifolius Fruits in a Neuropathic Pain Model. Nutr. Neurosci. 2015, 18, 217–224. [Google Scholar] [CrossRef]
- Lin, J.-J.; Lin, J.-H.; Hsu, S.-C.; Weng, S.-W.; Huang, Y.-P.; Tang, N.-Y.; Lin, J.-G.; Chung, J.-G. Alpha-Phellandrene Promotes Immune Responses in Normal Mice through Enhancing Macrophage Phagocytosis and Natural Killer Cell Activities. In Vivo 2013, 27, 809–814. [Google Scholar]
- Carson, C.F.; Riley, T.V. Antimicrobial Activity of the Major Components of the Essential Oil of Melaleuca Alternifolia. J. Appl. Bacteriol. 1995, 78, 264–269. [Google Scholar] [CrossRef]
- Siqueira, H.D.S.; Neto, B.S.; Sousa, D.P.; Gomes, B.S.; da Silva, F.V.; Cunha, F.V.M.; Wanderley, C.W.S.; Pinheiro, G.; Cândido, A.G.F.; Wong, D.V.T.; et al. α-Phellandrene, a Cyclic Monoterpene, Attenuates Inflammatory Response through Neutrophil Migration Inhibition and Mast Cell Degranulation. Life Sci. 2016, 160, 27–33. [Google Scholar] [CrossRef]
- Fitsiou, E.; Anestopoulos, I.; Chlichlia, K.; Galanis, A.; Kourkoutas, I.; Panayiotidis, M.I.; Pappa, A. Antioxidant and antiproliferative properties of the essential oils of Satureja thymbra and Satureja parnassica and their major constituents. Anticancer Res. 2016, 36, 5757–5763. [Google Scholar] [CrossRef]
- Govindarajan, M.; Rajeswary, M.; Hoti, S.L.; Bhattacharyya, A.; Benelli, G. Eugenol, α-Pinene and β-Caryophyllene from Plectranthus Barbatus Essential Oil as Eco-Friendly Larvicides against Malaria, Dengue and Japanese Encephalitis Mosquito Vectors. Parasitol. Res. 2016, 115, 807–815. [Google Scholar] [CrossRef]
- Varga, Z.V.; Matyas, C.; Erdelyi, K.; Cinar, R.; Nieri, D.; Chicca, A.; Nemeth, B.T.; Paloczi, J.; Lajtos, T.; Corey, L.; et al. β-Caryophyllene Protects against Alcoholic Steatohepatitis by Attenuating Inflammation and Metabolic Dysregulation in Mice. Br. J. Pharmacol. 2018, 175, 320–334. [Google Scholar] [CrossRef]
% Inhibition | |||||
---|---|---|---|---|---|
Concentration | [5 µg/mL] | [10 µg/mL] | [20 µg/mL] | [30 µg/mL] | [40 µg/mL] |
Resin | 9.86 ± 2.37 | 15.21 ± 3.57 | 40.42 ± 2.11 | 48.6 ± 3.57 | 65.83 ± 8.53 |
Volatile fraction | 12.96 ± 2.09 | 17.64 ± 3.23 | 24.23 ± 5.11 | 28.56 ± 5.50 | 37.43 ± 7.13 |
Indomethacin | - | - | - | 48.16 ± 6.38 | - |
Volatile Fraction (Supercritical CO2 Extraction) | Resin (EtOAc) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
No. | Compounds | RT (min) | Relative Content (%) 1 | Molecular Formula | Mass Spectra Match (%) 2 | Compounds | RT (min) | Relative Content (%) 1 | Molecular Formula | Mass Spectra Match (%)2 |
1 | α-Phellandrene | 7.11 | 24.42 | C10H16 | 136 | α-Phellandrene | 6.873 | 5.38 | C10H16 | 136 |
2 | β-Phellandrene | 7.46 | 8.27 | C10H16 | 136 | m-Cymene | 7.189 | 4.37 | C10H14 | 134 |
3 | Carene | 7.23 | 0.18 | C10H16 | 136 | ψ-Limonene | 7.254 | 2.19 | C10H16 | 136 |
4 | p-Cymene | 7.72 | 6.72 | C10H14 | 134 | 4(10)-Thujen-3-ol | 9.928 | 0.98 | C10H16O | 134 |
5 | Terpinolene | 8.35 | 0.38 | C10H16 | 136 | exo-2-Hydroxycineole acetate | 11.623 | 2.36 | C12H20O3 | 126 |
6 | Thujone | 9.84 | 0.55 | C10H16O | 152 | p-Menthane | 11.806 | 0.85 | C10H16O2 | 135 |
7 | Carvone | 9.62 | 0.48 | C10H16O | 152 | Unnamed | 12.7 | 0.54 | ND | 207 |
8 | β-Copaene | 12.57 | 0.54 | C15H24 | 204 | Caryophyllene | 12.91 | 1.78 | C15H24 | 204 |
9 | β-Caryophyllene | 13.21 | 6.31 | C15H24 | 204 | p-Menthan-3-one | 13.015 | 0.39 | C10H16O2 | 207 |
10 | β-Caryophyllene oxide | 15.45 | 0.44 | C15H24O | 220 | Caryophyllene oxide | 14.973 | 0.55 | C15H24O | 205 |
11 | Bicyclosesquiphellandrene | 14.13 | 1.03 | C15H24 | 204 | α-Phellandrene, dimer | 17.272 | 1.12 | C20H32 | 136 |
12 | 1-Hydroxy-1,7-dimethyl-4-isopropyl-2,7-cyclodecadiene | 14.44 | 1.33 | C15H26O | 222 | β-Amyrin | 35.9 | 10.41 | C30H50O | 426 |
13 | Calamenene | 14.49 | 0.63 | C15H22 | 202 | 3-Epilupeol | 36.275 | 38.16 | C30H50O | 426 |
14 | Cubenol | 17.60 | 8.05 | C15H26O | 222 | α-Amyrin | 37.109 | 29.74 | C30H50O | 426 |
15 | α-Amyrin | 38.53 | 5.08 | C30H50O | 426 | 3-Epilupeol-acetate | 41.786 | 1.17 | C32H52O2 | 468 |
16 | β-Amyrin | 36.96 | 6.28 | C30H50O | 426 | |||||
17 | 3-Epilupeol | 38.09 | 18.77 | C30H50O | 426 | |||||
18 | 3-Epilupeol-acetate | 38.64 | 4.35 | C32H52O2 | 468 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marquina, S.; Antunez-Mojica, M.; González-Christen, J.; Romero-Estrada, A.; Ocampo-Bautista, F.; Nolasco-Quintana, N.Y.; Guerrero-Alonso, A.; Alvarez, L. Chemical Profiles and Nitric Oxide Inhibitory Activities of the Copal Resin and Its Volatile Fraction of Bursera bipinnata. Forests 2025, 16, 1144. https://doi.org/10.3390/f16071144
Marquina S, Antunez-Mojica M, González-Christen J, Romero-Estrada A, Ocampo-Bautista F, Nolasco-Quintana NY, Guerrero-Alonso A, Alvarez L. Chemical Profiles and Nitric Oxide Inhibitory Activities of the Copal Resin and Its Volatile Fraction of Bursera bipinnata. Forests. 2025; 16(7):1144. https://doi.org/10.3390/f16071144
Chicago/Turabian StyleMarquina, Silvia, Mayra Antunez-Mojica, Judith González-Christen, Antonio Romero-Estrada, Fidel Ocampo-Bautista, Ninfa Yaret Nolasco-Quintana, Araceli Guerrero-Alonso, and Laura Alvarez. 2025. "Chemical Profiles and Nitric Oxide Inhibitory Activities of the Copal Resin and Its Volatile Fraction of Bursera bipinnata" Forests 16, no. 7: 1144. https://doi.org/10.3390/f16071144
APA StyleMarquina, S., Antunez-Mojica, M., González-Christen, J., Romero-Estrada, A., Ocampo-Bautista, F., Nolasco-Quintana, N. Y., Guerrero-Alonso, A., & Alvarez, L. (2025). Chemical Profiles and Nitric Oxide Inhibitory Activities of the Copal Resin and Its Volatile Fraction of Bursera bipinnata. Forests, 16(7), 1144. https://doi.org/10.3390/f16071144