Forests, Nature Protection, and Wild Forested Areas: Premises for Maintaining Nursery Populations and Habitats in Poland
Abstract
1. Introduction
2. Conceptual Framework for Designating Wild Areas
3. Materials and Methods
3.1. Creation of a Single Database for Forests
3.2. Delimitation of WFAs
3.3. Assessment of the Composition and Configuration of Forests
4. Results
5. Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Strassburg, B.B.N.; Kelly, A.; Balmford, A.; Davies, R.G.; Gibbs, H.K.; Lovett, A.; Miles, L.; Orme, C.D.L.; Price, J.; Turner, R.K.; et al. Global Congruence of Carbon Storage and Biodiversity in Terrestrial Ecosystems. Conserv. Lett. 2010, 3, 98–105. [Google Scholar] [CrossRef]
- Requier, F.; Paillet, Y.; Laroche, F.; Rutschmann, B.; Zhang, J.; Lombardi, F.; Svoboda, M.; Steffan-Dewenter, I. Contribution of European Forests to Safeguard Wild Honeybee Populations. Conserv. Lett. 2020, 13, e12693. [Google Scholar] [CrossRef]
- Moomaw, W.R.; Masino, S.A.; Faison, E.K. Intact Forests in the United States: Proforestation Mitigates Climate Change and Serves the Greatest Good. Front. For. Glob. Change 2019, 2, 27. [Google Scholar] [CrossRef]
- Asbeck, T.; Kozák, D.; Spînu, A.P.; Mikoláš, M.; Zemlerová, V.; Svoboda, M. Tree-Related Microhabitats Follow Similar Patterns but Are More Diverse in Primary Compared to Managed Temperate Mountain Forests. Ecosystems 2022, 25, 712–726. [Google Scholar] [CrossRef]
- Mikoláš, M.; Svitok, M.; Bače, R.; Meigs, G.W.; Keeton, W.S.; Keith, H.; Buechling, A.; Trotsiuk, V.; Kozák, D.; Bollmann, K.; et al. Natural Disturbance Impacts on Trade-Offs and Co-Benefits of Forest Biodiversity and Carbon. Proc. R. Soc. B 2021, 288, 20211631. [Google Scholar] [CrossRef]
- Allan, J.R.; Kormos, C.; Jaeger, T.; Venter, O.; Bertzky, B.; Shi, Y.; Mackey, B.; Van Merm, R.; Osipova, E.; Watson, J.E.M. Gaps and Opportunities for the World Heritage Convention to Contribute to Global Wilderness Conservation. Conserv. Biol. 2018, 32, 116–126. [Google Scholar] [CrossRef]
- Williams, J.W.; Ordonez, A.; Svenning, J.-C. A Unifying Framework for Studying and Managing Climate-Driven Rates of Ecological Change. Nat. Ecol. Evol. 2020, 5, 17–26. [Google Scholar] [CrossRef]
- Weiskopf, S.R.; Isbell, F.; Arce-Plata, M.I.; Di Marco, M.; Harfoot, M.; Johnson, J.; Lerman, S.B.; Miller, B.W.; Morelli, T.L.; Mori, A.S.; et al. Biodiversity Loss Reduces Global Terrestrial Carbon Storage. Nat. Commun. 2024, 15, 4354. [Google Scholar] [CrossRef]
- Yan, H.; Zhan, J.; Liu, B.; Huang, W.; Li, Z. Spatially Explicit Assessment of Ecosystem Resilience: An Approach to Adapt to Climate Changes. Adv. Meteorol. 2014, 2014, 798428. [Google Scholar] [CrossRef]
- Cook-Patton, S.C.; Leavitt, S.M.; Gibbs, D.; Harris, N.L.; Lister, K.; Anderson-Teixeira, K.J.; Briggs, R.D.; Chazdon, R.L.; Crowther, T.W.; Ellis, P.W.; et al. Mapping Carbon Accumulation Potential from Global Natural Forest Regrowth. Nature 2020, 585, 545–550. [Google Scholar] [CrossRef]
- Loreau, M.; Naeem, S.; Inchausti, P.; Bengtsson, J.; Grime, J.P.; Hector, A.; Hooper, D.U.; Huston, M.A.; Raffaelli, D.; Schmid, B.; et al. Biodiversity and Ecosystem Functioning: Current Knowledge and Future Challenges. Science 2001, 294, 804–808. [Google Scholar] [CrossRef] [PubMed]
- Franklin, J.F.; Spies, T.A.; Pelt, R.V.; Carey, A.B.; Thornburgh, D.A.; Berg, D.R.; Lindenmayer, D.B.; Harmon, M.E.; Keeton, W.S.; Shaw, D.C.; et al. Disturbances and Structural Development of Natural Forest Ecosystems with Silvicultural Implications, Using Douglas-Fir Forests as an Example. For. Ecol. Manag. 2002, 155, 399–423. [Google Scholar] [CrossRef]
- Seidl, R.; Rammer, W.; Spies, T.A. Disturbance Legacies Increase the Resilience of Forest Ecosystem Structure, Composition, and Functioning. Ecol. Appl. 2014, 24, 2063–2077. [Google Scholar] [CrossRef] [PubMed]
- Scherrer, D.; Baltensweiler, A.; Bürgi, M.; Fischer, C.; Stadelmann, G.; Wohlgemuth, T. Low Naturalness of Swiss Broadleaf Forests Increases Their Susceptibility to Disturbances. For. Ecol. Manag. 2023, 532, 120827. [Google Scholar] [CrossRef]
- Haines-Young, R.; Consul, F. Common International Classification of Ecosystem Services (CICES) V5.2 Guidance on the Application of the Revised Structure. Available online: https://cices.eu/content/uploads/sites/8/2023/08/CICES_V5.2_Guidance_24072023.pdf (accessed on 5 March 2025).
- Forzieri, G.; Dakos, V.; McDowell, N.G.; Ramdane, A.; Cescatti, A. Emerging Signals of Declining Forest Resilience under Climate Change. Nature 2022, 608, 534–539. [Google Scholar] [CrossRef] [PubMed]
- United Nations. Convention on Biological Diversity. 1992. Available online: https://www.cbd.int/convention/ (accessed on 15 April 2025).
- European Commission. EU Biodiversity Strategy for 2030. COM(2020) 380 Final. 2020. Available online: https://ec.europa.eu/environment/strategy/biodiversity-strategy-2030_en (accessed on 21 March 2025).
- European Commission. EU Forest Strategy for 2030. COM(2021) 572 Final. 2021. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:52021DC0572 (accessed on 11 April 2025).
- European Parliament and Council. Council Directive 79/409/EEC on the Conservation of Wild Birds. Off. J. Eur. Communities 1979, 103, 1979. [Google Scholar]
- European Parliament and Council. Council Directive 92/43/EEC on the Conservation of Natural Habitats and of Wild Fauna and Flora. Off. J. Eur. Communities 1992, 206, 7–50. [Google Scholar]
- Kuiters, A.T.; van Eupen, M.; Carver, S.; Fisher, M.; Kun, Z.; Vancura, V.; Wilderness Register and Indicator for Europe. Final report October 2013. Contract No: 07.0307/2011/610387/SER/B.3. Available online: https://wilderness-society.org/wp-content/uploads/2022/08/Wilderness_register_indicator.pdf (accessed on 3 March 2025).
- European Commission; Directorate General for the Environment; Alterra; Eurosite; PAN Parks Foundation. Guidelines on Wilderness in Natura 2000: Management of Terrestrial Wilderness and Wild Areas Within the Natura 2000 Network; Publications Office: Luxembourg, 2013. [Google Scholar]
- European Commission. Proceedings of the Conference on Wilderness and Large Natural Habitat Areas, Prague. 2009. Available online: https://wilderness-society.org/wp-content/uploads/2019/02/proceedings_wildlife_prague_2009.pdf (accessed on 3 March 2025).
- PROP 2024. Opinion of the State Council for Nature Conservation on Updating the Objectives of the Programme for the Protection and Sustainable Use of Biological Diversity (Opinia Państwowej Rady Ochrony Przyrody w Sprawie Uaktualnienia Celów Programu Ochrony i Zrównoważonego Użytkowania Różnorodności Biologicznej). Available online: https://prop.gov.pl/wp-content/uploads/2024/06/Opinia-PROP-24-09_Aktualizacja-Strategii-Bioroznorodnosci.pdf (accessed on 15 April 2025). (In Polish)
- CBD. Decision Adopted by the Conference of the Parties to the Convention on Biological Diversity 15/4. Kunming-Montreal Global Biodiversity Framework. 2022. Available online: https://www.cbd.int/doc/decisions/cop-15/cop-15-dec-04-en.pdf (accessed on 7 February 2025).
- Worman, C.O. Trooping Fairies, Trolls, and Talking Tigers: The Influence of Traditional Wilderness Archetypes on Current Land Use Patterns. Biodivers. Conserv. 2010, 19, 3171–3193. [Google Scholar] [CrossRef]
- Mittermeier, R.A.; Mittermeier, C.G.; Brooks, T.M.; Pilgrim, J.D.; Konstant, W.R.; Da Fonseca, G.A.B.; Kormos, C. Wilderness and Biodiversity Conservation. Proc. Natl. Acad. Sci. USA 2003, 100, 10309–10313. [Google Scholar] [CrossRef]
- Ahmed, T.; Bargali, H.; Verma, N.; Khan, A. Status of wildlife habitats in Ramnagar forest division, Terai-Arc landscape, Uttaranchal, India. Geosci. Res. 2018, 3, 1–8. [Google Scholar] [CrossRef]
- FAO 2012. FRA 2015. Terms and Definitions. Forest Resources Assessment Working Paper 180, Rome. Available online: http://www.fao.org/docrep/017/ap862e/ap862e00.pdf (accessed on 15 April 2025).
- McMorran, R.; Price, M.F.; Warren, C.R. The Call of Different Wilds: The Importance of Definition and Perception in Protecting and Managing Scottish Wild Landscapes. J. Environ. Plan. Manag. 2008, 51, 177–199. [Google Scholar] [CrossRef]
- Landres, P.; Hennessy, M.B.; Schlenker, K.; Cole, D.N.; Boutcher, S. Applying the Concept of Wilderness Character to National Forest Planning, Monitoring, and Management; U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station: Ft. Collins, CO, USA, 2008; p. RMRS-GTR-217. [Google Scholar] [CrossRef]
- Carver, S.; Konráðsdóttir, S.; Guðmundsson, S.; Carver, B.; Kenyon, O. New Approaches to Modelling Wilderness Quality in Iceland. Land 2023, 12, 446. [Google Scholar] [CrossRef]
- Strus, I.; Carver, S. Developing a Wilderness Quality Index for Continental Europe. Land 2024, 13, 428. [Google Scholar] [CrossRef]
- Radford, S.L.; Senn, J.; Kienast, F. Indicator-Based Assessment of Wilderness Quality in Mountain Landscapes. Ecol. Indic. 2019, 97, 438–446. [Google Scholar] [CrossRef]
- Ceauşu, S.; Carver, S.; Verburg, P.H.; Kuechly, H.U.; Hölker, F.; Brotons, L.; Pereira, H.M. European Wilderness in a Time of Farmland Abandonment. In Rewilding European Landscapes; Pereira, H.M., Navarro, L.M., Eds.; Springer International Publishing: Cham, Switzerland, 2015; pp. 25–46. [Google Scholar] [CrossRef]
- Deng, Z.; Li, X.; Yang, H.; Gan, S. Assessing the Spatial Pattern of Wilderness in Central Yunnan: A Case Study from Chuxiong County, Yunnan. IOP Conf. Ser. Earth Environ. Sci. 2021, 783, 012085. [Google Scholar] [CrossRef]
- Lawrence, A.; O’Connor, K.; Haroutounian, V.; Swei, A. Patterns of Diversity along a Habitat Size Gradient in a Biodiversity Hotspot. Ecosphere 2018, 9, e02183. [Google Scholar] [CrossRef]
- Allan, J.R.; Venter, O.; Watson, J.E.M. Temporally Inter-Comparable Maps of Terrestrial Wilderness and the Last of the Wild. Sci. Data 2017, 4, 170187. [Google Scholar] [CrossRef]
- Fahrig, L. Effects of Habitat Fragmentation on Biodiversity. Annu. Rev. Ecol. Evol. Syst. 2003, 34, 487–515. [Google Scholar] [CrossRef]
- Aycrigg, J.L.; Mccarley, T.R.; Belote, R.T.; Martinuzzi, S. Wilderness Areas in a Changing Landscape: Changes in Land Use, Land Cover, and Climate. Ecol. Appl. 2022, 32, e02471. [Google Scholar] [CrossRef]
- Wang, L.; Fu, J.; Ji, X.; Tan, P.; Li, Y. Spatio-Temporal Variation and Conservation Priorities of Wilderness in Lhasa River Basin, Tibetan Plateau. Front. Ecol. Evol. 2023, 11, 1254540. [Google Scholar] [CrossRef]
- Wang, M.; Li, J.; Kuang, S.; He, Y.; Chen, G.; Huang, Y.; Song, C.; Anderson, P.; Łowicki, D. Plant Diversity Along the Urban–Rural Gradient and Its Relationship with Urbanization Degree in Shanghai, China. Forests 2020, 11, 171. [Google Scholar] [CrossRef]
- Ehlers Smith, D.A.; Si, X.; Ehlers Smith, Y.C.; Kalle, R.; Ramesh, T.; Downs, C.T. Patterns of Avian Diversity across a Decreasing Patch-size Gradient in a Critically Endangered Subtropical Forest System. J. Biogeogr. 2018, 45, 2118–2132. [Google Scholar] [CrossRef]
- Lee, M.; Carroll, J.P. Effects of Patch Size and Basal Area on Avian Taxonomic and Functional Diversity in Pine Forests: Implication for the Influence of Habitat Quality on the Species–Area Relationship. Ecol. Evol. 2018, 8, 6909–6920. [Google Scholar] [CrossRef]
- Wilson, J.; Primack, R. 5. The Scramble for Space. In Conservation Biology in Sub-Saharan Africa; Open Book Publishers: Cambridge, UK, 2019; pp. 133–166. [Google Scholar] [CrossRef]
- Rebain, S.; McDill, M.E. A Mixed-Integer Formulation of the Minimum Patch Size Problem. For. Sci. 2003, 49, 608–618. [Google Scholar] [CrossRef]
- Fahrig, L.; Jonsen, I. Effect of Habitat Patch Characteristics on Abundance and Diversity of Insects in an Agricultural Landscape. Ecosystems 1998, 1, 197–205. [Google Scholar] [CrossRef]
- Sato, C.F.; Wood, J.T.; Schroder, M.; Michael, D.R.; Osborne, W.S.; Green, K.; Lindenmayer, D.B. Designing for Conservation Outcomes: The Value of Remnant Habitat for Reptiles on Ski Runs in Subalpine Landscapes. Landsc. Ecol. 2014, 29, 1225–1236. [Google Scholar] [CrossRef]
- Zawadzka, D.; Zawadzki, J. Birds as indicators of biodiversity and level of forest naturalness (Ptaki jako gatunki wskaźnikowe różnorodności biologicznej i stopnia naturalności lasów). Stud. I Mater. Cent. Edukac. Przyr.-Leśnej 2006, 14, 249–262. (In Polish) [Google Scholar]
- Rąkowski, G.; Czarnocki, K. Breeding Avifauna of the Forest Interior and Forest Edge in the Borki Forest (Awifauna Lęgowa Wnętrza i Obrzeża Lasu w Puszczy Boreckiej). Leśne Pr. Badaw. 2019, 80, 23–43. (In Polish) [Google Scholar]
- Farina, A. Landscape Ecology in Action; Kluwer Academic Publishers: Dordrecht, The Netherlands; Boston, MA, USA; London, UK, 2000; p. 317. [Google Scholar]
- Wimp, G.M.; Ries, L.; Lewis, D.; Murphy, S.M. Habitat Edge Responses of Generalist Predators Are Predicted by Prey and Structural Resources. Ecology 2019, 100, e02662. [Google Scholar] [CrossRef]
- Czaja, J.; Wilczek, Z.; Chmura, D. Shaping the Ecotone Zone in Forest Communities That Are Adjacent to Expressway Roads. Forests 2021, 12, 1490. [Google Scholar] [CrossRef]
- Laurance, W.F.; Lovejoy, T.E.; Vasconcelos, H.L.; Bruna, E.M.; Didham, R.K.; Stouffer, P.C.; Gascon, C.; Bierregaard, R.O.; Laurance, S.G.; Sampaio, E. Ecosystem Decay of Amazonian Forest Fragments: A 22-Year Investigation. Conserv. Biol. 2002, 16, 605–618. [Google Scholar] [CrossRef]
- Arroyo-Rodríguez, V.; Pineda, E.; Escobar, F.; Benítez-Malvido, J. Value of Small Patches in the Conservation of Plant-Species Diversity in Highly Fragmented Rainforest. Conserv. Biol. 2009, 23, 729–739. [Google Scholar] [CrossRef] [PubMed]
- Bueno, A.S.; Bruno, R.S.; Pimentel, T.P.; Sanaiotti, T.M.; Magnusson, W.E. The Width of Riparian Habitats for Understory Birds in an Amazonian Forest. Ecol. Appl. 2012, 22, 722–734. [Google Scholar] [CrossRef] [PubMed]
- Broadbent, E.N.; Asner, G.P.; Keller, M.; Knapp, D.E.; Oliveira, P.J.C.; Silva, J.N. Forest Fragmentation and Edge Effects from Deforestation and Selective Logging in the Brazilian Amazon. Biol. Conserv. 2008, 141, 1745–1757. [Google Scholar] [CrossRef]
- Pellissier, V.; Bergès, L.; Nedeltcheva, T.; Schmitt, M.; Avon, C.; Cluzeau, C.; Dupouey, J. Understorey Plant Species Show Long-range Spatial Patterns in Forest Patches According to Distance-to-edge. J. Veg. Sci. 2013, 24, 9–24. [Google Scholar] [CrossRef]
- Kuipers, K.; Hilbers, J.P.; Garcia-Ulloa, J.; Graae, B.J.; May, R.; Verones, F.; Schipper, A.M. Habitat Fragmentation Amplifies Threats from Habitat Loss to Mammal Diversity across the World’s Terrestrial Ecoregions. One Earth 2021, 4, 1505–1513. [Google Scholar] [CrossRef]
- Broekman, M.J.E.; Hilbers, J.P.; Tucker, M.A.; Huijbregts, M.A.J.; Schipper, A.M. Impacts of Existing and Planned Roads on Terrestrial Mammal Habitat in New Guinea. Conserv. Biol. 2023, 38, e14152. [Google Scholar] [CrossRef]
- Santini, L.; Saura, S.; Rondinini, C. Connectivity of the Global Network of Protected Areas. Divers. Distrib. 2016, 22, 199–211. [Google Scholar] [CrossRef]
- Barnett, K.; Belote, R.T. Modeling an Aspirational Connected Network of Protected Areas across North America. Ecol. Appl. 2021, 31, e2387. [Google Scholar] [CrossRef]
- Beger, M.; Linke, S.; Watts, M.; Game, E.; Treml, E.; Ball, I.; Possingham, H.P. Incorporating Asymmetric Connectivity into Spatial Decision Making for Conservation. Conserv. Lett. 2010, 3, 359–368. [Google Scholar] [CrossRef]
- Ossi, F.; Focardi, S.; Tolhurst, B.A.; Picco, G.P.; Murphy, A.L.; Molteni, D.; Giannini, N.; Gaillard, J.; Cagnacci, F. Quantifying the Errors in Animal Contacts Recorded by Proximity Loggers. J. Wildl. Manag. 2022, 86, e22151. [Google Scholar] [CrossRef]
- Selva, N.; Zwijacz-Kozica, T.; Sergiel, A.; Olszańska, A.; Zięba, F. Brown Bear Ursus Arctos Protection Program in Poland—A Protection Plan Determining the Maintenance of the Natural Population of the Bear and Its Habitats (Program Ochrony Niedźwiedzia Brunatnego Ursus Arctos w Polsce—Plan Ochrony Warunkujący Utrzymanie Naturalnej Populacji Niedźwiedzia i Jego Siedlisk); Szkoła Główna Gospodarstwa Wiejskiego: Warszawa, Poland, 2012. (In Polish) [Google Scholar]
- Jermaczek, A.; Kwaśny, Ł. Does the Natura 2000 network in Poland overlap with areas without infrastructure—Potential wilderness areas? (Czy sieć Natura 2000 w Polsce pokrywa się z obszarami bez infrastruktury—Potencjalnymi obszarami dzikimi?). Przegląd Przyr. 2019, 30, 108–131. (In Polish) [Google Scholar]
- Forest Data Bank. Available online: https://www.lasy.gov.pl/pl/nasze-lasy/bank-danych-o-lasach (accessed on 10 August 2024).
- Topographic Objects Database (BDOT10k). Available online: https://www.geoportal.gov.pl/en/data/topographic-objects-database-bdot10k/ (accessed on 10 April 2024).
- Regulation of the Minister of Development, Labor and Technology of July 27, 2021, on the Database of Topographic Objects and the Database of General Geographic Objects, as Well as Standard Cartographic Studieshttps (Rozporządzenie Ministra Rozwoju, Pracy i Technologii z Dnia 27 Lipca 2021 r. w Sprawie Bazy Danych Obiektów Topograficznych Oraz Bazy Danych Obiektów Ogólnogeograficznych, a Także Standardowych Opracowań Kartograficznych). Available online: https://isap.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=WDU20210001412 (accessed on 15 April 2025). (In Polish)
- Wickham, J.D.; Riitters, K.H.; O’Neill, R.V.; Reckhow, K.H.; Wade, T.G.; Jones, K.B. Land Cover as A Framework For Assessing Risk Of Water Pollution. J. Am. Water Resour. Assoc. 2000, 36, 1417–1422. [Google Scholar] [CrossRef]
- Fahrig, L.; Merriam, G. Habitat patch connectivity and population survival. Ecology 1985, 66, 1762–1768. [Google Scholar] [CrossRef]
- Riitters, K.; Wickham, J.D.; O’Neill, R.; Jones, K.B.; Smith, E. Global-Scale Patterns of Forest Fragmentation. Conserv. Ecol. 2000, 4, art3. [Google Scholar] [CrossRef]
- With, K.A. Assessing the Risk of Invasive Spread in Fragmented Landscapes. Risk Anal. 2004, 24, 803–815. [Google Scholar] [CrossRef]
- McGarigal, K.S.; Cushman, S.; Ene, E. AGSTATS v4: Spatial Pattern Analysis Program for Categorical Maps. 2023. Computer Software Program Produced by the Authors. Available online: https://www.fragstats.org (accessed on 16 May 2025).
- Gustafson, E.J.; Parker, G.R. Relationships between Landcover Proportion and Indices of Landscape Spatial Pattern. Landsc. Ecol. 1992, 7, 101–110. [Google Scholar] [CrossRef]
- Piazzi, L.; Gennaro, P.; Montefalcone, M.; Bianchi, C.N.; Cecchi, E.; Morri, C.; Serena, F. STAR: An Integrated and Standardized Procedure to Evaluate the Ecological Status of Coralligenous Reefs. Aquat. Conserv. 2019, 29, 189–201. [Google Scholar] [CrossRef]
- Fisher, M.; Carver, S.; Kun, Z.; McMorran, R.; Arrell, K.; Mitchell, G.; Review of Status and Conservation of Wild Land in Europe. Project Commissioned by the Scottish Government. 2010. Available online: http://www.self-willed-land.org.uk/rep_res/0109251.pdf (accessed on 11 March 2025).
- Carver, S.; Comber, A.; McMorran, R.; Nutter, S. A GIS Model for Mapping Spatial Patterns and Distribution of Wild Land in Scotland. Landsc. Urban Plan. 2012, 104, 395–409. [Google Scholar] [CrossRef]
- Carver, S.; Tricker, J.; Landres, P. Keeping It Wild: Mapping Wilderness Character in the United States. J. Environ. Manag. 2013, 131, 239–255. [Google Scholar] [CrossRef]
- Matuszkiewicz, J.M.; Potential Natural Vegetation of Poland (Potencjalna Roślinność Naturalna Polski). IGiPZ PAN, Warsaw. 2008. Available online: https://www.igipz.pan.pl/Roslinnosc-potencjalna-zgik.html (accessed on 8 May 2024). (In Polish).
- Von Oheimb, G.; Westphal, C.; Tempel, H.; Härdtle, W. Structural Pattern of a Near-Natural Beech Forest (Fagus Sylvatica) (Serrahn, North-East Germany). For. Ecol. Manag. 2005, 212, 253–263. [Google Scholar] [CrossRef]
- Azhar, B.; Razi, N.; Sanusi, R.; Lechner, A.; Ashraf, M.; Zaki, W.M.W.; Jafni, F. Vegetation Structure and Relative Humidity Drive the Diurnal Foraging Activity of MALAYSIAN Giant Ant Workers in Urban Fragmented Forests. Insect Conserv. Divers. 2024, 17, 334–344. [Google Scholar] [CrossRef]
- GIS Wetlands. Spatial Information System on Polish Wetlands. Available online: https://www.itp.edu.pl/GIS_mokradla/html/index.php (accessed on 15 September 2024).
- Wild Europe. A Working Definition of European Wilderness and Wild Areas. 2013. Available online: https://www.europarc.org/wp-content/uploads/2015/05/a-working-definition-of-european-wilderness-and-wild-areas.pdf (accessed on 25 September 2023).
- PAN Parks. Available online: https://www.panparks.org/introduction/vision/ (accessed on 12 March 2025).
- Wilderness Act. Available online: http://www.wilderness.net/index.cfm?fuse=NWPS&sec=legisAct (accessed on 5 March 2025).
- Malandra, F.; Vitali, A.; Urbinati, C.; Weisberg, P.J.; Garbarino, M. Patterns and Drivers of Forest Landscape Change in the Apennines Range, Italy. Reg. Env. Change 2019, 19, 1973–1985. [Google Scholar] [CrossRef]
- Wei, S.; Pan, J.; Liu, X. Landscape ecological safety assessment and landscape pattern optimization in arid inland river basin: Take Ganzhou District as an example. Hum. Ecol. Risk Assess. 2020, 26, 782–806. [Google Scholar] [CrossRef]
- Xu, B.; Zhang, Y.; Lin, W. A Connectivity Modeling and Evaluating Methodological Framework in Biodiversity Hotspots Based on Naturalness and Linking Wilderness. Conserv. Sci. Pract. 2022, 4, e12750. [Google Scholar] [CrossRef]
- Wu, J. Linking Landscape, Land System and Design Approaches to Achieve Sustainability. J. Land Use Sci. 2019, 14, 173–189. [Google Scholar] [CrossRef]
- Kumar, M.; Denis, D.M.; Singh, S.K.; Szabó, S.; Suryavanshi, S. Landscape Metrics for Assessment of Land Cover Change and Fragmentation of a Heterogeneous Watershed. Remote Sens. Appl. Soc. Environ. 2018, 10, 224–233. [Google Scholar] [CrossRef]
- Jaafari, S.; Sakieh, Y.; Shabani, A.A.; Danehkar, A.; Nazarisamani, A. Landscape Change Assessment of Reservation Areas Using Remote Sensing and Landscape Metrics (Case Study: Jajroud Reservation, Iran). Env. Dev. Sustain. 2016, 18, 1701–1717. [Google Scholar] [CrossRef]
- Mansori, M.; Badehian, Z.; Ghobadi, M.; Maleknia, R. Assessing the Environmental Destruction in Forest Ecosystems Using Landscape Metrics and Spatial Analysis. Sci. Rep. 2023, 13, 15165. [Google Scholar] [CrossRef]
- Torun, P.; Altunel, A.O. Effects of environmental factors and forest management on landscape-scale forest storm damage in Turkey. Ann. For. Sci. 2020, 77, 39. [Google Scholar] [CrossRef]
- GDOŚ Geoservice. Available online: https://geoserwis.gdos.gov.pl/mapy/ (accessed on 7 March 2025).
- Government Website of the Natura 2000 Program. Available online: https://www.gov.pl/web/gdos/natura-2001 (accessed on 10 August 2024).
- Endangered Species Protection Program. Available online: https://www.gov.pl/web/gdos/programy-ochrony-gatunkow-zagrozonych-wyginieciem (accessed on 8 September 2024).
- Mudalige, U.; Carver, S. Unveiling Sri Lanka’s Wilderness: GIS-Based Modelling of Wilderness Attributes. Land 2024, 13, 402. [Google Scholar] [CrossRef]
- Cao, Y.; Carver, S.; Yang, R. Mapping Wilderness in China: Comparing and Integrating Boolean and WLC Approaches. Landsc. Urban Plan. 2019, 192, 103636. [Google Scholar] [CrossRef]
Name of Indicator | Description | Data Source |
---|---|---|
undisturbedness | distance to built-up areas min. 1000 m, roads min. 1000 m, and railway min. 500 m | BDOT10k (“x code”: roads SKDR 1–4, railways SKTR 1–3, built-up areas PTZB 1–5) |
naturalness | forests whose top soil layer properties, type of humus, tree stand, and undergrowth are unchanged and consistent with the conditions of the habitat in the natural state | Forest Data Bank (naturalness category N1) |
size | all forest complexes with an area of at least 5000 ha and those with an area of 2000–5000 ha, provided their surroundings (1000 m buffer) are semi-natural (only other forests, waters, and meadows) | BDOT10k (“x code”: forest PTLZ 1–3, waters PTWP 1–3, meadows PTTR 1) |
Province | Number of WFAs | Area of WFAs [km2] |
---|---|---|
Carpathians and Subcarpathia | 9 | 957.5 |
Sudetes | 1 | 69.5 |
Lowlands | 22 | 1395.6 |
Highlands | 2 | 57.3 |
Sum | 34 | 2480.0 |
Type of WFA | Area [km2] | Share in All WFAs [%] | Share in Nature Protection Form [%] | Share in Forests [%] |
---|---|---|---|---|
WFAs outside of national parks | 1158.4 | 46.7 | 0.00 | 1.25 |
WFAs within national parks (without buffer zones) | 1321.6 | 53.3 | 35.4 | 1.43 |
WFAs in nature reserves | 62.7 | 2.53 | 2.96 | 0.07 |
No. ˟ | Area [km2] | GYRATE | TCA | PROX | Mean Standardized Value | |||
---|---|---|---|---|---|---|---|---|
Raw Data [m] | Standardized Data | Raw Data [ha] | Standardized Data | Raw Data | Standardized Data | |||
13 | 24.4 | 452.7 | −1.0 | 212.0 | −0.9 | 24.4 | −0.9 | −0.9 |
31 | 41.5 | 586.6 | −0.9 | 652.0 | −0.6 | 20.7 | −0.9 | −0.8 |
15 | 20.4 | 573.1 | −0.9 | 772.0 | −0.5 | 20.4 | −0.9 | −0.8 |
32 | 24.7 | 724.9 | −0.7 | 118.0 | −0.9 | 44.5 | −0.6 | −0.7 |
3 | 36.9 | 599.7 | −0.8 | 758.0 | −0.6 | 36.9 | −0.7 | −0.7 |
28 | 83.3 | 742.5 | −0.7 | 1039.0 | −0.4 | 22.4 | −0.9 | −0.7 |
17 | 32.6 | 663.3 | −0.8 | 1077.0 | −0.4 | 32.6 | −0.8 | −0.6 |
19 | 22.5 | 590.5 | −0.8 | 123.0 | −0.9 | 77.7 | −0.1 | −0.6 |
16 | 34.6 | 1674.8 | 0.4 | 75.0 | −0.9 | 34.6 | −0.7 | −0.4 |
23 | 53.4 | 869.2 | −0.5 | 1568.0 | −0.1 | 53.4 | −0.5 | −0.4 |
2 | 44.4 | 1123.6 | −0.2 | 1408.0 | −0.2 | 44.4 | −0.6 | −0.3 |
29 | 42.7 | 565.0 | −0.9 | 34.0 | −1.0 | 149.3 | 1.0 | −0.3 |
6 | 94 | 1273.5 | 0.0 | 292.0 | −0.8 | 94.0 | 0.1 | −0.2 |
24 | 59.8 | 1054.6 | −0.3 | 1692.0 | 0.0 | 59.8 | −0.4 | −0.2 |
33 | 20.7 | 2078.5 | 0.9 | 1.0 | −1.0 | 42.7 | −0.6 | −0.2 |
1 | 25.2 | 2318.0 | 1.2 | 285.0 | −0.8 | 25.2 | −0.9 | −0.2 |
30 | 22.4 | 2420.7 | 1.3 | 424.0 | −0.7 | 24.7 | −0.9 | −0.1 |
18 | 78.9 | 404.8 | −1.1 | 2974.0 | 0.7 | 101.3 | 0.3 | 0.0 |
9 | 78.5 | 1367.3 | 0.1 | 1601.0 | −0.1 | 78.5 | −0.1 | 0.0 |
34 | 39.3 | 1353.7 | 0.0 | 1686.0 | 0.0 | 83.3 | 0.0 | 0.0 |
22 | 99.5 | 1132.9 | −0.2 | 2013.0 | 0.1 | 109.2 | 0.4 | 0.1 |
11 | 70.1 | 655.0 | −0.8 | 2395.0 | 0.3 | 137.2 | 0.8 | 0.1 |
8 | 33.5 | 2644.8 | 1.6 | 1375.0 | −0.2 | 33.5 | −0.8 | 0.2 |
20 | 95.7 | 1270.8 | −0.1 | 2647.0 | 0.5 | 95.7 | 0.2 | 0.2 |
25 | 102.7 | 847.4 | −0.5 | 3367.0 | 0.9 | 102.7 | 0.3 | 0.2 |
10 | 21 | 3463.7 | 2.5 | 391.0 | −0.8 | 21.0 | −0.9 | 0.3 |
27 | 132.9 | 1328.3 | 0.0 | 2661.0 | 0.5 | 132.9 | 0.7 | 0.4 |
12 | 120.3 | 302.5 | −1.2 | 4604.0 | 1.6 | 167.6 | 1.2 | 0.5 |
26 | 84 | 2889.5 | 1.8 | 1271.0 | −0.3 | 87.8 | 0.1 | 0.5 |
5 | 60.5 | 3478.4 | 2.5 | 1272.0 | −0.3 | 60.5 | −0.4 | 0.6 |
14 | 75 | 1697.6 | 0.4 | 4585.0 | 1.6 | 119.6 | 0.5 | 0.8 |
21 | 142.4 | 1736.4 | 0.5 | 2321.0 | 0.3 | 216.6 | 2.0 | 0.9 |
4 | 156.5 | 1237.5 | −0.1 | 6189.0 | 2.4 | 156.5 | 1.1 | 1.1 |
7 | 292.4 | 574.5 | −0.9 | 8123.0 | 3.5 | 344.3 | 3.9 | 2.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Łowicki, D.; Fagiewicz, K. Forests, Nature Protection, and Wild Forested Areas: Premises for Maintaining Nursery Populations and Habitats in Poland. Forests 2025, 16, 1121. https://doi.org/10.3390/f16071121
Łowicki D, Fagiewicz K. Forests, Nature Protection, and Wild Forested Areas: Premises for Maintaining Nursery Populations and Habitats in Poland. Forests. 2025; 16(7):1121. https://doi.org/10.3390/f16071121
Chicago/Turabian StyleŁowicki, Damian, and Katarzyna Fagiewicz. 2025. "Forests, Nature Protection, and Wild Forested Areas: Premises for Maintaining Nursery Populations and Habitats in Poland" Forests 16, no. 7: 1121. https://doi.org/10.3390/f16071121
APA StyleŁowicki, D., & Fagiewicz, K. (2025). Forests, Nature Protection, and Wild Forested Areas: Premises for Maintaining Nursery Populations and Habitats in Poland. Forests, 16(7), 1121. https://doi.org/10.3390/f16071121