Quantifying Climate Change Impacts on Romanian Forests: Indicators of Resilience and Vulnerability
Abstract
1. Introduction
2. Materials and Methods
2.1. Location and Description of the Study Area
2.2. Descriptive Statistics and Correlation Analysis
- corrr [45]: This package was employed to calculate and explore the correlations among variables, helping to identify significant relationships between climatic factors and forest conditions.
- ggcorrplot [46]: This package provided an effective way to visualize the correlation matrices, making the relationships between variables easier to interpret through aesthetically clear correlation plots.
- FactoMineR (v25i01.R) [47]: The core PCA was conducted using this package, which enabled dimension reduction and helped uncover the latent structure of the data. This was particularly useful for identifying the key variables driving the observed patterns in forest ecosystems.
- factoextra [48]: This package was used to extract and visualize the PCA results, offering a more accessible and comprehensive interpretation of the multivariate relationships.
2.3. Analytical Frameworks and Contextual Insights
- Warm Spell Duration Index (WSDI): Derived from E-OBS data at a 0.1° spatial resolution, WSDI quantifies the number of days within a year where warm spells (above the 90th percentile of daily maximum temperature) occur. This index provides information about changes in temperature extremes that can impact forest health and resilience.
- R10mm Index: This index measures the number of days per year when daily precipitation exceeds 10 mm, and is derived from climate data at a 0.1° spatial resolution.
3. Results
3.1. Precipitations and Temperature Trends in Romania
3.2. Characterization of Analyzed Management Units
3.3. The Interaction Between Environmental and Ecological Parameters
4. Discussion
4.1. The Interaction Between Environmental and Ecological Parameters
4.2. Characterization of Analyzed Management Units
4.3. Precipitation and Temperature Trends in Romania
4.4. Limitations and Future Directions
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- De Marco, A.; Sicard, P.; Feng, Z.; Agathokleous, E.; Alonso, R.; Araminiene, V.; Augustatis, A.; Badea, O.; Beasley, J.C.; Branquinho, C.; et al. Strategic Roadmap to Assess Forest Vulnerability under Air Pollution and Climate Change. Glob. Change Biol. 2022, 28, 5062–5085. [Google Scholar] [CrossRef] [PubMed]
- Hartmann, H.; Bastos, A.; Das, A.J.; Esquivel-Muelbert, A.; Hammond, W.M.; Martínez-Vilalta, J.; McDowell, N.G.; Powers, J.S.; Pugh, T.A.M.; Ruthrof, K.X.; et al. Climate Change Risks to Global Forest Health: Emergence of Unexpected Events of Elevated Tree Mortality Worldwide. Annu. Rev. Plant Biol. 2022, 73, 673–702. [Google Scholar] [CrossRef]
- Shi, H.; Peng, X.; Zhou, Y.-J.; Wang, A.-Y.; Sun, X.-K.; Li, N.; Bao, Q.-S.; Buri, G.; Hao, G.-Y. Resilience and Response: Unveiling the Impacts of Extreme Droughts on Forests through Integrated Dendrochronological and Remote Sensing Analyses. For. Ecosyst. 2024, 11, 100209. [Google Scholar] [CrossRef]
- Clark, J.S.; Iverson, L.; Woodall, C.W.; Allen, C.D.; Bell, D.M.; Bragg, D.C.; D’Amato, A.W.; Davis, F.W.; Hersh, M.H.; Ibanez, I.; et al. The Impacts of Increasing Drought on Forest Dynamics, Structure, and Biodiversity in the United States. Glob. Change Biol. 2016, 22, 2329–2352. [Google Scholar] [CrossRef] [PubMed]
- Hansen, A.; Barnett, K.; Jantz, P.; Phillips, L.; Goetz, S.J.; Hansen, M.; Venter, O.; Watson, J.E.M.; Burns, P.; Atkinson, S.; et al. Global Humid Tropics Forest Structural Condition and Forest Structural Integrity Maps. Sci. Data 2019, 6, 232. [Google Scholar] [CrossRef]
- Maier, C.; Hebermehl, W.; Grossmann, C.M.; Loft, L.; Mann, C.; Hernández-Morcillo, M. Innovations for Securing Forest Ecosystem Service Provision in Europe—A Systematic Literature Review. Ecosyst. Serv. 2021, 52, 101374. [Google Scholar] [CrossRef]
- Brockerhoff, E.G.; Barbaro, L.; Castagneyrol, B.; Forrester, D.I.; Gardiner, B.; González-Olabarria, J.R.; Lyver, P.O.; Meurisse, N.; Oxbrough, A.; Taki, H.; et al. Forest Biodiversity, Ecosystem Functioning and the Provision of Ecosystem Services. Biodivers. Conserv. 2017, 26, 3005–3035. [Google Scholar] [CrossRef]
- Moreno-de-las-Heras, M.; Bochet, E.; Vicente-Serrano, S.M.; Espigares, T.; Molina, M.J.; Monleón, V.; Nicolau, J.M.; Tormo, J.; García-Fayos, P. Drought Conditions, Aridity and Forest Structure Control the Responses of Iberian Holm Oak Woodlands to Extreme Droughts: A Large-Scale Remote-Sensing Exploration in Eastern Spain. Sci. Total Environ. 2023, 901, 165887. [Google Scholar] [CrossRef]
- Simonson, W.D.; Coomes, D.A.; Burslem, D.F.R.P. Forests and Global Change: An Overview. In Forests and Global Change; Coomes, D.A., Burslem, D.F.R.P., Simonson, W.D., Eds.; Ecological Reviews; Cambridge University Press: Cambridge, UK, 2014; pp. 1–18. ISBN 978-1-107-61480-2. [Google Scholar]
- Garcia-Fayos, P.; Monleon, V.J.; Espigares, T.; Nicolau, J.M.; Bochet, E. Increasing Aridity Threatens the Sexual Regeneration of Quercus ilex(Holm Oak) in Mediterranean Ecosystems. PLoS ONE 2020, 15, e0239755. [Google Scholar] [CrossRef]
- Anderegg, W.R.L.; Trugman, A.T.; Badgley, G.; Konings, A.G.; Shaw, J. Divergent Forest Sensitivity to Repeated Extreme Droughts. Nat. Clim. Change 2020, 10, 1091–1095. [Google Scholar] [CrossRef]
- Mauri, A.; Girardello, M.; Strona, G.; Beck, P.S.A.; Forzieri, G.; Caudullo, G.; Manca, F.; Cescatti, A. EU-Trees4F, a Dataset on the Future Distribution of European Tree Species. Sci. Data 2022, 9, 37. [Google Scholar] [CrossRef] [PubMed]
- Cerullo, G.; Barlow, J.; Betts, M.; Edwards, D.; Eyres, A.; França, F.; Garrett, R.; Swinfield, T.; Tew, E.; White, T.; et al. The Global Impact of EU Forest Protection Policies. Science 2023, 381, 740. [Google Scholar] [CrossRef]
- Churkina, G.; Organschi, A.; Reyer, C.P.O.; Ruff, A.; Vinke, K.; Liu, Z.; Reck, B.K.; Graedel, T.E.; Schellnhuber, H.J. Buildings as a Global Carbon Sink. Nat. Sustain. 2020, 3, 269–276. [Google Scholar] [CrossRef]
- D’Andrea, E.; Scartazza, A.; Battistelli, A.; Collalti, A.; Proietti, S.; Rezaie, N.; Matteucci, G.; Moscatello, S. Unravelling Resilience Mechanisms in Forests: Role of Non-Structural Carbohydrates in Responding to Extreme Weather Events. Tree Physiol. 2021, 41, 1808–1818. [Google Scholar] [CrossRef]
- He, Y.; Liu, Y.; Lei, L.; Terrer, C.; Huntingford, C.; Peñuelas, J.; Xu, H.; Piao, S. CO2 Fertilization Contributed More than Half of the Observed Forest Biomass Increase in Northern Extra-Tropical Land. Glob. Change Biol. 2023, 29, 4313–4326. [Google Scholar] [CrossRef]
- Forzieri, G.; Jactel, H.; Bianchi, A.; Spinoni, J.; Somasundaram, D.; Feyen, L.; Cescatti, A. Ecosystem Heterogeneity Is Key to Limiting the Increasing Climate-Driven Risks to European Forests. One Earth 2024, 7, 2149–2164. [Google Scholar] [CrossRef]
- Jiang, W.; Deng, Y.; Tang, Z.; Lei, X.; Chen, Z. Modelling the Potential Impacts of Urban Ecosystem Changes on Carbon Storage under Different Scenarios by Linking the CLUE-S and the InVEST Models. Ecol. Model. 2017, 345, 30–40. [Google Scholar] [CrossRef]
- Forzieri, G.; Dakos, V.; McDowell, N.G.; Ramdane, A.; Cescatti, A. Emerging Signals of Declining Forest Resilience under Climate Change. Nature 2022, 608, 534–539. [Google Scholar] [CrossRef] [PubMed]
- Allen, A.P.; Gillooly, J.F. Towards an Integration of Ecological Stoichiometry and the Metabolic Theory of Ecology to Better Understand Nutrient Cycling. Ecol. Lett. 2009, 12, 369–384. [Google Scholar] [CrossRef]
- Chivulescu, S.; García-Duro, J.; Pitar, D.; Leca, Ș.; Badea, O. Past and Future of Temperate Forests State under Climate Change Effects in the Romanian Southern Carpathians. Forests 2021, 12, 885. [Google Scholar] [CrossRef]
- Hartel, T.; Fischer, J.; Shumi, G.; Apollinaire, W. The Traditional Ecological Knowledge Conundrum. Trends Ecol. Evol. 2023, 38, 211–214. [Google Scholar] [CrossRef] [PubMed]
- Popa, A.; van der Maaten-theunissen, M.; Popa, I.; Badea, O.; van der Maaten, E. Spruce Suffers Most from Drought at Low Elevations in the Carpathians, Though Shows High Resilience. For. Ecol. Manag. 2024, 571, 122201. [Google Scholar] [CrossRef]
- Felton, A.; Belyazid, S.; Eggers, J.; Nordström, E.-M.; Öhman, K. Climate Change Adaptation and Mitigation Strategies for Production Forests: Trade-Offs, Synergies, and Uncertainties in Biodiversity and Ecosystem Services Delivery in Northern Europe. Ambio 2024, 53, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Serengil, Y.; Augustaitis, A.; Bytnerowicz, A.; Grulke, N.; Kozovitz, A.R.; Matyssek, R.; Müller-Starck, G.; Schaub, M.; Wieser, G.; Coskun, A.A.; et al. Adaptation of Forest Ecosystems to Air Pollution and Climate Change: A Global Assessment on Research Priorities. iForest-Biogeosci. For. 2011, 4, 44–48. [Google Scholar] [CrossRef]
- Potočić, N. Advances in Forest Ecophysiology: Stress Response and Ecophysiological Indicators of Tree Vitality. Plants 2023, 12, 1063. [Google Scholar] [CrossRef]
- Santi, I.; Carrari, E.; De Frenne, P.; Valerio, M.; Gasperini, C.; Cabrucci, M.; Selvi, F. Impact of Coppicing on Microclimate and Understorey Vegetation Diversity in an Ancient Mediterranean Oak Forest. Sci. Total Environ. 2024, 918, 170531. [Google Scholar] [CrossRef] [PubMed]
- Tanase, M.A.; Aponte, C.; Mermoz, S.; Bouvet, A.; Le Toan, T.; Heurich, M. Detection of Windthrows and Insect Outbreaks by L-Band SAR: A Case Study in the Bavarian Forest National Park. Remote Sens. Environ. 2018, 209, 700–711. [Google Scholar] [CrossRef]
- Chakraborty, D.; Ciceu, A.; Ballian, D.; Benito Garzón, M.; Bolte, A.; Bozic, G.; Buchacher, R.; Čepl, J.; Cremer, E.; Ducousso, A.; et al. Assisted Tree Migration Can Preserve the European Forest Carbon Sink under Climate Change. Nat. Clim. Change 2024, 14, 845–852. [Google Scholar] [CrossRef]
- Hlásny, T.; Barcza, Z.; Fabrika, M.; Balázs, B.; Churkina, G.; Pajtík, J.; Sedmák, R.; Turcáni, M. Climate Change Impacts on Growth and Carbon balance of Forests in Central Europe. Clim. Res. 2011, 47, 219–236. [Google Scholar] [CrossRef]
- Badea, O.; Silaghi, D.M.; Neagu, S.; Taut, I.; Leca, S. Forest Monitoring—Assessment, Analysis and Warning System for Forest Ecosystem Status. Not. Bot. Horti Agrobot. Cluj-Napoca 2013, 41, 613–625. [Google Scholar] [CrossRef]
- Brundtland, G.H. Sustainable Development: The Challenges Ahead. Eur. J. Dev. Res. 1991, 3, 32–41. [Google Scholar] [CrossRef]
- Anderegg, W.R.L.; Wu, C.; Acil, N.; Carvalhais, N.; Pugh, T.A.M.; Sadler, J.P.; Seidl, R. A Climate Risk Analysis of Earth’s Forests in the 21st Century. Science 2022, 377, 1099–1103. [Google Scholar] [CrossRef]
- Illés, G.; Móricz, N. Climate Envelope Analyses Suggests Significant Rearrangements in the Distribution Ranges of Central European Tree Species. Ann. For. Sci. 2022, 79, 35. [Google Scholar] [CrossRef]
- Nechita, C.; Camarero, J.J. Hotter Winter-Spring Droughts Accelerated the Growth Decline of Marginal Pedunculate Oak (Quercus Robur) Populations in Dry Sites from Romania. Dendrochronologia 2025, 126369. [Google Scholar] [CrossRef]
- Llanos-Campana, D.M.; Kern, Z.; Popa, I.; Perşoiu, A. Stable Carbon and Oxygen Isotope Ratios in Norway Spruce (Picea Abies (L.) Karst.) Tree Rings along an Elevation Gradient in the Rarau Mts. (Romania). Dendrochronologia 2025, 92, 126365. [Google Scholar] [CrossRef]
- Tudoran, G.-M.; Cicșa, A.; Boroeanu, M.; Dobre, A.-C.; Pascu, I.-S. Forest Dynamics after Five Decades of Management in the Romanian Carpathians. Forests 2021, 12, 783. [Google Scholar] [CrossRef]
- Clima Romaniei, Editura Academiei. 2008. Available online: https://www.anticariataleph.ro/stiinta-tehnica/geografie-geologie/clima-romaniei-editura-academiei-2008 (accessed on 21 January 2025).
- Antonescu, B.; Ene, D.; Boldeanu, M.; Andrei, S.; Mărmureanu, L.; Marin, C.; Pîrloagă, R. Future Changes in Heatwaves Characteristics in Romania. Theor. Appl. Climatol. 2023, 153, 525–538. [Google Scholar] [CrossRef]
- Grosjean, P.; Ibanez, F.; Etienne, M.; Grosjean, M.P. Package ‘Pastecs.’ Pastecs: Package for Analysis of Space-Time Ecological Series. Available online: https://cran.r-project.org/web/packages/pastecs/pastecs.pdf (accessed on 10 March 2020).
- McVicar, T.R.; Körner, C. On the Use of Elevation, Altitude, and Height in the Ecological and Climatological Literature. Oecologia 2013, 171, 335–337. [Google Scholar] [CrossRef]
- Prăvălie, R.; Sîrodoev, I.; Patriche, C.; Roșca, B.; Piticar, A.; Bandoc, G.; Sfîcă, L.; Tişcovschi, A.; Dumitraşcu, M.; Chifiriuc, C.; et al. The Impact of Climate Change on Agricultural Productivity in Romania. A Country-Scale Assessment Based on the Relationship between Climatic Water Balance and Maize Yields in Recent Decades. Agric. Syst. 2020, 179, 102767. [Google Scholar] [CrossRef]
- Mudrová, M.; Procházka, A. Principal component analysis in image processing. In Proceedings of the MATLAB Technical Computing Conference, Prague, Czechia, 15 November 2005. [Google Scholar]
- Greenacre, M.; Groenen, P.J.F.; Hastie, T.; D’Enza, A.I.; Markos, A.; Tuzhilina, E. Principal Component Analysis. Nat. Rev. Methods Primer 2022, 2, 100. [Google Scholar] [CrossRef]
- Kuhn, M.; Jackson, S.; Cimentada, J. Corrr: Correlations in R 2022, version 0.4.4. 2022.
- Kassambara, A.; Patil (@patilindrajeets), I. Ggcorrplot: Visualization of a Correlation Matrix Using “Ggplot2” 2023, version 0.1.4.1. 2023.
- Lê, S.; Josse, J.; Husson, F. FactoMineR: An R Package for Multivariate Analysis. J. Stat. Softw. 2008, 25, 1–18. [Google Scholar] [CrossRef]
- Kassambara, A.; Mundt, F. Extract and Visualize the Results of Multivariate Data Analyses, R Package Factoextra Version 1.0.7. 2020.
- Cornes, R.C.; van der Schrier, G.; van den Besselaar, E.J.M.; Jones, P.D. An Ensemble Version of the E-OBS Temperature and Precipitation Data Sets. J. Geophys. Res. Atmos. 2018, 123, 9391–9409. [Google Scholar] [CrossRef]
- Yue, S.; Pilon, P. A Comparison of the Power of the t Test, Mann-Kendall and Bootstrap Tests for Trend Detection/Une Comparaison de La Puissance Des Tests t de Student, de Mann-Kendall et Du Bootstrap Pour La Détection de Tendance. Hydrol. Sci. J. 2004, 49, 21–37. [Google Scholar] [CrossRef]
- Mann, H.B. Nonparametric Tests Against Trend. Econometrica 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Sen, P.K. Estimates of the Regression Coefficient Based on Kendall’s Tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- KNMI Data Platform. Available online: https://dataplatform.knmi.nl/ (accessed on 15 January 2025).
- Zoran, M.A.; Dida, A.I. An Assessment of the Impact of Climate Change Effects on Forest Land Cover Based on Satellite Data; Neale, C.M.U., Maltese, A., Eds.; IOP Publishing Ltd.: Toulouse, France, 2015; p. 96372P. [Google Scholar]
- Bratu, I.A.; Dincă, L. Using GIS for Management of Conflicts in Natural Protected Area in Cindrel Mountains. MATEC Web Conf. 2021, 343, 09011. [Google Scholar] [CrossRef]
- Sicard, P.; Agathokleous, E.; De Marco, A.; Paoletti, E.; Calatayud, V. Urban Population Exposure to Air Pollution in Europe over the Last Decades. Environ. Sci. Eur. 2021, 33, 28. [Google Scholar] [CrossRef]
- Prăvălie, R.; Niculiță, M.; Roșca, B.; Marin, G.; Dumitrașcu, M.; Patriche, C.; Birsan, M.-V.; Nita, I.-A.; Tișcovschi, A.; Sîrodoev, I.; et al. Machine Learning-Based Prediction and Assessment of Recent Dynamics of Forest Net Primary Productivity in Romania. J. Environ. Manag. 2023, 334, 117513. [Google Scholar] [CrossRef]
- Kunert, N.; Hajek, P.; Hietz, P.; Morris, H.; Rosner, S.; Tholen, D. Summer Temperatures Reach the Thermal Tolerance Threshold of Photosynthetic Decline in Temperate Conifers. Plant Biol. 2022, 24, 1254–1261. [Google Scholar] [CrossRef]
- Lindner, M.; Maroschek, M.; Netherer, S.; Kremer, A.; Barbati, A.; Garcia-Gonzalo, J.; Seidl, R.; Delzon, S.; Corona, P.; Kolström, M.; et al. Climate Change Impacts, Adaptive Capacity, and Vulnerability of European Forest Ecosystems. For. Ecol. Manag. 2010, 259, 698–709. [Google Scholar] [CrossRef]
- Park, A.; Puettmann, K.; Wilson, E.; Messier, C.; Kames, S.; Dhar, A. Can Boreal and Temperate Forest Management Be Adapted to the Uncertainties of 21st Century Climate Change? Crit. Rev. Plant Sci. 2014, 33, 251–285. [Google Scholar] [CrossRef]
- Jandl, R.; Spathelf, P.; Bolte, A.; Prescott, C.E. Forest Adaptation to Climate Change—Is Non-Management an Option? Ann. For. Sci. 2019, 76, 48. [Google Scholar] [CrossRef]
- Hubbart, J.A.; Guyette, R.; Muzika, R.-M. More than Drought: Precipitation Variance, Excessive Wetness, Pathogens and the Future of the Western Edge of the Eastern Deciduous Forest. Sci. Total Environ. 2016, 566–567, 463–467. [Google Scholar] [CrossRef]
- Ali, A.; Sanaei, A.; Li, M.; Nalivan, O.A.; Ahmadaali, K.; Pour, M.J.; Valipour, A.; Karami, J.; Aminpour, M.; Kaboli, H.; et al. Impacts of Climatic and Edaphic Factors on the Diversity, Structure and Biomass of Species-Poor and Structurally-Complex Forests. Sci. Total Environ. 2020, 706, 135719. [Google Scholar] [CrossRef] [PubMed]
- Ulbrichová, I.; Remeš, J.; Zahradník, D. Development of the Spruce Natural Regeneration on Mountain Sites in the Šumava Mts. J. For. Sci. 2006, 52, 446–456. [Google Scholar] [CrossRef]
- Totman, M.E.; Swanson, M.E.; Rodgers, T.M.; McDaniel, P.A.; Rupp, R.A.; Brown, D.J. Soil Organic Carbon Stocks in the Forests of Mount Rainier National Park, Washington. Soil Sci. Soc. Am. J. 2014, 78, S270–S280. [Google Scholar] [CrossRef]
- Garamszegi, B.; Miklós, K.; Kolozs, L.; Zoltán, K. Changing Climatic Sensitivity and Effects of Drought Frequency on the Radial Growth of Fagus Sylvatica at the Xeric Frontiers of Central Europe. Q. J. Hung. Meteorol. Serv. 2020, 124, 143–309. [Google Scholar] [CrossRef]
- Bosela, M.; Tumajer, J.; Cienciala, E.; Dobor, L.; Kulla, L.; Marčiš, P.; Popa, I.; Sedmák, R.; Sedmáková, D.; Sitko, R.; et al. Climate Warming Induced Synchronous Growth Decline in Norway Spruce Populations across Biogeographical Gradients since 2000. Sci. Total Environ. 2021, 752, 141794. [Google Scholar] [CrossRef]
- Wang, L.; Wei, F.; Tagesson, T.; Fang, Z.; Svenning, J.-C. Transforming Forest Management through Rewilding: Enhancing Biodiversity, Resilience, and Biosphere Sustainability under Global Change. One Earth 2025, 8, 101195. [Google Scholar] [CrossRef]
- Nikinmaa, L.; Lindner, M.; Cantarello, E.; Gardiner, B.; Jacobsen, J.B.; Jump, A.S.; Parra, C.; Plieninger, T.; Schuck, A.; Seidl, R.; et al. A Balancing Act: Principles, Criteria and Indicator Framework to Operationalize Social-Ecological Resilience of Forests. J. Environ. Manag. 2023, 331, 117039. [Google Scholar] [CrossRef]
- Yi, C.; Jackson, N. A Review of Measuring Ecosystem Resilience to Disturbance. Environ. Res. Lett. 2021, 16, 053008. [Google Scholar] [CrossRef]
- Petritan, A.M.; Petritan, I.C.; Hevia, A.; Walentowski, H.; Bouriaud, O.; Sánchez-Salguero, R. Climate Warming Predispose Sessile Oak Forests to Drought-Induced Tree Mortality Regardless of Management Legacies. For. Ecol. Manag. 2021, 491, 119097. [Google Scholar] [CrossRef]
Forest Districts | Code | Area [ha] | Alt [m] | Inc [°] | P [mm] | No. of ua | Main Species | Climatic Zone |
---|---|---|---|---|---|---|---|---|
Craiova | 1609 | 19 | 75 | <5 | 534 | 14 | Quercus spp. | Continental |
Baragan | 4002 | 333 | 51 | <5 | 452 | 302 | Quercus spp. | Steppic |
Tomnatec | 4004 | 7244 | 874 | 22 | 696 | 717 | Picea abies | Alpin |
Hemeius | 4006 | 48 | 170 | <5 | 509 | 32 | Various Hardwood | Continental |
Mihaesti | 4007 | 8445 | 541 | 17 | 565 | 1586 | Fagus sylvatica | Continental |
Stefanesti | 4010 | 481 | 89 | <5 | 568 | 181 | Quercus spp. | Continental |
Sacele | 4012 | 2485 | 1037 | 27 | 631 | 245 | Picea abies | Alpin |
Lechinta | 4013 | 2262 | 426 | 17 | 558 | 467 | Various Hardwood | Continental |
Caransebes | 4014 | 17,735 | 560 | 31 | 711 | 1377 | Fagus sylvatica | Alpin |
Mures | 4015 | 179 | 384 | 13 | 528 | 45 | Quercus spp. | Continental |
Timisoara | 4016 | 156 | 181 | <5 | 538 | 63 | Various Hardwood | Continental |
Tulcea | 4022 | 475 | 151 | <5 | 400 | 34 | Quercus spp. | Steppic |
Vidra | 4023 | 8469 | 430 | 27 | 516 | 1402 | Fagus sylvatica | Alpin |
Variable | Minimum | Maximum | Average | Standard Deviation of (s) | Variance (s2) | Coefficient of Variance (s %) |
---|---|---|---|---|---|---|
Slope (°) | 0 | 60 | 21.8 | 11.55 | 134.29 | 53 |
Elevation (m) | 49 | 1550 | 556 | 261.37 | 68,317.34 | 47 |
Soil litter (Classes 1–4) | 1 | 4 | 3 | 0.74 | 0.55 | 24 |
Stand structure (Classes 1–4) | 1 | 4 | 2 | 0.81 | 0.64 | 37 |
Stand volume (m3) | 0 | 711 | 85 | 97.23 | 9454.16 | 114 |
Mean precipitations (mm/year) | 399.97 | 802.73 | 605.99 | 89.13 | 7944.73 | 15 |
Aridity index (no unit) | 0.44 | 1.08 | 0.87 | 0.17 | 0.03 | 19 |
Species (number) | 1 | 16 | 6 | 4.29 | 18.46 | 69 |
Regeneration_area (% surface) | 0 | 9 | 0.70 | 1.63 | 2.67 | 232 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chivulescu, S.; Pitar, D.; Dobre, A.C.; Mărmureanu, L.; Leca, Ș.; Badea, O. Quantifying Climate Change Impacts on Romanian Forests: Indicators of Resilience and Vulnerability. Forests 2025, 16, 941. https://doi.org/10.3390/f16060941
Chivulescu S, Pitar D, Dobre AC, Mărmureanu L, Leca Ș, Badea O. Quantifying Climate Change Impacts on Romanian Forests: Indicators of Resilience and Vulnerability. Forests. 2025; 16(6):941. https://doi.org/10.3390/f16060941
Chicago/Turabian StyleChivulescu, Serban, Diana Pitar, Alexandru Claudiu Dobre, Luminița Mărmureanu, Ștefan Leca, and Ovidiu Badea. 2025. "Quantifying Climate Change Impacts on Romanian Forests: Indicators of Resilience and Vulnerability" Forests 16, no. 6: 941. https://doi.org/10.3390/f16060941
APA StyleChivulescu, S., Pitar, D., Dobre, A. C., Mărmureanu, L., Leca, Ș., & Badea, O. (2025). Quantifying Climate Change Impacts on Romanian Forests: Indicators of Resilience and Vulnerability. Forests, 16(6), 941. https://doi.org/10.3390/f16060941