Study on Forest Growing Stock Volume in Kunming City Considering the Relationship Between Stand Density and Allometry
Abstract
1. Introduction
2. Study Area and Data
2.1. Overview of the Study Area
2.2. Data and Preprocessing
2.2.1. Satellite LiDAR Data
2.2.2. Optical and Microwave Remote Sensing Data
2.2.3. Optical Remote Sensing Data Derivative Products
2.2.4. Forest Resource Survey Data
3. Research Methods
3.1. Forest Structural Parameter Inversion
3.1.1. Dominant Tree Species and Stand Density Classification
3.1.2. Canopy Height and DBH Inversion
3.2. Construction of Forest Volume Estimation Model
3.3. Accuracy Validation
4. Results
4.1. Feature Importance Results
4.2. Accuracy of Results
4.3. Forest Structure Parameters and GSV Spatial Continuous Mapping
4.4. Spatial Analysis of GSV
5. Discussion
5.1. Feature Selection of Model Variables
5.2. Impact of Stand Density on GSV Estimation
6. Conclusions
- (1)
- The total GSV in Kunming was estimated at 1.01 × 108 m3. Validation against national forest inventory data confirmed the reliability of the results (R2 = 0.727);
- (2)
- The integration of stand density into the GSV estimation model significantly improved overall accuracy. Specifically, it elevated R2 from 0.565 to 0.727 and notably reduced the RMSE and MAE values. This result highlights the critical role of stand density as an explanatory variable, particularly in heterogeneous forest environments, and supports its inclusion to enhance model robustness at large scales;
- (3)
- Spatial analyses at both the species and administrative levels revealed significant heterogeneity in GSV distribution. This study provides a novel technical approach for supporting national forest inventory efforts and offers a cost-effective, efficient, and accurate method for regional GSV estimation. It also provides valuable decision-making support for forest resource management in Kunming City.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sun, L.L.; Cui, H.J.; Ge, Q.S. Will China achieve its 2060 carbon neutral commitment from the provincial perspective? Adv. Clim. Change Res. 2022, 13, 169–178. [Google Scholar] [CrossRef]
- Guohua, L.; Bojie, F.; Jingyun, F. Carbon dynamics of Chinese forests and its contribution to global carbon balance. Acta Ecol. Sin. 2000, 20, 732–740. [Google Scholar]
- Pan, Y.; Birdsey, R.A.; Fang, J.; Houghton, R.; Kauppi, P.E.; Kurz, W.A.; Phillips, O.L.; Shvidenko, A.; Lewis, S.L.; Canadell, J.G.; et al. Daniel Hayes, A Large and Persistent Carbon Sink in the World’s Forests. Science 2011, 333, 988–993. [Google Scholar] [CrossRef] [PubMed]
- Somogyi, Z.; Teobaldelli, M.; Federici, S.; Matteucci, G.; Pagliari, V.; Grassi, G.; Seufert, G. Allometric biomass and carbon factors database. Ifor.-Biogeosci. For. 2008, 1, 107–113. [Google Scholar] [CrossRef]
- Hu, Y.; Xu, X.; Wu, F.; Sun, Z.; Xia, H.; Meng, Q.; Huang, W.; Zhou, H.; Gao, J.; Li, W.; et al. Estimating Forest Stock Volume in Hunan Province, China, by Integrating In Situ Plot Data, Sentinel-2 Images, and Linear and Machine Learning Regression Models. Remote Sens. 2020, 12, 186. [Google Scholar] [CrossRef]
- Santoro, M.; Beaudoin, A.; Beer, C.; Cartus, O.; Fransson, J.E.S.; Hall, R.J.; Pathe, C.; Schmullius, C.; Schepaschenko, D.; Shvidenko, A.; et al. Forest growing stock volume of the northern hemisphere: Spatially explicit estimates for 2010 derived from Envisat ASAR. Remote Sens. Environ. 2015, 168, 316–334. [Google Scholar] [CrossRef]
- Liu, M.Y.; Nie, S.; Wang, C.; Xi, X.; Cheng, F.; Feng, B. Forest stock volume inversion based on ICESat-2 and Sentinel-2A data. Remote Sens. Nat. Resour. 2024, 36, 210–216. [Google Scholar] [CrossRef]
- Ma, T.; Hu, Y.; Wang, J.; Beckline, M.; Pang, D.; Chen, L.; Ni, X.; Li, X. A Novel Vegetation Index Approach Using Sentinel-2 Data and Random Forest Algorithm for Estimating Forest Stock Volume in the Helan Mountains, Ningxia, China. Remote Sens. 2023, 15, 1853. [Google Scholar] [CrossRef]
- Li, W.; Niu, Z.; Shang, R.; Qin, Y.; Wang, L.; Chen, H. High-resolution mapping of forest canopy height using machine learning by coupling ICESat-2 LiDAR with Sentinel-1, Sentinel-2 and Landsat-8 data. Int. J. Appl. Earth Obs. Geoinf. 2020, 92, 102163. [Google Scholar] [CrossRef]
- Huang, X.; Cheng, F.; Wang, J.; Yi, B.; Bao, Y. Comparative study on remote sensing methods for forest height mapping in complex mountainous environments. Remote Sens. 2023, 15, 2275. [Google Scholar] [CrossRef]
- Astola, H.; Häme, T.; Sirro, L.; Molinier, M.; Kilpi, J. Comparison of Sentinel-2 and Landsat 8 imagery for forest variable prediction in boreal region. Remote Sens. Environ. 2019, 223, 257–273. [Google Scholar] [CrossRef]
- Ding, X.Y.; Chen, E.X.; Zhao, L.; Fan, Y.; Xu, K.; Ma, Y. An allometrie method for estimating above ground biomass based on airbore LiDAR and spaceborne multispectral data. Remote Sens. Nat. Resour. 2024, 3, 1–10. Available online: https://link.cnki.net/urlid/10.1759.p.20240731.1702.014 (accessed on 23 May 2025).
- Luo, Y.; Lin, G.; Song, Y.; Shi, K.; Xu, J. Binary Standing Volume Model for Pinus amandii in Yunnan Province. For. Invent. Plan. 2024, 49, 12–18. [Google Scholar] [CrossRef]
- Wang, Z.C.; Du, H.; Song, T.Q.; Peng, W.X.; Zeng, F.P.; Zeng, Z.X.; Zhang, H. Allometric models of major tree species and forest biomass in Guangxi. Acta Ecol. Sin 2015, 35, 4462–4472. [Google Scholar] [CrossRef]
- West, G.B.; Brown, J.H.; Enquist, B.J. A general model for the origin of allometric scaling laws in biology. Science 1997, 276, 122–126. [Google Scholar] [CrossRef]
- Han, W.X.; Fang, J.Y. Review on the mechanism models of allometric scaling laws: 3/4 vs. 2/3 power. Chin. J. Plant Ecol. 2008, 32, 951–960. [Google Scholar] [CrossRef]
- Lu, D.; Chen, Q.; Wang, G.; Liu, L.; Li, G.; Moran, E. A survey of remote sensing-based aboveground biomass estimation methods in forest ecosystems. Int. J. Digit. Earth 2016, 9, 63–105. [Google Scholar] [CrossRef]
- Fang, J.Y.; Liu, G.H.; Xu, S.L. Biomass and net production of forest vegetation in China. Acta Ecol. Sin. 1996, 16, 497–508. [Google Scholar]
- Kittredge, J. Estimation of the amount of foliage of trees and stands. J. For. 1944, 42, 905–912. [Google Scholar]
- Woodwell, G.M.; Whittaker, R.H.; Reiners, W.A.; Likens, G.E.; Delwiche, C.C.; Botkin, D.B. The Biota and the World Carbon Budget: The terrestrial biomass appears to be a net source of carbon dioxide for the atmosphere. Science 1978, 199, 141–146. [Google Scholar] [CrossRef]
- Zeng, W.S. Development of monitoring and assessment of forest biomass and carbon storage in China. For. Ecosyst. 2014, 1, 20. [Google Scholar] [CrossRef]
- Li, Q.; Liu, Z.; Jin, G. Impacts of stand density on tree crown structure and biomass: A global meta-analysis. Agric. For. Meteorol. 2022, 326, 109181. [Google Scholar] [CrossRef]
- Cai, H.; Di, X.; Chang, S.X.; Jin, G. Stand density and species richness affect carbon storage and net primary productivity in early and late successional temperate forests differently. Ecol. Res. 2016, 31, 525–533. [Google Scholar] [CrossRef]
- Chave, J.; Réjou-Méchain, M.; Búrquez, A.; Chidumayo, E.; Colgan, M.S.; Delitti, W.B.C.; Duque, Á.; Eid, T.; Fearnside, P.M.; Goodman, R.C.; et al. Improved allometric models to estimate the aboveground biomass of tropical trees. Glob. Change Biol. 2014, 20, 3177–3190. [Google Scholar] [CrossRef] [PubMed]
- Thom, D.; Rammer, W.; Albrich, K.; Braziunas, K.H.; Dobor, L.; Dollinger, C.; Hansen, W.D.; Harvey, B.J.; Hlásný, T.; Hoecker, T.J.; et al. Parameters of 150 temperate and boreal tree species and provenances for an individual-based forest landscape and disturbance model. Data Brief 2024, 55, 110662. [Google Scholar] [CrossRef]
- McRoberts, R.E.; Næsset, E.; Gobakken, T. Inference for LiDAR-assisted estimation of forest growing stock volume. Remote Sens. Environ. 2013, 128, 268–275. [Google Scholar] [CrossRef]
- Dean, T.J.; D’Amato, A.W.; Palik, B.J.; Battaglia, M.A.; Harrington, C.A. A direct measure of stand density based on stand growth. For. Sci. 2021, 67, 103–115. [Google Scholar] [CrossRef]
- Yun, T.; Jiang, K.; Li, G.; Eichhorn, M.P.; Fan, J.; Liu, F.; Chen, B.; An, F.; Cao, L. Individual tree crown segmentation from airborne LiDAR data using a novel Gaussian filter and energy function minimization-based approach. Remote Sens. Environ. 2021, 256, 112307. [Google Scholar] [CrossRef]
- Cheng, K.; Yang, H.; Chen, Y.; Yang, Z.; Ren, Y.; Zhang, Y.; Lin, D.; Liu, W.; Huang, G.; Xu, J.; et al. How many trees are there in China? Sci. Bull. 2025, 70, 1076–1079. [Google Scholar] [CrossRef]
- Crowther, T.W.; Glick, H.B.; Covey, K.R.; Bettigole, C.; Maynard, D.S.; Thomas, S.M.; Smith, J.R.; Hintler, G.; Duguid, M.C.; Amatulli, G.; et al. Mapping tree density at a global scale. Nature 2015, 525, 201–205. [Google Scholar] [CrossRef]
- Weinan, Z.; Yong, W.; Guanglong, O. Remote Sensing Estimation and Inversion of Biomass for Major Forest Types in Kunming Based on Landsat 8 OLI. J. Southwest For. Univ. 2023, 43, 107–116. [Google Scholar] [CrossRef]
- Markus, T.; Neumann, T.; Martino, A.; Abdalati, W.; Brunt, K.; Csatho, B.; Farrell, S.; Fricker, H.; Gardner, A.; Harding, D.; et al. The Ice, Cloud, and land Elevation Satellite-2 (ICESat-2): Science requirements, concept, and implementation. Remote Sens. Environ. 2017, 190, 260–273. [Google Scholar] [CrossRef]
- Huang, X.; Cheng, F.; Wang, J.; Duan, P.; Wang, J. Forest canopy height extraction method based on ICESat-2/ATLAS data. IEEE Trans. Geosci. Remote Sens. 2023, 61, 5700814. [Google Scholar] [CrossRef]
- Gao, W.Q.; Liu, J.F.; Xue, Z.M.; Zhang, Y.T.; Gao, Z.H.; Ni, Y.Y.; Wang, X.F.; Jiang, Z.P. Geographical patterns and drivers of growth dynamics of Quercus variabilis. For. Ecol. Manag. 2018, 429, 256–266. [Google Scholar] [CrossRef]
- Vicente-Serrano, S.M.; Camarero, J.J.; Azorin-Molina, C. Diverse responses of forest growth to drought time-scales in the Northern Hemisphere. Glob. Ecol. Biogeogr. 2014, 23, 1019–1030. [Google Scholar] [CrossRef]
- National Technical Committee on Forest Resources of Standardization Administration of China (SAC/TC 370). Tree Biomass Models and Related Parameters to Carbon Accounting for Major Tree Species. GB/T 43648-2024; Standards Press of China: Beijing, China, 2024. Available online: https://d.wanfangdata.com.cn/standard/ChpTdGFuZGFyZE5ld1MyMDI1MDUxMzE3MDEzOBIPR0IvVCA0MzY0OC0yMDI0GghqZzExYnRxMw (accessed on 23 May 2025).
- Li, H.; Hiroshima, T.; Li, X.; Hayashi, M.; Kato, T. High-resolution mapping of forest structure and carbon stock using multi-source remote sensing data in Japan. Remote Sens. Environ. 2024, 312, 114322. [Google Scholar] [CrossRef]
- Blickensdörfer, L.; Oehmichen, K.; Pflugmacher, D.; Kleinschmit, B.; Hostert, P. National tree species mapping using Sentinel-1/2 time series and German National Forest Inventory data. Remote Sens. Environ. 2024, 304, 114069. [Google Scholar] [CrossRef]
- Wu, X.; Niu, C.; Liu, X.; Hu, T.; Feng, Y.; Zhao, Y.; Liu, S.; Liu, Z.; Dai, G.; Zhang, Y.; et al. Canopy structure regulates autumn phenology by mediating the microclimate in temperate forests. Nat. Climate Change 2024, 14, 1299–1305. [Google Scholar] [CrossRef]
- Deng, Y.; Pan, J.; Wang, J.; Liu, Q.; Zhang, J. Mapping of Forest Biomass in Shangri-La City Based on LiDAR Technology and Other Remote Sensing Data. Remote Sens. 2022, 14, 5816. [Google Scholar] [CrossRef]
- Zhu, X. Forest Height Retrieval of China with a Resolution of 30 m Using ICESat-2 and GEDI Data; University of Chinese Academy of Sciences: Beijing, China, 2021; Volume 4, p. 2020. [Google Scholar]
- West, G.B.; Brown, J.H.; Enquist, B.J. A general model for the structure and allometry of plant vascular systems. Nature 1999, 400, 664–667. [Google Scholar] [CrossRef]
- Ketterings, Q.M.; Coe, R.; van Noordwijk, M.; Ambagau, Y.; Palm, C.A. Reducing uncertainty in the use of allometric biomass equations for predicting above-ground tree biomass in mixed secondary forests. For. Ecol. Manag. 2001, 146, 199–209. [Google Scholar] [CrossRef]
- Kaitaniemi, P. Testing the allometric scaling laws. J. Theor. Biol. 2004, 228, 149–153. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Shu, Q.; Zhao, H.; Tan, D.; Yuan, Z. Model Uncertainty Analysis of Aboveground Biomass Estimation of Pinus densata. J. Southwest For. Univ. 2021, 41, 100–106. [Google Scholar] [CrossRef]
- Foody, G.M. Status of land cover classification accuracy assessment. Remote Sens. Environ. 2002, 80, 185–201. [Google Scholar] [CrossRef]
- Wu, Y.; Zan, J.; Liao, C.; Leng, H.; Shi, K.; Zhang, Z.; Wang, H. Analysis of forest resource changes in Yunnan Province: Taking forest resource changes during the 13th Five-Year Plan as an example. Green Sci. Technol. 2022, 24, 169–172. [Google Scholar] [CrossRef]
- Huang, H.; Liu, C.; Wang, X.; Zhou, X.; Gong, P. Integration of multi-resource remotely sensed data and allometric models for forest aboveground biomass estimation in China. Remote Sens. Environ. 2019, 221, 225–234. [Google Scholar] [CrossRef]
- Li, J.; Xiong-qing, Z.; Ai-guo, D. Develop Annual Stand Volume Growth Model of Chinese fir Including Different Stand Density Indices. For. Sci. Res. 2022, 35, 97–102. [Google Scholar] [CrossRef]
- Domke, G.M.; Woodall, C.W.; Smith, J.E. Accounting for density reduction and structural loss in standing dead trees: Implications for forest biomass and carbon stock estimates in the United States. Carbon Balance Manag. 2011, 6, 14. [Google Scholar] [CrossRef]
- Wassihun, A.N.; Hussin, Y.A.; Van Leeuwen, L.M.; Latif, Z.A. Effect of forest stand density on the estimation of above ground biomass/carbon stock using airborne and terrestrial LIDAR derived tree parameters in tropical rain forest, Malaysia. Environ. Syst. Res. 2019, 8, 27. [Google Scholar] [CrossRef]
- Fassnacht, F.E.; Mangold, D.; Schäfer, J.; Immitzer, M.; Kattenborn, T.; Koch, B.; Latifi, H. Estimating stand density, biomass and tree species from very high resolution stereo-imagery–towards an all-in-one sensor for forestry applications? For. Int. J. For. Res. 2017, 90, 613–631. [Google Scholar] [CrossRef]
- Chen, L.; Ren, C.; Zhang, B.; Wang, Z.; Liu, M.; Man, W.; Liu, J. Improved estimation of forest stand volume by the integration of GEDI LiDAR data and multi-sensor imagery in the Changbai Mountains Mixed forests Ecoregion (CMMFE), northeast China. Int. J. Appl. Earth Obs. Geoinf. 2021, 100, 102326. [Google Scholar] [CrossRef]
- Tian, H.; Zhu, J.; He, X.; Chen, X.; Jian, Z.; Li, C.; Ou, Q.; Li, Q.; Huang, G.; Liu, C.; et al. Using machine learning algorithms to estimate stand volume growth of Larix and Quercus forests based on national-scale Forest Inventory data in China. For. Ecosyst. 2022, 9, 100037. [Google Scholar] [CrossRef]
- Hsieh, P.F.; Lee, L.C.; Chen, N.Y. Effect of spatial resolution on classification errors of pure and mixed pixels in remote sensing. IEEE Trans. Geosci. Remote Sens. 2001, 39, 2657–2663. [Google Scholar] [CrossRef]
- Jinghui, M. A comparison of different methods for fitting the self-thinning equation. J. Beijing For. Univ. 2019, 41, 58–68. [Google Scholar] [CrossRef]
- Aiguo, D.; Lihua, F.; Jianguo, Z. Self-thinning rules at Chinese fir (Cunninghamia lanceolata) plantations—Based on a permanent density trial in southern China. J. Resour. Ecol. 2019, 10, 315–323. [Google Scholar] [CrossRef]
- Ogawa, K. Mathematical consideration of the age-related decline in leaf biomass in forest stands under the self-thinning law. Ecol. Model. 2018, 372, 64–69. [Google Scholar] [CrossRef]
Measured Parameters | Unit | Sample Count | Mean | SD | Min | Max | Median |
---|---|---|---|---|---|---|---|
Stand density | trees/pixel | 42,834 | 101.18 | 45.37 | 5.22 | 199.98 | 98.46 |
DBH | cm | 48,438 | 10.32 | 6.24 | 0.10 | 52.00 | 10.00 |
Canopy height | m | 98 | 11.29 | 4.03 | 1.28 | 20.90 | 12.00 |
GSV | m3/ha | 48,438 | 58.09 | 32.65 | 1.00 | 333.90 | 55.60 |
Feature Name | Feature Type and Resolution | Time | Feature Source |
---|---|---|---|
VV, VH | Polarization indices, 30 m | Jan–Dec 2020 | Sentinel-1 |
Blue(B2), Green (B3), Red (B4), VRE1 (B5), VRE2 (B6), VRE3 (B7), NIR (B8), VRE4 (B8A), SWIR1 (B11), SWIR2 (B12) | Spectral bands, 30 m | Mar–Sep 2020 | Sentinel-2 |
Jan–Dec 2020 | |||
L8_Second Moment, L8_Entropy, L8_Dissimilarity, L8_Homogeneity, L8_Contrast, L8_Variance, L8_Correlation, L8_Mean | Texture features, 30 m | Sep–Dec 2020 | Landsat-8 (by GLCM) |
Temperature, Precipitation | Climatic variables, 30 m | 2020 | WorldClim-2 |
Elevation, Slope, Aspect | Topographic indices, 30 m | 2020 | SRTM DEM |
Feature Name | Feature Type and Resolution | Time | Feature Source |
---|---|---|---|
VV, VH | Polarization indices, 30 m | Jan–Dec 2020 | Sentinel-1 |
Blue(B2), Green (B3), Red (B4), VRE1 (B5), VRE2 (B6), VRE3 (B7), NIR (B8), VRE4 (B8A), SWIR1 (B11), SWIR2 (B12) | Spectral bands, 30 m | Jan–Dec 2020 | Sentinel-2 |
Blue (B2), Green (B3), Red (B4), VRE1 (B5), VRE2 (B6), VRE3 (B7) | Spectral bands, 30 m | Jan–Dec 2020 | Landsat-8 |
L8_RVI (Ratio Vegetation Index), L8_EVI (Enhanced Vegetation Index), L8_NDRE (Normalized Difference Red Edge Index), L8_Ch1NDI (Chlorophyll Normalized Difference Index), L8_DVI (Difference Vegetation Index), L8_NDVI (Normalized Difference Vegetation Index), L8_FDI (Flood Disaster Index), L8_MNDWI (Modified Normalized Difference Water Index), L8_NDWI (Normalized Difference Water Index), L8_NDBI (Normalized Difference Built-up Index), L8_SAVI (Soil-Adjusted Vegetation Index) | Vegetation indices, 30 m | ||
Temperature, Precipitation | Climatic variables, 30 m | 2020 | WorldClim-2 |
Elevation, Slope, Aspect | Topographic indices, 30 m | 2020 | SRTM DEM |
Tree Species (Group) | Applicable Conditions | Model Parameters | ||
---|---|---|---|---|
a | b | c | ||
Pinus yunnanensis (PY) | DBH < 5 cm | 1.8886 | 0.79242 | |
DBH ≥ 5 cm | ||||
Pinus armandii (PA) | DBH < 5 cm | 1.44888 | 0.90485 | |
DBH ≥ 5 cm | 1.9114 | 0.90485 | ||
Quercus (QU) | DBH < 5 cm | 1.48879 | 0.92394 | |
DBH ≥ 5 cm | 1.90118 | 0.92394 | ||
Hardwood species (HS) | DBH < 5 cm | 1.49254 | 1.1359 | |
DBH ≥ 5 cm | 1.68893 | 1.1359 | ||
Softwood species (SS) | DBH < 5 cm | 1.7653 | 0.94759 | |
DBH ≥ 5 cm | 1.89521 | 0.94759 | ||
Other species (OS) | DBH < 5 cm | 1.21398 | 0.99776 | |
DBH ≥ 5 cm | 1.83798 | 0.99776 |
Data | R2 |
---|---|
Average stock volume (No SD) | 0.565 |
Total stock volume (Increase SD) | 0.727 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Wang, C.; Wang, J.; Huang, X.; Zhou, Z.; Zhou, Z.; Cheng, F. Study on Forest Growing Stock Volume in Kunming City Considering the Relationship Between Stand Density and Allometry. Forests 2025, 16, 891. https://doi.org/10.3390/f16060891
Zhang J, Wang C, Wang J, Huang X, Zhou Z, Zhou Z, Cheng F. Study on Forest Growing Stock Volume in Kunming City Considering the Relationship Between Stand Density and Allometry. Forests. 2025; 16(6):891. https://doi.org/10.3390/f16060891
Chicago/Turabian StyleZhang, Jing, Cheng Wang, Jinliang Wang, Xiang Huang, Zilin Zhou, Zetong Zhou, and Feng Cheng. 2025. "Study on Forest Growing Stock Volume in Kunming City Considering the Relationship Between Stand Density and Allometry" Forests 16, no. 6: 891. https://doi.org/10.3390/f16060891
APA StyleZhang, J., Wang, C., Wang, J., Huang, X., Zhou, Z., Zhou, Z., & Cheng, F. (2025). Study on Forest Growing Stock Volume in Kunming City Considering the Relationship Between Stand Density and Allometry. Forests, 16(6), 891. https://doi.org/10.3390/f16060891