Estimation of the Total Carbon Stock of Dudles Forest Based on Satellite Imagery, Airborne Laser Scanning, and Field Surveys
Abstract
:1. Introduction
1.1. Review of Tree Species Mapping
1.2. Airborne Laser Scanning
1.3. Aboveground Carbon Stock Estimation
1.4. Carbon Stock in Root Systems
1.5. Carbon Content of Forest Litter
1.6. Soil Humus Content
1.7. Sampling Network
2. Materials and Methods
2.1. Project Area Description
2.2. Methodology Description
2.3. Field Dendrometric Survey
2.4. Satellite-Based Tree Species Mapping
2.5. Airborne Laser Scanning and Processing
2.6. Estimation of Organic Carbon Content in Aboveground Biomass
- AGBc: organic carbon content of aboveground biomass [Mg ha−1];
- AGB: the amount of aboveground biomass [Mg ha−1];
- WD: average wood density of tree species [t/m3];
- C%: average organic carbon content of aboveground biomass.
2.7. Determination of Litter Quantity in Characteristic Stands at Sampling Points
2.8. Determination of Soil Organic Carbon Content
2.9. Estimation of Carbon Content in Belowground Woody Roots
2.10. Calculation and Interpolation of Belowground Carbon Stock
3. Results and Discussion
3.1. Tree Species Mapping
3.2. Volume Estimation
3.3. Aboveground Carbon Stock Calculation
3.4. Belowground Carbon Stock Estimation
3.5. Dilution of Precision
3.6. Comparision with Existing Soil Maps and Databases
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
GIS | Geographic Information System |
ALS | Airborne Laser Scanning |
LiDAR | Light Detection and Ranging |
DEM | Digital Elevation Model |
CHM | Canopy Height Model |
DBH | Diameter at Breast Height |
WRB | World Reference Base |
IDW | Inverse Distance Weighting |
RBF | Radial Basis Function |
EBK | Empirical Bayesian Kriging |
TPI | Topographic Position Index |
References
- Szász, B.; Heil, B.; Kovács, G.; Heilig, D.; Veperdi, G.; Mészáros, D.; Illés, G.; Czimber, K. Investigation of the Relationship between Topographic and Forest Stand Characteristics Using Aerial Laser Scanning and Field Survey Data. Forests 2024, 15, 1546. [Google Scholar] [CrossRef]
- Persson, M.; Lindberg, E.; Reese, H. Tree Species Classification with Multi-Temporal Sentinel-2 Data. Remote Sens. 2018, 10, 1794. [Google Scholar] [CrossRef]
- Axelsson, A.; Lindberg, E.; Reese, H.; Olsson, H. Tree Species Classification Using Sentinel-2 Imagery and Bayesian Inference. Int. J. Appl. Earth Obs. Geoinf. 2021, 100, 102318. [Google Scholar] [CrossRef]
- Breidenbach, J.; Waser, L.T.; Debella-Gilo, M.; Schumacher, J.; Rahlf, J.; Hauglin, M.; Puliti, S.; Astrup, R. National Mapping and Estimation of Forest Area by Dominant Tree Species Using Sentinel-2 Data. Can. J. For. Res. 2021, 51, 365–379. [Google Scholar] [CrossRef]
- Illarionova, S.; Trekin, A.; Ignatiev, V.; Oseledets, I. Tree Species Mapping on Sentinel-2 Satellite Imagery with Weakly Supervised Classification and Object-Wise Sampling. Forests 2021, 12, 1413. [Google Scholar] [CrossRef]
- Nilsson, M. Estimation of Tree Heights and Stand Volume Using an Airborne Lidar System. Remote Sens. Environ. 1996, 56, 1–7. [Google Scholar] [CrossRef]
- Næsset, E. Estimating Timber Volume of Forest Stands Using Airborne Laser Scanner Data. Remote Sens. Environ. 1997, 61, 246–253. [Google Scholar] [CrossRef]
- Means, J.E.; Acker, S.A.; Harding, D.J.; Blair, J.B.; Lefsky, M.A.; Cohen, W.B.; Harmon, M.E.; McKee, W.A. Use of Large-Footprint Scanning Airborne Lidar to Estimate Forest Stand Characteristics in the Western Cascades of Oregon. Remote Sens. Environ. 1999, 67, 298–308. [Google Scholar] [CrossRef]
- Magnussen, S.; Boudewyn, P. Derivations of Stand Heights from Airborne Laser Scanner Data with Canopy-Based Quantile Estimators. Can. J. For. Res. 1998, 28, 1016–1031. [Google Scholar] [CrossRef]
- Hyyppä, J.; Hyyppä, H.; Leckie, D.; Gougeon, F.; Yu, X.; Maltamo, M. Review of Methods of Small-footprint Airborne Laser Scanning for Extracting Forest Inventory Data in Boreal Forests. Int. J. Remote Sens. 2008, 29, 1339–1366. [Google Scholar] [CrossRef]
- Kraus, K.; Pfeifer, N. A New Method for Surface Reconstruction from Laser Scanner Data. Int. Arch. Photogramm. Remote Sens. 1997, 32, 80–86. [Google Scholar]
- Axelsson, P. DEM Generation from Laser Scanner Data Using Adaptive TIN Models. ISPRS—Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2000, 33, 110–117. [Google Scholar]
- Dong, Y.; Cui, X.; Zhang, L.; Ai, H. An Improved Progressive TIN Densification Filtering Method Considering the Density and Standard Variance of Point Clouds. ISPRS Int. J. Geo-Inf. 2018, 7, 409. [Google Scholar] [CrossRef]
- Pingel, T.J.; Clarke, K.C.; McBride, W.A. An Improved Simple Morphological Filter for the Terrain Classification of Airborne LIDAR Data. ISPRS J. Photogramm. Remote Sens. 2013, 77, 21–30. [Google Scholar] [CrossRef]
- Zhang, K.; Chen, S.-C.; Whitman, D.; Shyu, M.-L.; Yan, J.; Zhang, C. A Progressive Morphological Filter for Removing Nonground Measurements from Airborne LIDAR Data. IEEE Trans. Geosci. Remote Sens. 2003, 41, 872–882. [Google Scholar] [CrossRef]
- Cai, S.; Zhang, W.; Liang, X.; Wan, P.; Qi, J.; Yu, S.; Yan, G.; Shao, J. Filtering Airborne LiDAR Data Through Complementary Cloth Simulation and Progressive TIN Densification Filters. Remote Sens. 2019, 11, 1037. [Google Scholar] [CrossRef]
- Li, F.; Zhu, H.; Luo, Z.; Shen, H.; Li, L. An Adaptive Surface Interpolation Filter Using Cloth Simulation and Relief Amplitude for Airborne Laser Scanning Data. Remote Sens. 2021, 13, 2938. [Google Scholar] [CrossRef]
- Hyyppa, J.; Kelle, O.; Lehikoinen, M.; Inkinen, M. A Segmentation-Based Method to Retrieve Stem Volume Estimates from 3-D Tree Height Models Produced by Laser Scanners. IEEE Trans. Geosci. Remote Sens. 2001, 39, 969–975. [Google Scholar] [CrossRef]
- Persson, Å.; Holmgren, J.; Söderman, U. Detecting and Measuring Individual Trees Using an Airborne Laser Scanner. Photogramm. Eng. Remote Sens. 2002, 68, 925–932. [Google Scholar]
- Chen, Q.; Baldocchi, D.; Gong, P.; Kelly, M. Isolating Individual Trees in a Savanna Woodland Using Small Footprint Lidar Data. Photogramm. Eng. Remote Sens. 2006, 72, 923–932. [Google Scholar] [CrossRef]
- Koch, B.; Heyder, U.; Weinacker, H. Detection of Individual Tree Crowns in Airborne Lidar Data. Photogramm. Eng. Remote Sens. 2006, 72, 357–363. [Google Scholar] [CrossRef]
- Lee, H.; Slatton, K.C.; Roth, B.E.; Cropper JR, W.P. Adaptive Clustering of Airborne LiDAR Data to Segment Individual Tree Crowns in Managed Pine Forests. Int. J. Remote Sens. 2010, 31, 117–139. [Google Scholar] [CrossRef]
- Strîmbu, V.F.; Strîmbu, B.M. A Graph-Based Segmentation Algorithm for Tree Crown Extraction Using Airborne LiDAR Data. ISPRS J. Photogramm. Remote Sens. 2015, 104, 30–43. [Google Scholar] [CrossRef]
- Ayrey, E.; Fraver, S.; Kershaw, J.A., Jr.; Kenefic, L.S.; Hayes, D.; Weiskittel, A.R.; Roth, B.E. Layer Stacking: A Novel Algorithm for Individual Forest Tree Segmentation from LiDAR Point Clouds. Can. J. Remote Sens. 2017, 43, 16–27. [Google Scholar] [CrossRef]
- Ullah, S.; Dees, M.; Datta, P.; Adler, P.; Koch, B. Comparing Airborne Laser Scanning, and Image-Based Point Clouds by Semi-Global Matching and Enhanced Automatic Terrain Extraction to Estimate Forest Timber Volume. Forests 2017, 8, 215. [Google Scholar] [CrossRef]
- White, J.C.; Wulder, M.A.; Buckmaster, G. Validating Estimates of Merchantable Volume from Airborne Laser Scanning (ALS) Data Using Weight Scale Data. For. Chron. 2014, 90, 378–385. [Google Scholar] [CrossRef]
- Oehmcke, S.; Li, L.; Revenga, J.C.; Nord-Larsen, T.; Trepekli, K.; Gieseke, F.; Igel, C. Deep Learning Based 3D Point Cloud Regression for Estimating Forest Biomass. In Proceedings of the 30th International Conference on Advances in Geographic Information Systems, Seattle, WA, USA, 1–4 November 2022; Association for Computing Machinery: New York, NY, USA, 2022; pp. 1–4. [Google Scholar]
- Führer, E.; Molnár, S. The Amount of Carbon Stored in the Live Matter in Hungarian Forests (In Hungarian: A Magyarországi Erdők Élőfakészletében Tárolt Szén Mennyisége). Faipar 2003, 51, 16–19. [Google Scholar]
- Führer, E. The Relationship Between Climate Change and Carbon Turnover in Forestry (In Hungarian: A Klímaváltozás És a Szénforgalom Összefüggése Az Erdőgazdálkodásban). 1994. Available online: https://www.epa.hu/00600/00691/00019/10.html (accessed on 30 January 2025).
- Führer, E.; Jagodics, A. Carbon Stocks of Climate-Recording Tree Species. For. Res. 2009, 91, 5–20. (In Hungarian) [Google Scholar]
- Führer, E.; Czupy, G.; Antal, J.K.; Jagodics, A. Root Analysis in Stands of Beech, Hornbeam–Pedunculate Oak and Turkey Oak (In Hungarian: Gyökérvizsgálatok Bükkös, Gyertyános–Kocsányos Tölgyes És Cseres Faállományban). Agrochem. Soil Sci. (Agrokém. Talajt.) 2011, 60, 103–118. [Google Scholar] [CrossRef]
- Führer, E.; Jagodics, A. Carbon Stocks of Climate-Recording Tree Species. “Klíma-21” Füzetek 2009, 57, 43–55. (In Hungarian) [Google Scholar]
- Führer, E.; Járó, Z. Carbon Stock of Hungarian Forests and Its Changes. For. Res. 1989, 79–80, 159–170. [Google Scholar]
- Führer, E.; Mátyás, C. The Role of Forests in Carbon Sequestration and the Impacts of Climate Change (In Hungarian: Az Erdők Szerepe a Szénmegkötésben És a Klímaváltozás Hatásai). Erd. Lapok 2005, 140, 170–172. [Google Scholar]
- Führer, E.; Jagodics, A. Carbon Stocks of Climate Indicator Tree Species. (In Hungarian: A Klímajelző Fafajú Állományok Szénkészlete). For. Res. 1994, 91, 5–20. [Google Scholar]
- Führer, E. Carbon Stock of Hungarian Forests and Its Changes. For. Res. 1994, 84–85, 159–170. [Google Scholar]
- State Forestry Service 2002. Forest Stocks of Hungary (In Hungarian: Állami Erdészeti Szolgálat 2002. Magyarország Erdőállományai). 2001. Available online: https://www.libri.hu/konyv/Magyarorszag-erdoallomanyai-2001-4.html (accessed on 5 February 2025).
- Sedjo, R.A. The Carbon Cycle and Global Forest Ecosystem. Water Air Soil Pollut. 1993, 70, 295–307. [Google Scholar] [CrossRef]
- Mo, L.; Zohner, C.M.; Reich, P.B.; Liang, J.; de Miguel, S.; Nabuurs, G.-J.; Renner, S.S.; van den Hoogen, J.; Araza, A.; Herold, M.; et al. Integrated Global Assessment of the Natural Forest Carbon Potential. Nature 2023, 624, 92–101. [Google Scholar] [CrossRef] [PubMed]
- Köhl, M.; Hildebrandt, R.; Olschofksy, K.; Köhler, R.; Rötzer, T.; Mette, T.; Pretzsch, H.; Köthke, M.; Dieter, M.; Abiy, M.; et al. Combating the Effects of Climatic Change on Forests by Mitigation Strategies. Carbon Balance Manag. 2010, 5, 8. [Google Scholar] [CrossRef]
- Rötzer, T.; Dieler, J.; Mette, T.; Moshammer, R.; Pretzsch, H. Productivity and Carbon Dynamics in Managed Central European Forests Depending on Site Conditions and Thinning Regimes. For. Int. J. For. Res. 2010, 83, 483–496. [Google Scholar] [CrossRef]
- IPCC. Good Practice Guidance for Land Use, Land-Use Change and Forestry/The Intergovernmental Panel on Climate Change; Penman, J., Ed.; Institute for Global Environmental Strategies: Hayama, Japan, 2003; ISBN 978-4-88788-003-0. [Google Scholar]
- Pretzsch, H.; Hilmers, T. Structural Diversity and Carbon Stock of Forest Stands: Trade off as Modified by Silvicultural Thinning. Eur. J. For. Res. 2024. [Google Scholar] [CrossRef]
- Muukkonen, P. Generalized Allometric Volume and Biomass Equations for Some Tree Species in Europe. Eur. J. For. Res. 2007, 126, 157–166. [Google Scholar] [CrossRef]
- Drexhage, M.; Colin, F. Estimating Root System Biomass from Breast-height Diameters. For. Int. J. For. Res. 2001, 74, 491–497. [Google Scholar] [CrossRef]
- Drexhage, M.; Chauvière, M.; Colin, F.; Nielsen, C.N. Development of Structural Root Architecture and Allometry of Quercus petraea. Can. J. For. Res. 1999, 29, 600–608. [Google Scholar] [CrossRef]
- Durkaya, A.; Durkaya, B.; Say, Ş.U. Below-and above Ground Biomass Distribution of Young Scots Pines from Plantations and Natural Stands. Rev. Bosque 2016, 37, 509–518. [Google Scholar] [CrossRef]
- Janssens, I.A.; Sampson, D.A.; Cermak, J.; Meiresonne, L.; Riguzzi, F.; Overloop, S.; Ceulemans, R. Above- and Belowground Phytomass and Carbon Storage in a Belgian Scots Pine Stand. Ann. For. Sci. 1999, 56, 81–90. [Google Scholar] [CrossRef]
- Liepiņš, J.; Lazdiņš, A.; Liepiņš, K. Equations for Estimating Above- and Belowground Biomass of Norway Spruce, Scots Pine, Birch spp. and European Aspen in Latvia. Scand. J. For. Res. 2018, 33, 58–70. [Google Scholar] [CrossRef]
- Neubauer, M.; Demant, B.; Bolte, A. Tree-Based Estimator for below-Ground Biomass of Scots Pine (Pinus sylvestris L.) (In German: Einzelbaumbezogene Schätzfunktionen Zur Unterirdischen Biomasse Der Wald-Kiefer (Pinus sylvestris L.)). Forstarch. Forstwiss. Fachz. 2015, 86, 42–47. [Google Scholar]
- Zhang, Y.; Tang, Z.; You, Y.; Guo, X.; Wu, C.; Liu, S.; Sun, O.J. Differential Effects of Forest-Floor Litter and Roots on Soil Organic Carbon Formation in a Temperate Oak Forest. Soil Biol. Biochem. 2023, 180, 109017. [Google Scholar] [CrossRef]
- Baritz, R.; Seufert, G.; Montanarella, L.; Van Ranst, E. Carbon Concentrations and Stocks in Forest Soils of Europe. For. Ecol. Manag. 2010, 260, 262–277. [Google Scholar] [CrossRef]
- Cools, N.; De Vos, B. Part X: Sampling and Analysis of Soil. In Manual on Methods and Criteria for Harmonized Sampling, Assessment, Monitoring and Analysis of the Effects of Air Pollution on Forests; Thünen Institute of Forest Ecosystems: Eberswalde, Germany, 2020; ISBN 978-3-86576-162-0. [Google Scholar]
- Dixon, R.K.; Solomon, A.M.; Brown, S.; Houghton, R.A.; Trexier, M.C.; Wisniewski, J. Carbon Pools and Flux of Global Forest Ecosystems. Science 1994, 263, 185–190. [Google Scholar] [CrossRef]
- Chiti, T.; Díaz-Pinés, E.; Rubio, A. Soil Organic Carbon Stocks of Conifers, Broadleaf and Evergreen Broadleaf Forests of Spain. Biol. Fertil. Soils 2012, 48, 817–826. [Google Scholar] [CrossRef]
- Schlesinger, W.H. Biogeochemistry: An Analysis of Global Change, 2nd ed.; Academic Press: San Diego, CA, USA, 1997; ISBN 978-0-12-625155-5. [Google Scholar]
- Hyvönen, R.; Ågren, G.I.; Linder, S.; Persson, T.; Cotrufo, M.F.; Ekblad, A.; Freeman, M.; Grelle, A.; Janssens, I.A.; Jarvis, P.G.; et al. The Likely Impact of Elevated [CO2], Nitrogen Deposition, Increased Temperature and Management on Carbon Sequestration in Temperate and Boreal Forest Ecosystems: A Literature Review. New Phytol. 2007, 173, 463–480. [Google Scholar] [CrossRef]
- Landsberg, J.; Sands, P. Physiological Ecology of Forest Production: Principles, Processes, and Models, 6th ed.; Academic Press: Cambridge, MA, USA, 2011; Volume 31, ISBN 978-0-12-3744609. [Google Scholar]
- Whittaker, R.H.; Likens, G.E. Primary Production: The Biosphere and Man. Hum. Ecol. 1973, 1, 357–369. [Google Scholar] [CrossRef]
- Jandl, R.; Lindner, M.; Vesterdal, L.; Bauwens, B.; Baritz, R.; Hagedorn, F.; Johnson, D.W.; Minkkinen, K.; Byrne, K.A. How Strongly Can Forest Management Influence Soil Carbon Sequestration? Geoderma 2007, 137, 253–268. [Google Scholar] [CrossRef]
- Schulp, C.J.E.; Nabuurs, G.-J.; Verburg, P.H.; de Waal, R.W. Effect of Tree Species on Carbon Stocks in Forest Floor and Mineral Soil and Implications for Soil Carbon Inventories. For. Ecol. Manag. 2008, 256, 482–490. [Google Scholar] [CrossRef]
- Ganatsas, P.; Tsakaldimi, M.; Petaloudi, L.-M. Factors Affecting Long-Term Soil Organic Carbon Storage in Greek Forests. Forests 2023, 14, 1518. [Google Scholar] [CrossRef]
- Zolkos, S.G.; Goetz, S.J.; Dubayah, R. A Meta-Analysis of Terrestrial Aboveground Biomass Estimation Using Lidar Remote Sensing. Remote Sens. Environ. 2013, 128, 289–298. [Google Scholar] [CrossRef]
- Martín, M.Á.; Reyes, M.; Taguas, F.J. Estimating Soil Bulk Density with Information Metrics of Soil Texture. Geoderma 2017, 287, 66–70. [Google Scholar] [CrossRef]
- Luo, S.; Xu, L.; Yu, J.; Zhou, W.; Yang, Z.; Wang, S.; Guo, C.; Gao, Y.; Xiao, J.; Shu, Q. Sampling Estimation and Optimization of Typical Forest Biomass Based on Sequential Gaussian Conditional Simulation. Forests 2023, 14, 1792. [Google Scholar] [CrossRef]
- Hetzer, J.; Huth, A.; Wiegand, T.; Dobner, H.J.; Fischer, R. An Analysis of Forest Biomass Sampling Strategies across Scales. Biogeosciences 2020, 17, 1673–1683. [Google Scholar] [CrossRef]
- Li, S.; Quackenbush, L.J.; Im, J. Airborne Lidar Sampling Strategies to Enhance Forest Aboveground Biomass Estimation from Landsat Imagery. Remote Sens. 2019, 11, 1906. [Google Scholar] [CrossRef]
- Dövényi, Z.; Becse, A. Cadastre of Small Towns of Hungary (In Hungarian: Magyarország Kistájainak Katasztere), 2nd ed.; MTA Földrajztudományi Kutatóintézet: Budapest, Hungary, 2010; pp. 347–350. [Google Scholar]
- Czimber, K. Forest Inventory with Aerial Laser Scanning and Near Photogrammetry—First Test Results (in Hungarian: Erdőleltározás Légi Lézeres Letapogatással És Közeli Fotogrammetriával–Első Tesztek Eredményei). In Proceedings of the Theory Meets Practice in GIS Conference, Debrecen, Hungary, 23–24 March 2019; pp. 77–81. [Google Scholar]
- Sopp, L. Volume Calculation Tables (in Hungarian: Fatömeg Számítási Táblázatok); Mezőgazdasági Kiadó: Budapest, Hungary, 1974. [Google Scholar]
- Cudjoe, E.; Bravo, F.; Ruiz-Peinado, R. Allometry and Biomass Dynamics in Temperate Mixed and Monospecific Stands: Contrasting Response of Scots Pine (Pinus sylvestris L.) and Sessile Oak (Quercus petraea (Matt.) Liebl.). Sci. Total Environ. 2024, 953, 176061. [Google Scholar] [CrossRef]
- Molnár, S.; Farkas, P.; Börcsök, Z.; Zoltán, G. Industrial Trees of Our World, Density of Wood (In Hungarian: Földünk Ipari Fái, a Faanyag Sűrűsége); ERFARET: Sopron, Hungary, 2016. [Google Scholar]
- Vavrcik, H.; Gryc, V. Analysis of the Annual Ring Structure and Wood Density Relations in English Oakand Sessile Oak. Wood Res. 2012, 57, 573–580. [Google Scholar]
- Kollmann, F. Technologie des Holzes und der Holzwerkstoffe, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 1951. [Google Scholar]
- Vichrov, V.E. The Structure, Physical and Mechanical Properties of Oak Wood (In Russian: Strojenije i Fiziko-Mechaničeskije Svojstva Drevjesiny Duba); Akademia nauk USSR: Moscow, Russia, 1954. [Google Scholar]
- Gafenco, I.M.; Dinulică, F.; Pleșca, B.-I.; Șofletea, N. Links between Tree Phenology and Wood Traits in Sessile Oak (Quercus petraea (Matt.) Liebl.). Ann. For. Res. 2024, 67, 31–50. [Google Scholar] [CrossRef]
- Zhang, S.-Y.; Owoundi, R.E.; Nepveu, G.; Mothe, F.; Dhôte, J.-F. Modelling Wood Density in European Oak (Quercuspetraea and Quercusrobur) and Simulating the Silvicultural Influence. Can. J. For. Res. 1993, 23, 2587–2593. [Google Scholar] [CrossRef]
- Guilley, E. Wood Density in Sessile Oak (Quercus petraea Liebl.): Modelling of the Within- and Between-Tree Variability; Origin and Non-Destructive Assessment of the «Tree» Effect; Interpretation of the Developed Model with Anatomical Traits. Ph.D. Thesis, Sciences Forestières et Sciences du Bois, National School of Rural Engineering, Water Resources and Forestry, Nancy, France, 14 April 2000. [Google Scholar]
- Komán, S.; Feher, S. Basic Density of Hardwoods Depending on Age and Site. Wood Res. 2015, 60, 907–912. [Google Scholar]
- Petráš, R.; Mecko, J.; Krupová, D.; Pažitný, A. Aboveground Biomass Basic Density of Softwoods Tree Species. Wood Res. 2019, 64, 205–212. [Google Scholar]
- Lo Monaco, A.; Todaro, L.; Sarlatto, M.; Spina, R.; Calienno, L.; Picchio, R. Effect of Moisture on Physical Parameters of Timber from Turkey Oak (Quercus cerris L.) Coppice in Central Italy. For. Stud. China 2011, 13, 276–284. [Google Scholar] [CrossRef]
- Fundova, I.; Funda, T.; Wu, H.X. Non-Destructive Wood Density Assessment of Scots Pine (Pinus sylvestris L.) Using Resistograph and Pilodyn. PLoS ONE 2018, 13, e0204518. [Google Scholar] [CrossRef]
- Mederski, P.S.; Bembenek, M.; Karaszewski, Z.; Giefing, D.F.; Sulima-Olejniczak, E.; Rosińska, M.; Łacka, A. Density and Mechanical Properties of Scots Pine (Pinus sylvestris L.) Wood from a Seedling Seed Orchard. Drewno 2015, 58, 117–124. [Google Scholar] [CrossRef]
- Tomczak, A.; Jelonek, T.; Jakubowski, M. Wood Density of Scots Pine (Pinus sylvestris L.) Trees Broken by Wind. Ann. Wars. Univ. Life Sci.—SGGW 2011, 76, 144–148. [Google Scholar]
- Auty, D.; Achim, A.; Macdonald, E.; Cameron, A.D.; Gardiner, B.A. Models for Predicting Wood Density Variation in Scots Pine. For. Int. J. For. Res. 2014, 87, 449–458. [Google Scholar] [CrossRef]
- Leal, S.; Eamus, D.; Grabner, M.; Wimmer, R.; Cherubini, P. Tree rings of Pinus nigra from the Vienna basin region (Austria) show evidence of change in climatic sensitivity in the late 20th century. Can. J. Res. 2008, 38, 744–759. [Google Scholar] [CrossRef]
- Kostić, S.; Stajić, B.; Milovanović, J. Wood Density Variation of Black Pine (Pinus nigra) in Relation to Tree Growth and Environment. Glas. Šumar. Fak. 2010. [Google Scholar]
- Gryc, V.; Vavrčík, H.; Horáček, P. Wood Density and Mechanical Properties of Black Pine (Pinus nigra) from Different Provenances. 2007. [Google Scholar]
- Moulinier, J.; Barbéro, M.; Quézel, P. Density and Growth Ring Width in Black Pine (Pinus nigra) from Different Sites in Greece. Ann. For. Sci. 2013. [Google Scholar]
- Pichler, P.; Oberhuber, W. Wood Density and Radial Growth of Black Pine (Pinus nigra) in Relation to Climate. For. Ecol. Manag. 2007. [Google Scholar]
- Dias, A.; Gaspar, M.J.; Carvalho, A.; Pires, J.; Lima-Brito, J.; Silva, M.E.; Louzada, J.L. Within- and between-Tree Variation of Wood Density Components in Pinus nigra at Six Sites in Portugal. Ann. For. Sci. 2018, 75, 58. [Google Scholar] [CrossRef]
- Dias, A.; Carvalho, A.; Silva, M.E.; Lima-Brito, J.; Gaspar, M.J.; Alves, A.; Rodrigues, J.C.; Pereira, F.; Morais, J.; Lousada, J.L. Physical, Chemical and Mechanical Wood Properties of Pinus nigra Growing in Portugal. Ann. For. Sci. 2020, 77, 72. [Google Scholar] [CrossRef]
- Piermattei, A.; Campelo, F.; Büntgen, U.; Crivellaro, A.; Garbarino, M.; Urbinati, C. Intra-Annual Density Fluctuations (IADFs) in Pinus nigra (J. F. Arnold) at High-Elevation in the Central Apennines (Italy). Trees 2020, 34, 771–781. [Google Scholar] [CrossRef]
- Moreno-Fernández, D.; Hevia, A.; Majada, J.; Cañellas, I. Do Common Silvicultural Treatments Affect Wood Density of Mediterranean Montane Pines? Forests 2018, 9, 80. [Google Scholar] [CrossRef]
- Thomas, S.C.; Martin, A.R. Carbon Content of Tree Tissues: A Synthesis. Forests 2012, 3, 332–352. [Google Scholar] [CrossRef]
- Castaño-Santamaría, J.; Bravo, F. Variation in Carbon Concentration and Basic Density along Stems of Sessile Oak (Quercus petraea (Matt.) Liebl.) and Pyrenean Oak (Quercus pyrenaica Willd.) in the Cantabrian Range (NW Spain). Ann. For. Sci. 2012, 69, 663–672. [Google Scholar] [CrossRef]
- Węgiel, A.; Polowy, K. Aboveground Carbon Content and Storage in Mature Scots Pine Stands of Different Densities. Forests 2020, 11, 240. [Google Scholar] [CrossRef]
- Lee, J.; Tolunay, D.; Makineci, E.; Çömez, A.; Son, Y.M.; Kim, R.; Son, Y. Estimating the Age-Dependent Changes in Carbon Stocks of Scots Pine (Pinus sylvestris L.) Stands in Turkey. Ann. For. Sci. 2016, 73, 523–531. [Google Scholar] [CrossRef]
- Hungarian State Forest Service. Guide to Forest Management Planning (In Hungarian: Erdőrendezési Útmutató); Hungarian State Forest Service: Budapest, Hungary, 2010.
- IUSSWorking Group WRB World Reference Base for Soil Resources, First Update; FAO: Rome, Italy, 2007.
- MSZ 21470-52:1983; Hungarian Standard 21470-52:1983 Environmental Soil Testing. Determination of Soil Organic Matter Content Based on Standard Methods. Hungarian Standard Association: Budapest, Hungary, 1983.
- Food and Agriculture Organization of the United Nations. Guidelines Soil Description, 4th ed.; FAO: Rome, Italy, 2006. [Google Scholar]
- Panagos, P.; De Rosa, D.; Liakos, L.; Labouyrie, M.; Borrelli, P.; Ballabio, C. Soil Bulk Density Assessment in Europe. Agric. Ecosyst. Environ. 2024, 364, 108907. [Google Scholar] [CrossRef]
- Führer, E.; Csiha, I.; Szabados, I.; Pödör, Z.; Jagodics, A. Aboveground and Belowground Dendromass in a Stand of Turkey Oak (In Hungarian: Egy cseres faállomány föld feletti és föld alatti szerves-anyagának meghatározása). Erd. Közlemények 2014, 4, 109–119. [Google Scholar]
- Vospernik, S.; Heym, M.; Pretzsch, H.; Pach, M.; Steckel, M.; Aldea, J.; Brazaitis, G.; Bravo-Oviedo, A.; Del Rio, M.; Löf, M.; et al. Tree Species Growth Response to Climate in Mixtures of Quercus robur/Quercus petraea and Pinus sylvestris across Europe—A Dynamic, Sensitive Equilibrium. For. Ecol. Manag. 2023, 530, 120753. [Google Scholar] [CrossRef]
- Frank, N. The Dudles Forest in Sopron Was Shaped by Nature and Man. Ph.D. Thesis, Nyugat-Magyarországi Egyetem, Sopron, Hungary, 2001. (In Hungarian). [Google Scholar]
- Illés, G.; Móricz, N. Climate Envelope Analyses Suggests Significant Rearrangements in the Distribution Ranges of Central European Tree Species. Ann. For. Sci. 2022, 79, 35. [Google Scholar] [CrossRef]
- Czimber, K.; Tomor, T.; Burai, P.; Lénárt, C.; Román, A.; Kovács, Z.; Bekő, L.; Nagy, M. First Results of Airborne Laser Scanning, Aerial Hyperspectral and Terrestrial Photogrammetry Based Timber Volume Estimation (in Hungarian: Légi Lézeres, Légi Hiperspektrális És Földi Fotogrammetriai Faállomány-Felmérés Első Eredményei). Erd. Lapok 2020, 155, 82–86. [Google Scholar]
- De Vos, B.; Cools, N.; Ilvesniemi, H.; Vesterdal, L.; Vanguelova, E.; Carnicelli, S. Benchmark Values for Forest Soil Carbon Stocks in Europe: Results from a Large Scale Forest Soil Survey. Geoderma 2015, 251–252, 33–46. [Google Scholar] [CrossRef]
- IUSS Working Group WRB. World Reference Base for Soil Resources. International Soil Classification System for Naming Soils and Creating Legends for Soil Maps, 4th ed.; International Union of Soil Sciences (IUSS): Vienna, Austria, 2022. [Google Scholar]
- Lee, S.; Lee, S.; Shin, J.; Yim, J.; Kang, J. Assessing the Carbon Storage of Soil and Litter from National Forest Inventory Data in South Korea. Forests 2020, 11, 1318. [Google Scholar] [CrossRef]
- Lukina, N.; Kuznetsova, A.; Tikhonova, E.; Smirnov, V.; Danilova, M.; Gornov, A.; Bakhmet, O.; Kryshen, A.; Tebenkova, D.; Shashkov, M.; et al. Linking Forest Vegetation and Soil Carbon Stock in Northwestern Russia. Forests 2020, 11, 979. [Google Scholar] [CrossRef]
- Pérez-Alavez, Y.; Rodríguez-Ortiz, G.; Santiago-García, W.; Campos-Angeles, G.V.; Enríquez-del Valle, J.R.; Martin, M.P. Effect of Thinning Intensity on Litterfall Biomass and Nutrient Deposition in a Naturally Regenerated Pinus pseudostrobus Lind. Forest in Oaxaca, Mexico. J. Sustain. For. 2023, 42, 77–94. [Google Scholar] [CrossRef]
- Han, S.H.; An, J.Y.; Hernandez, J.O.; Yang, H.M.; Kim, E.-S.; Noh, N.J.; Seo, J.M.; Park, B.B. Effects of Thinning Intensity on Litterfall Production, Soil Chemical Properties, and Fine Root Distribution in Pinus koraiensis Plantation in Republic of Korea. Plants 2023, 12, 3614. [Google Scholar] [CrossRef]
- Latterini, F.; Dyderski, M.K.; Horodecki, P.; Picchio, R.; Venanzi, R.; Lapin, K.; Jagodziński, A.M. The Effects of Forest Operations and Silvicultural Treatments on Litter Decomposition Rate: A Meta-Analysis. Curr. For. Rep. 2023, 9, 276–290. [Google Scholar] [CrossRef]
- Pitta-Osses, N.; Centeri, C.; Fehér, Á.; Katona, K. Effect of Wild Boar (Sus scrofa) Rooting on Soil Characteristics in a Deciduous Forest Affected by Sedimentation. Forests 2022, 13, 1234. [Google Scholar] [CrossRef]
- Sütő, D.; Farkas, J.; Siffer, S.; Schally, G.; Katona, K. Spatiotemporal Pattern of Wild Boar Rooting in a Central European Dry Oak Forest. Eur. J. For. Res. 2020, 139, 407–418. [Google Scholar] [CrossRef]
- Dutartre, P.; Bartoli, F.; Andreux, F.; Portal, J.M.; Ange, A. Influence of Content and Nature of Organic Matter on the Structure of Some Sandy Soils from West Africa. Geoderma 1993, 56, 459–478. [Google Scholar] [CrossRef]
- Azlan, A.; Aweng, E.R.; Ibrahim, C.O.; Noorhaidah, A. Correlation between Soil Organic Matter, Total Organic Matter and Water Content with Climate and Depths of Soil at Different Land Use in Kelantan, Malaysia. J. Appl. Sci. Environ. Manag. 2012, 16, 353–358. [Google Scholar]
- Zaresefat, M.; Derakhshani, R.; Griffioen, J. Empirical Bayesian Kriging, a Robust Method for Spatial Data Interpolation of a Large Groundwater Quality Dataset from the Western Netherlands. Water 2024, 16, 2581. [Google Scholar] [CrossRef]
- Krivoruchko, K.; Gribov, A. Evaluation of Empirical Bayesian Kriging. Spat. Stat. 2019, 32, 100368. [Google Scholar] [CrossRef]
- Panagos, P.; Van Liedekerke, M.; Borrelli, P.; Köninger, J.; Ballabio, C.; Orgiazzi, A.; Lugato, E.; Liakos, L.; Hervas, J.; Jones, A.; et al. European Soil Data Centre 2.0: Soil data and knowledge in support of the EU policies. Eur. J. Soil Sci. 2022, 73, e13315. [Google Scholar] [CrossRef]
- Várallyai, G. Soil Data Bases for Sustainable Land Use—Hungarian case study. In Soil Resilience and Sustainable Land Use; Greenland, D.J., Szabolcs, I., Eds.; CAB International: Wallingford, UK, 1993; pp. 469–495. [Google Scholar]
- FAO; ITPS. Global Soil Organic Carbon Map V1.5: Technical Report; FAO: Rome, Italy, 2020. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Czimber, K.; Szász, B.; Ács, N.; Heilig, D.; Illés, G.; Mészáros, D.; Veperdi, G.; Heil, B.; Kovács, G. Estimation of the Total Carbon Stock of Dudles Forest Based on Satellite Imagery, Airborne Laser Scanning, and Field Surveys. Forests 2025, 16, 512. https://doi.org/10.3390/f16030512
Czimber K, Szász B, Ács N, Heilig D, Illés G, Mészáros D, Veperdi G, Heil B, Kovács G. Estimation of the Total Carbon Stock of Dudles Forest Based on Satellite Imagery, Airborne Laser Scanning, and Field Surveys. Forests. 2025; 16(3):512. https://doi.org/10.3390/f16030512
Chicago/Turabian StyleCzimber, Kornél, Botond Szász, Norbert Ács, Dávid Heilig, Gábor Illés, Diána Mészáros, Gábor Veperdi, Bálint Heil, and Gábor Kovács. 2025. "Estimation of the Total Carbon Stock of Dudles Forest Based on Satellite Imagery, Airborne Laser Scanning, and Field Surveys" Forests 16, no. 3: 512. https://doi.org/10.3390/f16030512
APA StyleCzimber, K., Szász, B., Ács, N., Heilig, D., Illés, G., Mészáros, D., Veperdi, G., Heil, B., & Kovács, G. (2025). Estimation of the Total Carbon Stock of Dudles Forest Based on Satellite Imagery, Airborne Laser Scanning, and Field Surveys. Forests, 16(3), 512. https://doi.org/10.3390/f16030512