Assessment of Oak Roundwood Quality Using Photogrammetry and Acoustic Surveys
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Field Survey
2.2. Analysis
2.2.1. Instrumental Data
2.2.2. Point Cloud Processing: Virtual Visual Grading
2.2.3. Measurement Comparison and Statistical Analysis
3. Results
3.1. Acoustic Measurements
3.2. Log Size Determination
3.3. Visual Classification
4. Discussion
4.1. Using Photogrammetry for the Visual Qualification of Logs
4.2. Acoustic Measurement and Visual Classification
4.3. Perspectives and Practical Implications
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Teischinger, A. From Forest to Wood Production—A Selection of Challenges and Opportunities for Innovative Hardwood Utilization. In Proceedings of the International Conference of Hardwood Processing (ISCHP 2017), Lahti, Finland, 25–28 September 2017. [Google Scholar]
- Malinen, J.; Haring, M.; Kilpeläinen, H.; Verkasalo, E. Comparison of Alternative Roundwood Pricing Systems—A Simulation Approach. Silva Fenn. 2015, 49, 1293. [Google Scholar] [CrossRef]
- Hassler, C.C.; Grushecky, S.T.; Osborn, L.E.; McNeel, J.F. Hardwood Log Grading in the United States—Part 1: A Historical Perspective. For. Prod. J. 2019, 69, 110–123. [Google Scholar] [CrossRef]
- Carvalho, J.P.F.; Santos, J.A.; Santos, J. Quality Control and Productivity in Oak Timber—From Forest to the Primary Processing. In Proceedings of the Cost Action E53 Conference, Lisbon, Portugal, 22–23 October 2009. [Google Scholar]
- Hassler, C.C.; Osborn, L.E.; Grushecky, S.T.; McNeel, J.F. Hardwood Log Grading in the United States—Part II: United States Forest Service Log Grades and the Hardwood Industry. For. Prod. J. 2019, 69, 124–130. [Google Scholar] [CrossRef]
- Hassler, C.C.; Thompson, J.R.; McNeel, J.F. Hardwood Log Grading in the United States—Part III: An Assessment of the Current Status of Log Grading in the Hardwood Industry. For. Prod. J. 2021, 71, 133–143. [Google Scholar] [CrossRef]
- Havreljuk, F.; Achim, A.; Pothier, D. Predicting Lumber Grade Occurrence and Volume in Sugar Maple and Yellow Birch Logs. For. Sci. 2022, 68, 410–424. [Google Scholar] [CrossRef]
- Gorges, J.; Huber, M.; Sauter, U.H.; Dormann, C.F. Curvature of Logs—Development of and Comparison between Different Calculation Approaches. Forests 2021, 12, 857. [Google Scholar] [CrossRef]
- Gejdoš, M.; Suchomel, J.; Danihelová, Z. Analysis of Qualitative Features of Beech and Oak Trunks as a Determinant of the Quality Assessment. Forests 2021, 12, 15. [Google Scholar] [CrossRef]
- Dumitrascu, A.-E.; Ciobanu, V.D.; Lepadatescu, B. Valorization of Wood Resources for the Cutting of Decorative Veneer in the Context of Sustainable Development of Romanian Forests. BioResources 2013, 8, 4298–4311. [Google Scholar] [CrossRef]
- Musat, E.-C.; Salca, E.-A.; Ciobanu, V.D.; Dumitrascu, A.-E. The Influence of Log Defects on the Cutting Yield of Oak Veneer. BioResources 2017, 12, 7917–7930. [Google Scholar] [CrossRef]
- Ondrejka, V.; Gergeľ, T.; Bucha, T.; Pástor, M. Innovative Methods of Non-Destructive Evaluation of Log Quality. Cent. Eur. For. J. 2021, 67, 3–13. [Google Scholar] [CrossRef]
- EN 1316-1; Hardwood Round Timber—Qualitative Classification—Part 1: Oak and Beech. CEN—European Committee for Standardization: Brussels, Belgium, 2012.
- Bond, B. A Hardwood Log Grading Handbook; The University of Tennessee Institute of Agriculture: Knoxville, TN, USA, 2019; p. 25. [Google Scholar]
- Self, B. Grading Hardwood Trees: A Guide to Identifying Stem Quality in Hardwood Stands; Mississipi State University Extension Service: Mississippi, MS, USA, 2021; p. 8. [Google Scholar]
- Cecil-Cockwell, M.J.L.; Caspersen, J.P. A Simple System for Classifying Sugar Maple Vigour and Quality. Can. J. For. Res. 2015, 45, 900–909. [Google Scholar] [CrossRef]
- Castle, M.; Weiskittel, A.; Wagner, R.; Ducey, M.; Frank, J.; Pelletier, G. Variation in Stem Form and Risk of Four Commercially Important Hardwood Species in the Acadian Forest: Implications for Potential Sawlog Volume and Tree Classification Systems. Can. J. For. Res. 2017, 47, 1457–1467. [Google Scholar] [CrossRef]
- Nocetti, M.; Brunetti, M. Advancements in Wood Quality Assessment: Standing Tree Visual Evaluation—A Review. Forests 2024, 15, 943. [Google Scholar] [CrossRef]
- Mengesha, T.; Hawkins, M.; Tarleton, M.; Nieuwenhuis, M. Stem Quality Assessment Using Terrestrial Laser Scanning Technology: A Case Study of Ash Trees with a Range of Defects in Two Stands in Ireland. Scand. J. For. Res. 2015, 30, 605–616. [Google Scholar] [CrossRef]
- Bauwens, S.; Fayolle, A.; Gourlet-Fleury, S.; Ndjele, L.M.; Mengal, C.; Lejeune, P. Terrestrial Photogrammetry: A Non-destructive Method for Modelling Irregularly Shaped Tropical Tree Trunks. Methods Ecol. Evol. 2017, 8, 460–471. [Google Scholar] [CrossRef]
- Prendes, C.; Canga, E.; Ordoñez, C.; Majada, J.; Acuna, M.; Cabo, C. Automatic Assessment of Individual Stem Shape Parameters in Forest Stands from TLS Point Clouds: Application in Pinus Pinaster. Forests 2022, 13, 431. [Google Scholar] [CrossRef]
- Kędra, K.; Barbeito, I.; Dassot, M.; Vallet, P.; Gazda, A. Single-Image Photogrammetry for Deriving Tree Architectural Traits in Mature Forest Stands: A Comparison with Terrestrial Laser Scanning. Ann. For. Sci. 2019, 76, 5. [Google Scholar] [CrossRef]
- Tomșa, V.R.; Curtu, A.L.; Niță, M.D. Tree Shape Variability in a Mixed Oak Forest Using Terrestrial Laser Technology: Implications for Mating System Analysis. Forests 2021, 12, 253. [Google Scholar] [CrossRef]
- Nguyen, V.-T.; Constant, T.; Kerautret, B.; Debled-Rennesson, I.; Colin, F. A Machine-Learning Approach for Classifying Defects on Tree Trunks Using Terrestrial LiDAR. Comput. Electron. Agric. 2020, 171, 105332. [Google Scholar] [CrossRef]
- Thomas, L.; Mili, L.; Thomas, E.; Shaffer, C.A. Defect Detection on Hardwood Logs Using Laser Scanning. Wood Fiber Sci. 2006, 38, 682–695. [Google Scholar]
- Thomas, L.; Shaffer, C.A.; Mili, L.; Thomas, E. Automated Detection of Severe Surface Defects on Barked Hardwood Logs. For. Prod. J. 2007, 57, 50–56. [Google Scholar]
- Niţă, M.D.; Borz, S.A. Accuracy of a Smartphone-Based Freeware Solution and Two Shape Reconstruction Algorithms in Log Volume Measurements. Comput. Electron. Agric. 2023, 205, 107653. [Google Scholar] [CrossRef]
- Tomczak, K.; Mederski, P.S.; Naskrent, B.; Tomczak, A. Accuracy of Photo-Optical Timber Measurement Using a Stereo Camera Technology. Croat. J. For. Eng. (Online) 2024, 45, 157–167. [Google Scholar] [CrossRef]
- Xu, M.; Chen, S.; Xu, S.; Mu, B.; Ma, Y.; Wu, J.; Zhao, Y. An Accurate Handheld Device to Measure Log Diameter and Volume Using Machine Vision Technique. Comput. Electron. Agric. 2024, 224, 109130. [Google Scholar] [CrossRef]
- Hecker, M.; Ressmann, J.; Becker, G.; Merforth, C. Prognosis of sawntimber quality based on roundwood grading—Comparison of selected national and European grading rules for roundwood and sawntimber. Holz Als Roh- Und Werkst. 2000, 58, 168–176. [Google Scholar] [CrossRef]
- EN 1927; Qualitative Classification of Softwood Round Timber. CEN—European Committee for Standardization: Brussels, Belgium, 2008.
- Riesco Muñoz, G.; Remacha Gete, A.; Gasalla Regueiro, M. Variation in Log Quality and Prediction of Sawing Yield in Oak Wood (Quercus Robur). Ann. For. Sci. 2013, 70, 695–706. [Google Scholar] [CrossRef]
- Drew, D.M.; Downes, G.M.; Seifert, T.; Eckes-Shepard, A.; Achim, A. A Review of Progress and Applications in Wood Quality Modelling. Curr. For. Rep. 2022, 8, 317–332. [Google Scholar] [CrossRef]
- Schimleck, L.; Dahlen, J.; Apiolaza, L.A.; Downes, G.; Emms, G.; Evans, R.; Moore, J.; Pâques, L.; Van Den Bulcke, J.; Wang, X. Non-Destructive Evaluation Techniques and What They Tell Us about Wood Property Variation. Forests 2019, 10, 728. [Google Scholar] [CrossRef]
- Longo, B.L.; Brüchert, F.; Becker, G.; Sauter, U.H. From inside to Outside: CT Scanning as a Tool to Link Internal Knot Structure and External Branch Diameter as a Prerequisite for Quality Assessment. Wood Sci. Technol. 2022, 56, 509–529. [Google Scholar] [CrossRef]
- Gejdoš, M.; Gergeľ, T.; Michajlová, K.; Bucha, T.; Gracovský, R. The Accuracy of CT Scanning in the Assessment of the Internal and External Qualitative Features of Wood Logs. Sensors 2023, 23, 8505. [Google Scholar] [CrossRef]
- Legg, M.; Bradley, S. Measurement of Stiffness of Standing Trees and Felled Logs Using Acoustics: A Review. J. Acoust. Soc. Am. 2016, 139, 588–604. [Google Scholar] [CrossRef] [PubMed]
- Rais, A.; Pretzsch, H.; Van De Kuilen, J.-W.G. Roundwood Pre-Grading with Longitudinal Acoustic Waves for Production of Structural Boards. Eur. J. Wood Prod. 2014, 72, 87–98. [Google Scholar] [CrossRef]
- Simic, K.; Gendvilas, V.; O’Reilly, C.; Harte, A.M. Predicting Structural Timber Grade-Determining Properties Using Acoustic and Density Measurements on Young Sitka Spruce Trees and Logs. Holzforschung 2019, 73, 139–149. [Google Scholar] [CrossRef]
- Balasso, M.; Hunt, M.; Jacobs, A.; O’Reilly-Wapstra, J. Development of a Segregation Method to Sort Fast-Grown Eucalyptus Nitens (H. Deane & Maiden) Maiden Plantation Trees and Logs for Higher Quality Structural Timber Products. Ann. For. Sci. 2022, 79, 9. [Google Scholar] [CrossRef]
- Nocetti, M.; Aminti, G.; Wessels, C.B.; Brunetti, M. Applying Machine Strength Grading System to Round Timber Used in Hydraulic Engineering Works. Forests 2021, 12, 281. [Google Scholar] [CrossRef]
- Brunetti, M.; Aminti, G.; Wessels, C.B.; Nocetti, M. Mixed Visual and Machine Grading to Select Eucalyptus Grandis Poles into High-Strength Classes. Forests 2021, 12, 1804. [Google Scholar] [CrossRef]
- Straže, A.; Novak, K. Quality and Price Gain of European Oak Logs Determined by Visual and Stress Wave Analysis. In Proceedings of the 10th Hardwood Conference Proceedings, Sopron, Hungary, 12–14 October 2022; pp. 62–67. [Google Scholar]
- CloudCompare. 3D Point Cloud and Mesh Processing Software Open-Source Project. Available online: https://www.cloudcompare.org/ (accessed on 1 August 2024).
- Liu, F.; Zhang, H.; Wang, X.; Jiang, F.; Yu, W.; Ross, R.J. Acoustic Wave Propagation in Standing Trees—Part II. Effects of Tree Diameter and Juvenile Wood. Wood Fiber Sci. 2021, 53, 95–108. [Google Scholar] [CrossRef]
- Bland, M.J.; Altman, D.G. Statistical Method for Assessing Agreement between Two Methods of Clinical Measurement. Lancet 1986, 327, 307–310. [Google Scholar] [CrossRef]
- Iglhaut, J.; Cabo, C.; Puliti, S.; Piermattei, L.; O’Connor, J.; Rosette, J. Structure from Motion Photogrammetry in Forestry: A Review. Curr. For. Rep. 2019, 5, 155–168. [Google Scholar] [CrossRef]
- Borz, S.A.; Proto, A.R. Application and Accuracy of Smart Technologies for Measurements of Roundwood: Evaluation of Time Consumption and Efficiency. Comput. Electron. Agric. 2022, 197, 106990. [Google Scholar] [CrossRef]
- Gil-Moreno, D.; Ridley-Ellis, D. Comparing Usefulness of Acoustic Measurements on Standing Trees for Segregation by Timber Stiffness. In Proceedings of the 19th International Nondestructive Testing and Evaluation of Wood Symposium, Madison, WI, USA, 30 September 2015; Ross, R.J., Gonçalves, R., Wang, X., Eds.; United States Department of Agriculture Forest Service, Forest Products Laboratory: Madison, WI, USA, 2015; pp. 378–385. [Google Scholar]
- Nocetti, M.; Pröller, M.; Brunetti, M.; Dowse, G.P.; Wessels, C.B. Investigating the Potential of Strength Grading Green Eucalyptus Grandis Lumber Using Multi-Sensor Technology. BioResources 2017, 12, 9273–9286. [Google Scholar] [CrossRef]
- MacDonald, E.; Mochan, S.; Connolly, T. Validation of a Stem Straightness Scoring System for Sitka Spruce (Picea sitchensis (Bong.) Carr.). Forestry 2009, 82, 419–429. [Google Scholar] [CrossRef]
- Gjerdrum, P.; Warensjö, M.; Nylinder, M. Classification of Crook Types for Unbarked Norway Spruce Sawlogs by Means of a 3D Log Scanner. Holz Als Roh- Und Werkst. 2001, 59, 374–379. [Google Scholar] [CrossRef]
- Edlund, J.; Warensjö, M. Repeatability in Automatic Sorting of Curved Norway Spruce Saw Logs. Silva Fenn. 2005, 39, 265–275. [Google Scholar] [CrossRef]
- Wang, X.; Thomas, E.; Xu, F.; Liu, Y.; Brashaw, B.K.; Ross, R.J. Defect Detection and Quality Assessment of Hardwood Logs: Part 2—Combined Acoustic and Laser Scanning System. Wood Fiber Sci. 2018, 50, 310–322. [Google Scholar] [CrossRef]
Characteristic | Quality Class | ||
---|---|---|---|
A | B | C | |
Size | |||
Minimum length | 3 m | 3 m | 2 m |
Minimum average diameter | 40 cm | 35 cm | 30 cm |
Sound knots | 1 every 3 m (≤2 cm) | 1 every 1 m (≤4 cm) or 1 every 3 m (≤6 cm) | Allowed |
Unsound knots | Not allowed | 1 every 2 m (≤3 cm) | No limit for knots ≤3 cm 1 every 2 m (≤10 cm) |
Buckle | Not allowed | 1 every 2 m | Allowed |
Sweep | ≤2 cm/m | ≤4 cm/m | ≤10 cm/m |
Class | Diameter (mm) | Length (mm) | Velocity HM (km/s) | Velocity Fakopp Adj (km/s) |
---|---|---|---|---|
A | 53.4 ± 8.3 a | 5163 ± 1333 b | 2.88 ± 0.23 a | 3.34 ± 0.24 a |
B | 56.0 ± 13.2 a | 5176 ± 883 b | 2.89 ± 0.23 a | 3.36 ± 0.27 a |
C | 50.7 ± 10.3 a | 6289 ± 1800 a | 2.66 ± 0.15 b | 3.07 ± 0.21 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nocetti, M.; Aminti, G.; Vicario, M.; Brunetti, M. Assessment of Oak Roundwood Quality Using Photogrammetry and Acoustic Surveys. Forests 2025, 16, 421. https://doi.org/10.3390/f16030421
Nocetti M, Aminti G, Vicario M, Brunetti M. Assessment of Oak Roundwood Quality Using Photogrammetry and Acoustic Surveys. Forests. 2025; 16(3):421. https://doi.org/10.3390/f16030421
Chicago/Turabian StyleNocetti, Michela, Giovanni Aminti, Margherita Vicario, and Michele Brunetti. 2025. "Assessment of Oak Roundwood Quality Using Photogrammetry and Acoustic Surveys" Forests 16, no. 3: 421. https://doi.org/10.3390/f16030421
APA StyleNocetti, M., Aminti, G., Vicario, M., & Brunetti, M. (2025). Assessment of Oak Roundwood Quality Using Photogrammetry and Acoustic Surveys. Forests, 16(3), 421. https://doi.org/10.3390/f16030421