Experimental Investigation on Dowel Laminated Timber Made of Uruguayan Fast-Grown Species
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Experimental Procedure
2.2.1. Determination of the Slip Modulus (Ks) of the Dowelled Connection
2.2.2. Bending Tests
2.2.3. Analytical Method
2.3. Statistical Analysis
3. Results and Discussion
3.1. Shear Tests
3.2. Bending Tests
3.3. Analytical Results
4. Conclusions
- The mean modulus of elasticity and the bending strength of DLT panels were similar to those of the individual lumbers, suggesting no composite action was achieved. Dowel species and dowel diameter had no substantial influence on the bending properties of structural size panels yet showed an effect on the slip modulus and shear capacity of the dowelled connections.
- The most common failure mode under bending indicates that some lamellas within the DLT panel are weaker than others. As they fail by tension, the stress is transferred through the dowels to the adjacent lamellas until complete panel failure occurs. A good match between the analytical estimation and the experimental results of the bending stiffness of structural size panels was found.
- The structural performance of DLT could be improved with better timber quality. Increasing the depth of the boards or using different E-grade species for DLT production could be potential solutions to fulfil the structural requirements. Since the design of DLT panels is usually driven by serviceability limit states, the addition of multiple layers of plywood to the top side of the panel would increase the overall stiffness and probably reduce vibrations. Further research on sustainable materials as a replacement of concrete for a typical compression slab that complies with the requirements of the serviceability limit states of the EC-5 will be very valuable.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Uruguay XXI. Forestry Sector in Uruguay. Investment, Export and Country Brand Promotion Agency. 2022. Available online: https://www.uruguayxxi.gub.uy/uploads/informacion/2ec25967b8d7bfd72de685fbe8d201e06b5507bd.pdf (accessed on 10 July 2023).
- Martínez, G. Biological control of forest pests in Uruguay. In Forest Pest and Disease Management in Latin America: Modern Perspectives in Natural Forests and Exotic Plantations; Springer: Berlin/Heidelberg, Germany, 2020; pp. 7–30. [Google Scholar]
- Moya, L.; Lagurada Mallo, F.; Cagno, M.; Cardoso, A.; Gatto, F.; O’Neill, H. Physical and Mechanical Properties of Loblolly and Slash Pine Wood from Uruguayan Plantations. Forest Prod. J. 2013, 63, 128–137. [Google Scholar] [CrossRef]
- Hoja de Ruta para la Construcción de Vivienda Social en Madera en Uruguay. National Housing Department, Uruguay. 2022. Available online: https://www.gub.uy/ministerio-vivienda-ordenamiento-territorial/comunicacion/publicaciones/hoja-ruta-construccion-vivienda-social-madera-uruguay#dropdown (accessed on 10 July 2023).
- Harte, A.M. Mass timber—The Emergence of a Modern Construction Material. J. Struct. Integr. Maint. 2017, 2, 121–132. [Google Scholar] [CrossRef]
- Ayanleye, S.; Udele, K.; Nasir, V.; Zhang, X. Durability and Protection of Mass Timber Structures: A review. J. Build. Eng 2021, 46, 103731. [Google Scholar] [CrossRef]
- Ministerio de Industria, Energía y Minería. Balance Energético Nacional, BEN Uruguay 2022. Montevideo, Uruguay. 2023. Available online: https://ben.miem.gub.uy/balance.php (accessed on 9 August 2023).
- Soust-Verdaguer, B.; Moya, L.; Llatas, C. Evaluación de Impactos Ambientales de Viviendas en Madera: El caso de “La Casa Uruguaya”. Maderas-Cienc. Technol. 2022, 24, 1–12. [Google Scholar] [CrossRef]
- UNFCCC. The Paris Agreement. Paris Climate Change Conference, 21st Meeting, 20 December 2015. 2016. Available online: https://unfccc.int/documents/184656 (accessed on 10 July 2023).
- Zhao, J.; Wei, X.; Ling, L. The potential for storing carbon by harvested wood products. Front. For. Glob. Chang. 2022, 5, 1055410. [Google Scholar] [CrossRef]
- Soust-Verdaguer, B.; Llatas, C.; Moya, L. Comparative BIM-based Life Cycle Assessment of Uruguayan Timber and Concrete-Masonry Single-Family Houses in Design Stage. J. Clean. Prod. 2020, 277, 121958. [Google Scholar] [CrossRef]
- Ramage, M.H.; Burridge, H.; Busse-Wicher, M.; Fereday, G.; Reynolds, T.; Shah, D.U.; Wu, G.; Yu, L.; Fleming, P.; Densley-Tingley, D.; et al. The Wood from the Trees: The Use of Timber in Construction. Renew. Sustain. Energy Rev. 2017, 68, 333–359.e13. [Google Scholar] [CrossRef]
- Sotayo, A.; Bradley, D.; Bather, M.; Sareh, P.; Oudjene, M.; El-Houjeyri, I.; Harte, A.M.; Mehra, S.; O’Ceallaigh, C.; Haller, P.; et al. Review of state of the art of dowel laminated timber members and densified wood materials as sustainable engineered wood products for construction and building applications. Dev. Built Environ. 2020, 1, 100004. [Google Scholar] [CrossRef]
- Han, L.; Kutnar, A.; Sandak, J.; Sustersic, I.; Sandberg, D. Adhesive-and Metal-Free Assembly Techniques for Prefabricated Multi-Layered Wood Products: A Review on Wooden Connectors. Forests 2023, 14, 311. [Google Scholar] [CrossRef]
- Bell, T. A Detailed Investigation into the Engineering Properties and Challenges Affecting the Potential Introduction of a UK Grown Dowel-Laminated Timber Floor Panel into the Domestic Construction Market. Ph.D. Thesis, University of Strathclyde, Glasgow, UK, 2018. [Google Scholar]
- Ogunrinde, O. Evaluation of Bending Performance of Nail laminated and Dowel Laminated Timber. Master’s Thesis, University of New Brunswick, Fredericton, NB, Canada, 2019. [Google Scholar]
- Sandhaas, C.; Schädle, P.; Ceccotti, A. Innovative Timber Building Systems: Comparative Testing and Modelling of Earthquake Behaviour. Bull. Earthq. Eng. 2018, 16, 1961–1985. [Google Scholar] [CrossRef]
- Sotayo, A.; Bradley, D.F.; Bather, M.; Oudjene, M.; El-Houjeyri, I.; Guan, Z. Development and structural behaviour of adhesive free laminated timber beams and cross laminated panels. Constr. Build. Mater. 2020, 259, 119821. [Google Scholar]
- El-Houjeyri, I.; Thi, V.D.; Oudjene, M.; Khelifa, M.; Rogaume, Y.; Sotayo, A.; Guan, Z. Experimental Investigations on Adhesive Free Laminated Oak Timber Beams and Timber-to-Timber Joints Assembled Using Thermo-Mechanically Compressed Wood Dowels. Constr. Build. Mater. 2019, 222, 288–299. [Google Scholar] [CrossRef]
- Derikvand, M.; Hosseinzadeh, S.; Fink, G. Mechanical Properties of Dowel Laminated Timber Beams with Connectors made of Salvaged Wooden Materials. J. Arch. Eng. 2021, 27, 04021035. [Google Scholar] [CrossRef]
- Dourado, N.; Pereira, F.A.M.; Lousada, J.L.; de Moura, M.F.S.F. Experimental and numerical analysis of wood boards joining using wood-pin connectors. Constr. Build. Mater. 2019, 222, 556–565. [Google Scholar] [CrossRef]
- Plowas, W.; Bell, T.; Hairstans, R.; Williamson, J. Understanding the Compatibility of UK Resource for Dowel Laminated Timber Construction; The University of Edinburgh: Edinburgh, UK, 2015; pp. 1–12. [Google Scholar]
- EN 1995-1-1; Eurocode 5. Design of Timber Structures—Part 1-1: General—Common Rules and Rules for Buildings. CEN: Brussels, Belgium, 2016.
- Jung, K.; Kitamori, A.; Komatsu, K. Evaluation on structural performance of compressed wood as shear dowel. Holzforschung 2008, 62, 461–467. [Google Scholar] [CrossRef]
- Shanks, J.; Walker, P. Strength and stiffness of all-timber pegged connections. J. Mater. Civil Eng. 2009, 21, 10–18. [Google Scholar] [CrossRef]
- Frontini, F.; Siem, J. Load carrying capacity and stiffness of Softwood Wooden Dowel Connections. Int. J. Archit. Herit. 2018, 14, 376–397. [Google Scholar] [CrossRef]
- EN 1380; Timber Structures—Test Methods—Load Bearing Nails, Screws, Dowels and Bolts. CEN: Brussels, Belgium, 2009.
- EN 26891; Timber Structures—Joints Made with Mechanical Fasteners—General Principles for the Determination of Strength and Deformation Characteristics. CEN: Brussels, Belgium, 1991.
- EN 13183-1; Moisture Content of a Piece of Sawn Timber—Part 1: Determination by Oven Dry Method. CEN: Brussels, Belgium, 2002.
- EN 408:2011+A1:2012; Timber Structures—Structural Timber and Glued Laminated Timber. Determination of Some Physical and Mechanical Properties. CEN: Brussels, Belgium, 2019.
- BS 5268-2; Structural Use of Timber—Part 2: Code of Practice for Permissible Stress Design, Materials and Workmanship. British Standards Institution: London, UK, 2002.
- EN 384; Structural Timber—Determination of Characteristic Values of Mechanical Properties and Density. CEN: Brussels, Belgium, 2016.
- Moody, R.C.; De Sousa, P.P.; Little, J.K. Variation in Stiffness of Horizontally Laminated Glulam Timber Beams. Forest Prod. J. 1988, 38, 39–45. [Google Scholar]
- UNIT 1261; Madera Aserrada de Uso Estructural. Clasificación Visual. Madera de Pino Taeda y Pino Ellioti. Instituto Uruguayo de Normas Técnicas: Montevideo, Uruguay, 2018.
- UNIT 1262; Madera Aserrada de Uso Estructural. Clasificación Visual. Madera de Eucalipto. Instituto Uruguayo de Normas Técnicas: Montevideo, Uruguay, 2018.
- Li, Z.; Feng, W.; He, M.; Chen, F.; Sun, X. Bending Performance of Nail Laminated Timber: Experimental, Analytical and Numerical Analyses. Constr. Build. Mat. 2023, 389, 131766. [Google Scholar] [CrossRef]
- Sydor, M.; Majka, J.; Lagová, N. Effective Diameters of Drilled Holes in Pinewood in Response to Changes in Relative Humidity. BioResources 2021, 16, 5407–5421. [Google Scholar] [CrossRef]
Lamella 1 | Dowel 1 | t/ϕ Ratio | Symbol | Number of Samples |
---|---|---|---|---|
Pine t = 50 mm | Guatambú | 2.35 | PG20p | 10 |
ϕ = 20 mm | ||||
Eucalyptus | 2.35 | PE20p | 8 | |
ϕ = 20 mm | ||||
Eucalyptus t = 36 mm | Red gum | 2 | ET18p | 7 |
ϕ = 18 mm | ||||
Red gum | 2.4 | ET15p | 9 | |
ϕ = 15 mm |
Lamella Species | Dowel | Panel’s Symbol | Em (kN/mm2) Lamella | Edyn (kN/mm2) Lamella | ||||||
---|---|---|---|---|---|---|---|---|---|---|
1 and 7 | 2 and 6 | 3 and 5 | 4 | 1 and 7 | 2 and 6 | 3 and 5 | 4 | |||
Pine 1,2 | Guatambu ϕ = 20 mm | PPG20 | 6.0 | 4.7 | 3.7 | 8.2 | 6.9 | 5.4 | 4.2 | 9.4 |
Eucalyptus ϕ = 20 mm | PPE20 | |||||||||
Eucalyptus 1,2 | Red gum ϕ = 18 mm | PET18 | 11.2 | 9.8 | 8.6 | 13.7 | 12.9 | 11.0 | 9.2 | 14.8 |
Red gum ϕ = 15 mm | PET15 |
Test Series | PG20p | PE20p | ET15p | ET18p |
---|---|---|---|---|
n | 10 | 8 | 7 | 9 |
t/ϕ | 2.35 | 2.35 | 2.40 | 2.00 |
Density [kg/m3] | 393 (20.5) | 401 (23.1) | 451 (17.1) | 470 (22.2) |
Fs [kN] | 14.09 (1.95) | 7.06 (2.11) | 4.66 (0.82) | 7.35 (0.87) |
Ks [kN/mm] | 3.03 (0.74) | 1.79 (0.57) | 1.27 (0.39) | 2.78 (0.78) |
DLT Panels | PPG20 | PPE20 | PET15 | PET18 |
---|---|---|---|---|
N | 6 | 7 | 6 | 6 |
Density [kg/m3] | 347 (21.4) | 363 (18.1) | 482 (13.5) | 470 (22.2) |
Strength [N/mm2] | 20.05 (3.71) | 17.13 (3.57) | 51.50 (5.90) | 44.29 (6.68) |
Global MOE [kN/mm2] | 5.05 (0.29) | 5.29 (0.25) | 10.55 (0.49) | 10.23 (0.34) |
Local MOE [kN/mm2] | 5.29 (0.31) | 5.55 (0.29) | 11.06 (0.52) | 11.04 (0.35) |
PPG20 | PPE20 | |||||||
---|---|---|---|---|---|---|---|---|
Panel | Fictitious Element | Panel | Fictitious Element | |||||
Area [mm2] | A2 | 48,300 | A1 | 314 | A2 | 48,300 | A1 | 314 |
Modulus of elasticity [N/mm2] | E2 | 5019 | E1 | 5377 | E2 | 5266 | E1 | 5377 |
Second moment of Area [×106 mm4] | I2 | 76.65 | I1 | 0.233 | I2 | 76.65 | I1 | 76.65 |
Distance from neutral axis [mm] | a1 | 14 | a1 | 14 | ||||
Fastener efficiency | γ1 | 0.882 | γ1 | 0.851 | ||||
Stiffness of connection [N/mm] | K1 | 3030 | K1 | 1790 | ||||
Spacing of connections [mm] | 300 | 300 | ||||||
Length of panel [mm] | 2485 | 2485 | ||||||
PET15 | PET18 | |||||||
Panel | Fictitious Element | Panel | Fictitious Element | |||||
Area [mm2] | A2 | 22,428 | A1 | 177 | A2 | 22,428 | A1 | 254 |
Modulus of elasticity [N/mm2] | E2 | 10,487 | E1 | 10,252 | E2 | 10,453 | E1 | 10,252 |
Second moment of Area [×106 mm4] | I2 | 14.80 | I1 | 0.071 | I2 | 14.80 | I1 | 0.071 |
Distance from neutral axis [mm] | a1 | 14 | a1 | 14 | ||||
Fastener efficiency | γ1 | 0.645 | γ1 | 0.735 | ||||
Stiffness of connection [N/mm] | K1 | 1270 | K1 | 2780 | ||||
Spacing of connections [mm] | 200 | 200 | ||||||
Length of panel [mm] | 1605 | 1605 |
DLT Panel | Stiffness (EI) [×109 Nmm2] | |
---|---|---|
γ-Method | Experimental | |
PPG20 | 385.09 | 384.79 |
PPE20 | 403.94 | 403.65 |
PET15 | 155.46 | 155.25 |
PET18 | 155.13 | 155.79 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bruzzone, G.; Godoy, D.; Quagliotti, S.; Arrejuría, S.; Böthig, S.; Moya, L. Experimental Investigation on Dowel Laminated Timber Made of Uruguayan Fast-Grown Species. Forests 2023, 14, 2215. https://doi.org/10.3390/f14112215
Bruzzone G, Godoy D, Quagliotti S, Arrejuría S, Böthig S, Moya L. Experimental Investigation on Dowel Laminated Timber Made of Uruguayan Fast-Grown Species. Forests. 2023; 14(11):2215. https://doi.org/10.3390/f14112215
Chicago/Turabian StyleBruzzone, Gastón, Daniel Godoy, Sebastián Quagliotti, Stephany Arrejuría, Silvia Böthig, and Laura Moya. 2023. "Experimental Investigation on Dowel Laminated Timber Made of Uruguayan Fast-Grown Species" Forests 14, no. 11: 2215. https://doi.org/10.3390/f14112215