Combining Climate Change Mitigation Scenarios with Current Forest Owner Behavior: A Scenario Study from a Region in Southern Sweden
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Forest Simulator
2.2. Forest Data and Forest Projection System
2.3. Current Forest Management Practices
2.3.1. Overview of Forest Management in Kronoberg
2.3.2. Sources and Methods Used to Describe Current Management Practices
2.3.3. Silvicultural Treatments and Owner Strategies for the Projections
2.4. Climate Change Mitigation Scenarios
3. Results
3.1. Current Forest Management Practices in the Three Climate Change Mitigation Scenarios
3.2. Intensification in GLOBAL BIOENERGY
4. Discussion
4.1. Projection Results with Possible Management Implications
4.2. Uncertainties and Improvements
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A. The Mixed Linear Programming (MILP) Formulation of the Forest Owner Decision Simulator
Indices and Sets | |
---|---|
Set of forest holdings and set index | |
Set of regeneration alternatives RE1-RE4 in Table 2, and set index | |
Set of stands, subset of stands belonging to holding , and set index | |
Set of strategies and set index | |
Set of management programs for existing forest, the subset of permissible programs belonging to stand and that can be regenerated with regeneration alternative , and set index | |
Set of management programs for barren land or forest that has been established during an earlier period of the simulation period, the subset of permissible programs belonging to stand with regeneration alternative , and set index | |
Set of NFI plots and set index | |
Set of types of barren land and set index | |
Variables | |
1 if stand is consisting of existing forest and is allocated to management program , otherwise 0 | |
1 if stand is consisting of barren land or forest that has been established during an earlier period of the simulation period and is allocated to management program , otherwise 0 | |
Objective variable to be maximized | |
Slack referring to harvest volume requirement | |
Final felling area of property | |
Parameters | |
Area of stand with existing forest | |
Area of stand with barren land or forest that has been established during an earlier period of the simulation period | |
Indictor whether program respectively is prescribing final felling (‘F’), precommercial thinning (‘R’) or (only for ) establishment (‘E’) | |
Regeneration requirement for holding and regeneration alternative as share of permissible area for on holding | |
Precommercial thinning requirement for holding as share of possible precommercial thinning area | |
Harvest volume requirement | |
Penalty associated with harvest volume requirement | |
The maximum area of final felling according to Forestry Act for holding | |
Maximum possible precommercial thinning area for holding | |
Harvest volume ha-1 pertaining to program and program , respectively | |
Net present value of forest management activities in current and future periods ha-1 pertaining to program and program , respectively |
Maximize | (A1) | |
subject to | ||
(A2) | ||
(A3) | ||
(A4) | ||
(A5) | ||
(A6) | ||
(A7) | ||
(A8) | ||
(A9) | ||
, , . and . | (A10) |
References
- Börjeson, L.; Höjer, M.; Dreborg, K.-H.; Ekvall, T.; Finnveden, G. Scenario types and techniques: Towards a user’s guide. Futures 2006, 23, 723–739. [Google Scholar] [CrossRef]
- Trubins, R.; Jonsson, R.; Wallin, I.; Sallnäs, O. Explicating behavioural assumptions in forest scenario modelling–the behavioural matrix approach. For. Policy Econ. 2019, 444, 299–307. [Google Scholar] [CrossRef]
- Nordström, E.-M.; Nieuwenhuis, M.; Başkent, E.Z.; Biber, P.; Black, K.; Borges, J.G.; Bugalho, M.N.; Corradini, G.; Corrigan, E.; Eriksson, L.O.; et al. Forest decision support systems for the analysis of ecosystem services provisioning at the landscape scale under global climate and market change scenarios. Eur. J. For. Res. 2019, 138, 561–581. [Google Scholar] [CrossRef]
- Hoogstra-Klein, M.A.; Hengeveld, G.M.; De Jong, R. Analysing scenario approaches for forest management One decade of experience in Europe. For. Policy Econ. 2017, 85, 222–234. [Google Scholar] [CrossRef]
- Lindner, M.; Fitzgerald, J.B.; Zimmermann, N.E.; Reyer, C.; Delzon, S.; Van der Maaten, E.; Schelhaas, M.-J.; Lasch, P.; Eggers, J.; Van der Maaten-Theunissen, M. Climate change and European forests: What do we know, what are the uncertainties, and what are the implications for forest management? J. Environ. Manag. 2014, 146, 69–83. [Google Scholar] [CrossRef] [Green Version]
- Felton, A.; Gustafsson, L.; Roberge, J.-M.; Ranius, T.; Hjältén, J.; Rudolphi, J.; Lindbladh, M.; Weslien, J.; Rist, L.; Brunet, J. How climate change adaptation and mitigation strategies can threaten or enhance the biodiversity of production forests: Insights from Sweden. Biol. Conserv. 2016, 194, 11–20. [Google Scholar] [CrossRef]
- UNFCCC 2015; FCCC/CP/2015/L.9/Rev.1: Adoption of the Paris Agreement: Paris, France, 2015; pp. 1–32. Available online: https://unfccc.int/resource/docs/2015/cop21/eng/l09r01.pdf (accessed on 20 August 2019).
- Kraxner, F.; Nordström, E.-M.; Havlík, P.; Gusti, M.; Mosnier, A.; Frank, S.; Valin, H.; Fritz, S.; Fuss, S.; Kindermann, G. Global bioenergy scenarios–Future forest development, land-use implications, and trade-offs. Biomass Bioenergy 2013, 57, 86–96. [Google Scholar] [CrossRef]
- Lauri, P.; Forsell, N.; Korosou, A.; Havlík, P.; Obersteiner, M.; Nordin, A. Impact of the 2 °C target on the global woody biomass use. For. Policy Econ. 2017, 83, 121–130. [Google Scholar] [CrossRef] [Green Version]
- Lundmark, T.; Bergh, J.; Hofer, P.; Lundström, A.; Nordin, A.; Poudel, B.C.; Sathre, R.; Taverna, R.; Werner, F. Potential roles of Swedish forestry in the context of climate change mitigation. Forests 2014, 5, 557–578. [Google Scholar] [CrossRef]
- Rinaldi, F.; Jonsson, R.; Sallnäs, O.; Trubins, R. Behavioral modelling in a decision support system. Forests 2015, 6, 311–327. [Google Scholar] [CrossRef] [Green Version]
- Mozgeris, G.; Brukas, V.; Stanislovaitis, A.; Kavaliauskas, M.; Palicinas, M. Owner mapping for forest scenario modelling—A Lithuanian case study. For. Policy Econ. 2017, 85, 235–244. [Google Scholar] [CrossRef]
- Schelhaas, M.-J.; Fridman, J.; Hengeveld, G.M.; Henttonen, H.M.; Lehtonen, A.; Kies, U.; Krajnc, N.; Lerink, B.; Ní Dhubháin, Á.; Polley, H.; et al. Actual European forest management by region, tree species and owner based on 714,000 re-measured trees in national forest inventories. PLoS ONE. 2018, 13, e0207151. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lönnstedt, L. Calculating non-industrial private forest owners’ cuttings. Scand. J. For. Res. 1998, 13, 215–223. [Google Scholar] [CrossRef]
- Antón-Fernández, C.; Astrup, R. Empirical harvest models and their use in regional buisness-as-usual scenarios of timber supply and carbon stock development. Scand. J. For. Res. 2012, 27, 379–392. [Google Scholar] [CrossRef]
- Eggers, J.; Holmström, H.; Lämås, T.; Lind, T.; Öhman, K. Accounting for a diverse forest ownership structure in projections of forest sustainability indicators. Forests 2015, 6, 4001–4033. [Google Scholar] [CrossRef] [Green Version]
- Hengeveld, G.M.; Schüll, E.; Trubins, R.; Sallnäs, O. Forest Landscape Development Scenarios (FoLDS)—A framework for integrating forest models, owners’ behaviour and socio-economic developments. For. Policy Econ. 2017, 85, 245–255. [Google Scholar] [CrossRef]
- Sotirov, M.; Sallnäs, O.; Eriksson, L.-O. Forest owner behavioural models, policy changes, and forest management. An agent-based framework for studying the provision of forest ecosystem goods and services at the landscape level. For. Policy Econ. 2019, 103, 79–89. [Google Scholar] [CrossRef]
- UNCE-FAO. The European Forest Sector Outlook Study II, 2010-2030; United Nations Publication: Geneva, Switzerland, 2011; p. 107. [Google Scholar]
- Verkerk, P.J.; Anttila, P.; Eggers, J.; Lidner, M.; Asikainen, A. The realisable potential supply of woody biomass from forests in the European Union. For. Ecol. Manag. 2011, 261, 2007–2015. [Google Scholar] [CrossRef]
- Claesson, S.; Duvemo, K.; Lundström, A.; Wikberg, P.-E. Rapport 2015:10 Skogliga Konsekvensanalyser 2015-SKA 15 [Report 2015:10 Impact Assessments within Forestry 2015-SKA 15]; Skogsstyrelsens böcker och broschyrer: Jönköping, Sweden, 2015; p. 110. [Google Scholar]
- Forsell, N.; Korosuo, A.; Havlík, P.; Valin, H.; Lauri, P.; Gusti, M.; Kindermann, G.; Obersteiner, M.; Böttcher, H.; Hennenberg, K.; et al. Study on Impacts on Resource Efficiency of Future EU Demand for Bioenergy (ReceBio); Final report; Publications Office of the European Union: Luxembourg, Luxembourg, 2016; p. 43. [Google Scholar]
- Nordström, E.-M.; Forsell, N.; Lundström, A.; Korosuo, A.; Bergh, J.; Havlík, P.; Kraxner, F.; Frank, S.; Fricko, O.; Lundmark, T. Impacts of climate change mitigation scenarios on forests and harvesting in Sweden. Can. J. For. Res. 2016, 46, 1427–1438. [Google Scholar] [CrossRef]
- ALTERFOR Project. Available online: https://alterfor-project.eu/ (accessed on 15 March 2020).
- Swedish Forest Agency. Statistical Yearbook of Forestry 2014; Swedish Forest Agency: Jönköping, Sweden, 2014; p. 368. [Google Scholar]
- Ingemarson, F.; Lindhagen, A.; Eriksson, L. A typology of small-scale private forest owners in Sweden. Scand. J. For. Res. 2006, 21, 249–259. [Google Scholar] [CrossRef]
- Eggers, J.; Lämnås, T.; Lind, T.; Öhman, K. Factors influencing the choice of management strategy among small-scale private forest owners in Sweden. Forests 2014, 5, 1695–1716. [Google Scholar] [CrossRef]
- Swedish Forest Agency. Skogsvårdslagstiftningen. Gällande Regler 1 April 2019 [The Swedish Forestry Act. Valid Rules 1 April 2019]; Swedish Forest Agency: Jönköping, Sweden, 2019; p. 92. [Google Scholar]
- Faustmann, M. 1849. Calculation of the value which forest land and immature stands possess for forestry. Repr. J. For. Econ. 1995, 1, 7–44. [Google Scholar]
- Wikström, P.; Edenius, L.; Elfving, B.; Eriksson, L.O.; Lämås, T.; Sonesson, J.; Öhman, K.; Wallerman, J.; Waller, C.; Klintebäck, F. The Heureka forestry decision support system: An overview. Math. Comput. For. Nat. Resour. Sci. 2011, 3, 87–95. [Google Scholar]
- Heureka 2019. Heureka Wiki. Swedish University of Agricultural Sciences. Available online: https://www.heurekaslu.se/wiki/Main_Page (accessed on 16 August 2019).
- Nurminen, T.; Korpunen, H.; Uusitalo, J. Time consumption analysis of the mechanized cut-to-length harvesting system. Silva Fenn. 2006, 40, 335–363. [Google Scholar] [CrossRef] [Green Version]
- Ollas, R. Nya Utbytesfunktioner för Träd och Bestånd [New Yield Functions for Trees and Stands], Ekonomi, 5; Forskningsstiftelsen Skogsarbeten: Stockholm, Sweden, 1980; p. 20. (In Swedish) [Google Scholar]
- Levers, C.; Verkerk, P.J.; Müller, D.; Verburg, P.H.; Butsic, V.; Leitão, P.J.; Linder, M.; Kuemmerle, T. Drivers of forest harvesting intensity patterns in Europe. For. Ecol. Manag. 2014, 315, 160–172. [Google Scholar] [CrossRef]
- Lodin, I.; Brukas, V.; Wallin, I. Spruce or not? Contextual and attitudinal drivers behind the choice of tree species in Southern Sweden. For. Policy Econ. 2017, 83, 191–198. [Google Scholar] [CrossRef]
- Swedish Forest Agency. Älgbetesinventering (ÄBIN) 2015, Kronobergs län [Inventory of Moose Browsing 2015, Kronoberg County]. Available online: https://www.skogsstyrelsen.se/globalassets/statistik/abin-och-andra-betesinventeringar/abin/abinrapporter-tidigare-ar/lan-abinresultat-2015/lansniva-kronoberg-2015.pdf (accessed on 5 July 2018). (In Swedish).
- Swedish Forest Agency. Älgbetesinventering och Foderprognos 2015/2016, Kronobergs Län [Inventory of Moose Browsing and Forage Prognosis 2015/2016, Kronoberg County]. Available online: https://www.skogsstyrelsen.se/globalassets/statistik/abin-och-andra-betesinventeringar/abin/abinrapporter-tidigare-ar/lan-abinresultat-2016/kronobergs-lan-2016.pdf (accessed on 5 July 2018). (In Swedish).
- Swedish Forest Agency. Älgbetesinventering och Foderprognos 2016/2017, Kronobergs Län [Inventory of Moose Browsing and Forage Prognosis 2016/2017, Kronoberg County]. Available online: https://www.skogsstyrelsen.se/globalassets/statistik/abin-och-andra-betesinventeringar/abin/abinrapporter-tidigare-ar/lan-abinresultat-2017/kronoberg_2017.pdf (accessed on 5 July 2018). (In Swedish).
- Swedish Forest Agency. Älgbetesinventering och Foderprognos 2017/2018, Kronobergs Län [Inventory of Moose Browsing and Forage Prognosis 2017/2018, Kronoberg County]. Available online: https://www.skogsstyrelsen.se/globalassets/statistik/abin-och-andra-betesinventeringar/abin/abinrapporter-tidigare-ar/lan-abinresultat-2018/kronoberg_2018.pdf (accessed on 5 July 2018). (In Swedish).
- Swedish Forest Agency. Älgbetesinventering och Foderprognos 2018/2019, Kronobergs Län Inventory of Moose Browsing and Forage Prognosis 2017/2018, Kronoberg County]. Available online: https://www.skogsstyrelsen.se/globalassets/statistik/abin-och-andra-betesinventeringar/abin/abinrapporter-2019/lan-abinresultat-2019/kronoberg_2019.pdf (accessed on 10 November 2019). (In Swedish).
- Swedish Forest Agency. Results from the Regeneration Inventories in Kronoberg County 2011/12-2015/16; Swedish forest Agency: Jönköping, Sweden, 2017. [Google Scholar]
- Fries, C.; Bergquist, J.; Wikström, P. Rapport 2015:6 Lägsta Ålder för Föryngringsavverkning (LÅF)–En Analys av Följder av att Sänka Åldrarna i Norra Sverige till Samma Nivå som i Södra Sverige [Report 2015:6 The Minimum Age for Final Felling–An Analysis of the Effects of Lowering the Ages in Northern Sweden to the Same Level as in Southern Sweden]; Skogsstyrelsens Böcker och Broschyrer: Jönköping, Sweden, 2015; p. 92. (In Swedish) [Google Scholar]
- Swedish FSC Standard for Forest Certification Including SLIMF Indicators. FSC-STD-SWE-02-02-2010. Available online: https://se.fsc.org/preview.fsc-forest-management-standard-for-sweden.a-772.pdf (accessed on 13 August 2019).
- Svenska PEFC:s Skogsstandard 2017-2022 [Swedish PEFC Forest Standard 2017–2022]. Available online: https://pefc.se/wp-content/uploads/2017/12/PEFC-SWE-002-Skogsstandard-2017-12-15.pdf (accessed on 13 August 2019). (In Swedish).
- Statistics Sweden. Formellt skyddad skogsmark, frivilliga avsättningar, hänsynsytor samt improduktiv skogsmark 2018 [Formally protected forest land, voluntary set-asides, consideration patches and unproductive forest land]. Swedens Official Statistics, Statistical Message; MI 41 SM 1902; SCB: Stockholm, Sweden, 2019; p. 42. [Google Scholar]
- Swedish Environmental Protection Agency; Swedish Forest Agency. Nationell Strategi för Formellt Skydd av skog. Reviderad Version 2017 [National Strategy for Formal Protection of Forest. Revised Version 2017]; SEPA, SFA: Bromma, Sweden, 2017; p. 88. (In Swedish) [Google Scholar]
- Agestam, E. Personal Communication; Southern Swedish Research Centre, Swedish University of Agricultural Sciences: Alnarp, Skåne, Sweden, 2018. [Google Scholar]
- Appelstrand, M. Developments in Swedish forest policy and administration – from a policy of restriction toward a policy of cooperation. Scand. J. For. Res. 2012, 27, 186–199. [Google Scholar] [CrossRef]
- Brukas, V.; Sallnäs, O. Forest management plan as a policy instrument: Carrot, stick or sermon? Land Use Policy 2012, 29, 605–613. [Google Scholar] [CrossRef] [Green Version]
- Guillén, L.A.; Wallin, I.; Brukas, V. Social capital in small-scale forestry: A local case study in Southern Sweden. For. Policy Econ. 2015, 53, 21–28. [Google Scholar] [CrossRef] [Green Version]
- Lidskog, R.; Löfmarck, E. Fostering a flexible forest: Challenges and strategies in the advisory practice of a deregulated forest management system. For. Policy Econ. 2016, 62, 177–183. [Google Scholar] [CrossRef] [Green Version]
- Brukas, V.; Weber, N. Forest management after the economic transition-at the crossroads between German and Scandinavian traditions. For. Policy Econ. 2009, 11, 586–592. [Google Scholar] [CrossRef] [Green Version]
- Forsell, N.; Korosuo, A. 2016 Milestone 6–Global and Country Specific Prospective Scenarios. ALTERFOR. Available online: https://alterforproject.eu/files/alterfor/download/Deliverables/MS%206%20Global%20and%20country%20specific%20scenarios_1.pdf (accessed on 6 July 2019).
- Havlík, P.; Valin, H.; Herrero, M.; Obersteiner, M.; Schmid, E.; Rufino, M.C.; Mosnier, A.; Thornton, P.K.; Böttcher, H.; Conant, R.T.; et al. Climate change mitigation through livestock system transitions. Proc. Natl. Acad. Sci. USA 2014, 111, 3709–3714. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fricko, O.; Havlik, P.; Rogelj, J.; Klimont, Z.; Gusti, M.; Johnson, N.; Kolp, P.; Strubegger, M.; Valin, H.; Amann, M. The marker quantification of the Shared Socioeconomic Pathway 2: A middle-of-the-road scenario for the 21st century. Glob. Environ. Chang. 2017, 42, 251–267. [Google Scholar] [CrossRef] [Green Version]
- Eriksson, H.; Fahlvik, N.; Freeman, M.; Fries, C.; Jönsson, A.M.; Lundström, A.; Nilsson, U.; Wikberg, P.-E. Rapport 2015:12 Effekter av ett Förändrat Klimat [Report 2015:12 Effects of a Changed Climate]; Skogsstyrelsens böcker och broschyrer: Jönköping, Sweden, 2015; p. 54. (In Swedish) [Google Scholar]
- Swedish University of Agricultural Sciences. Skogsdata 2017; Department of Forest Resource Management, Swedish University of Agricultural Sciences: Umeå, Sweden, 2017; p. 137. [Google Scholar]
- Swedish University of Agricultural Sciences, National Forest Inventory. Table 3.31-Mean Annual Volume Increment by Tree Species. Growth of Felled Trees Included. Productive Forest Land (1983-date). Available online: http://skogsstatistik.slu.se/pxweb/en/OffStat/OffStat__ProduktivSkogsmark__Tillväxt/PS_Tillväxt_avverkning_fig.px/?rxid=ccf096a0-61e2-4c43-8f2b-b80c98a4a180 (accessed on 15 November 2019).
- Skogskunskap 2019a. Beståndets Biomassa och Energi. Skogforsk. Available online: https://www.skogskunskap.se/rakna-med-verktyg/skogsbransle/bestandets-biomassa-och-energi/ (accessed on 12 April 2019).
- Skogskunskap 2019b. Medeltransport Avstånd Götaland. Skogforsk. Available online: https://www.skogforsk.se/kunskap/kunskapsbanken/2016/skogsbrukets-transporter-2014/ (accessed on 16 May 2019).
- Skogskunskap 2019c. Transportkostnad väg. Skogforsk. Available online: https://www.skogforsk.se/kunskap/kunskapsbanken/2014/Skogsbrukets-kostnader-och-intakter-20131/ (accessed on 16 May 2019).
- Skogskunskap 2019d. Kostnader för skogsbränsle. Skogforsk. Available online: https://www.skogskunskap.se/aga-skog/priser--kostnader/kostnader-for-skogsbransle (accessed on 15 November 2019).
- Butler, B.J.; Ma, Z.; Kittredge, D.B.; Catanzaro, P. Social versus biophysical availability of wood in northern United States. North. J. Appl. For. 2010, 27, 151159. [Google Scholar] [CrossRef] [Green Version]
- Deuffic, P.; Sotirov, M.; Arts, B. 2018. “Your policy, my rationale”. How individual and structural drivers influence European forest owners’ decisions. Land Use Policy 2018, 79, 1024–1038. [Google Scholar] [CrossRef]
- Jonsson, R.; Mustonen, M.; Lundmark, T.; Nordin, A.; Gerasimov, Y.; Granhus, A.; Eugene, H.; Hynynen, J.; Kvist Johannsen, V.; Kaliszewski, A.; et al. Working Papers of the Finnish Forest Research Institute 271. Conditions and Prospects for Increasing Forest Yield in Northern Europe; Finish Forest Research Institute: Vantaa, Finland, 2013; p. 41. Available online: http://www.metla.fi/julkaisut/workingpapers/2013/mwp271.pdf. (accessed on 20 July 2019).
- Bostedt, G.; Mustonen, M.; Gong, P. Increasing forest biomass supply in northern Europe—Countrywide estimates and economic perspectives. Scand. J. For. Res. 2015, 31, 314–322. [Google Scholar] [CrossRef] [Green Version]
- SLU. Reviderad Svensk Bokföringsrapport för Brukad Skogsmark Inklusive Skoglig Referensnivå [Revised Swedish Report for Managed Forest Including New Reference Level], Rapport; Institutionen för Mark och Miljö: Uppsala, Sweden, 2019; p. 30. (In Swedish) [Google Scholar]
- Swedish University of Agricultural Sciences. Skogsdata 2018; Department of Forest Resource Management, Swedish University of Agricultural Sciences: Umeå, Sweden, 2018; p. 143. [Google Scholar]
- Holmberg, L.-E. Rapport 2005:9 Sammanställning av Stormskador i Sverige under Senaste 210 Åren [Report 2005:9 Summary of Storm Damages in Sweden during the Last 210 Years]; Skogsstyrelsens böcker och broschyrer: Jönköping, Sweden, 2005; p. 14. (In Swedish) [Google Scholar]
- Valinger, E.; Kempe, G.; Fridman, J. Forest management and forest state in southern Sweden before and after the impact of storm Gudrun in the winter of 2005. Scand. J. For. Res. 2014, 29, 466–472. [Google Scholar] [CrossRef]
- Puettmann, K.J.; Coates, K.J.; Messier, C. Historical context of silviculture. In A Critique of Silviculture: Managing for Complexity; Island Press: Washington, DC, USA, 2009; pp. 1–40. [Google Scholar]
- Felton, A.; Sonesson, J.; Nilsson, U.; Lämås, T.; Lundmark, T.; Nordin, A.; Ranius, T.; Roberge, J.-M. Varying rotation lengths in northern production forests: Implications for habitats provided by retention and production trees. AMBIO 2017, 46, 324–334. [Google Scholar] [CrossRef]
- Eggers, J.; Holmgren, S.; Nordström, E.-M.; Lämås, T.; Lind, T.; Öhman, K. Balancing different forest values: Evaluation of forest management scenarios in a multi-criteria decision analysis framework. For. Policy Econ. 2019, 103, 55–69. [Google Scholar] [CrossRef]
- Felton, A.; Nilsson, U.; Sonesson, J.; Felton, A.M.; Roberge, J.-M.; Ranius, T.; Ahlström, M.; Bergh, J.; Björkman, C.; Boberg, J. Replacing monocultures with mixed species stands: Ecosystem service implications of two production forest alternatives in Sweden. AMBIO 2016, 45, 124–139. [Google Scholar] [CrossRef] [Green Version]
- Cintas, O.; Berndes, G.; Hansson, J.; Bishnu, C.P.; Bergh, J.; Börjesson, P.; Egnell, G.; Lundmark, T.; Nordin, A. The potential role of forest management in the Swedish scenarios towards climate neutrality by mid century. For. Ecol. Manag. 2017, 383, 73–84. [Google Scholar] [CrossRef]
- Jonsson, R. How to cope with changing demand conditions—The Swedish forest sector as a case study: An analysis of major drivers of change in the use of wood resources. Can. J. For. Res. 2013, 43, 405–418. [Google Scholar] [CrossRef]
- Nilsson, U.; Fahlvik, N.; Johansson, U.; Lundström, A.; Rosvall, O. Simulation of the effect of intensive forest management on forest production in Sweden. Forests 2011, 2, 373–393. [Google Scholar] [CrossRef] [Green Version]
- Poudel, B.C.; Sathre, R.; Bergh, J.; Gustavsson, L.; Lundström, A.; Hyvönen, R. Potential effects of intensive forestry on biomass production and total carbon balance in north-central Sweden. Environ. Sci. Policy 2012, 15, 106–124. [Google Scholar] [CrossRef]
- Verkerk, P.J.; Mavsar, R.; Giergiczny, M.; Lindner, M.; Edwards, D.; Schelhaas, M.J. Assessing impacts of intensified biomass production and biodiversity protection on ecosystem services provided by European forests. Ecosyst. Serv. 2014, 9, 155–165. [Google Scholar] [CrossRef]
- Felton, A.; Löfroth, T.; Angelstam, P.; Gustafsson, L.; Hjalten, J.; Felton, A.M.; Simonsson, P.; Dahlberg, A.; Lindbladh, M.; Svensson, J.; et al. Keeping pace with forestry: Multi-scale conservation in a changing production forest matrix. AMBIO 2019. [Google Scholar] [CrossRef] [Green Version]
- Gusti, M.; Kindermann, G. An approach to modeling landuse change and forest management on a global scale. In Proceedings of the 1st International Conference on Simulation and Modeling Methodologies, Technologies and Applications (SIMULTECH 2011), Noordwijkerhout, The Netherlands, 29–31 July 2011; pp. 180–185. [Google Scholar]
- Böttcher, H.; Verkerk, P.J.; Gusti, M.; HavlÍk, P.; Grassi, G. Projection of the future EU forest CO 2 sink as affected by recent bioenergy policies using two advanced forest management models. GCB Bioenergy 2012, 4, 773–783. [Google Scholar] [CrossRef] [Green Version]
- Forest Europe. State of Europe’s Forests 2015; Ministerial Conference on the Protection of Forests in Europe: Madrid, Spain, 2015; p. 314. [Google Scholar]
- Gallaun, H.G.; Zanchi, G.J.; Nabuurs, G.; Hengeveld, M.; Schardt, P.; Verkerk, P.J. EU-wide maps of growing stock and above-ground biomass in forests based on remote sensing and field measurements. For. Ecol. Manag. 2010, 260, 252–261. [Google Scholar] [CrossRef]
- Brus, D.J.; Hengeveld, G.M.; Walvoort, D.J.J.; Goedhart, P.W.; Heidema, A.H.; Nabuurs, G.J.; Gunia, K. Statistical mapping of tree species over Europe. Eur. J. For. Res. 2012, 131, 145–157. [Google Scholar] [CrossRef]
- Verkerk, P.J.; Levers, C.; Kuemmerle, T.; Lindner, M.; Valbuena, R.; Verburg, P.H.; Zudin, S. Mapping wood production in European forests. For. Ecol. Manag. 2015, 357, 228–238. [Google Scholar] [CrossRef] [Green Version]
- Grönlund, Ö.; Di Fulvio, F.; Bergström, D.; Djupström, L.; Eliasson, L.; Erlandsson, E.; Forsell, N.; Korosuo, A. Mapping of voluntary set-aside forests intended for nature conservation management in Sweden. Scand. J. For. Res. 2019, 34, 133–144. [Google Scholar] [CrossRef]
- European Commission. Regulation (EU) 2018/841 of the European parliament and of the council of 30 May 2018 on the inclusion of greenhouse gas emissions and removals from land use, land use change and forestry in the 2030 climate and energy framework, and amending Regulation (EU) No 525/2013 and Decision No 529/2013/EU. Off. J. Eur. Union 2018. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32018R0841&from=EN (accessed on 19 June 2018).
- Kallio, A.M.I.; Solberg, B.; Käär, L.; Päivinen, R. Economic impacts of setting reference levels for the forest carbon sinks in the EU on the European forest sector. For. Policy Econ. 2018, 92, 193–201. [Google Scholar] [CrossRef]
- Nabuurs, G.J.; Arets, E.J.; Schelhaas, M.J. Understanding the implications of the EU-LULUCF regulation for the wood supply from EU forests to the EU. Carbon Balance Manag. 2018, 13, 18. [Google Scholar] [CrossRef] [PubMed]
- Latta, G.S.; Sjølie, H.K.; Solberg, B. A review of recent developments and applications of partial equilibrium models of the forest sector. J. For. Econ. 2013, 19, 350–360. [Google Scholar] [CrossRef]
- Chudy, R.P.; Sjølie, H.K.; Latta, G.S.; Solberg, B. Effects on forest products markets of second-generation biofuel production based on biomass from boreal forests: A case study from Norway. Scand. J. For. Res. 2019, 34, 218–227. [Google Scholar] [CrossRef]
- Belyazid, S.; Giuliana, Z. Water limitation can negate the effect of higher temperatures on forest carbon sequestration. Eur. J. For. Res. 2019, 138, 287–297. [Google Scholar] [CrossRef] [Green Version]
- Subramanian, N.; Nilsson, U.; Mossberg, M.; Bergh, J. Impacts of climate change, weather extremes and alternative strategies in managed forests. Écoscience 2019, 26, 53–70. [Google Scholar] [CrossRef] [Green Version]
- Nilsson, U.; Berglund, M.; Bergquist, J.; Holmström, H.; Wallgren, M. Simulated effects of browsing on the production and economic values of Scots pine (Pinus sylvestris) stands. Scand. J. For. Res. 2016, 31, 279–285. [Google Scholar] [CrossRef]
- Angelstam, P.; Pedersen, S.; Manton, M.; Garrido, P.; Naumov, V.; Elbakidze, M. Green infrastructure maintenance is more than land cover: Large herbivores limit recruitment of key-stone tree species in Sweden. Landsc. Urban Plan. 2017, 167, 368–377. [Google Scholar] [CrossRef]
- Petersson, L.K.; Milberg, P.; Bergstedt, J.; Dah, J.; Felton, A.M.; Götmark, F.; Salk, C.; Löf, M. Changing land use and increasing abundance of deer cause natural regeneration failure of oaks: Six decades of landscape-scale evidence. For. Ecol. Manag. 2019, 444, 299–307. [Google Scholar] [CrossRef]
- Lönnstedt, L. Non-industrial private forest owners’ decision process: A qualitative study about goals, time perspective, opportunities and alternatives. Scand. J. For. Res. 1997, 12, 302–310. [Google Scholar] [CrossRef]
- Eriksson, L. Åtgärdsbeslut i Privatskogsbruket [Treatment Decisions in Privately Owned Forestry]; Report No 11; Department of Forest products, Swedish University of Agricultural Sciences: Uppsala, Sweden, 2008; p. 93. [Google Scholar]
- Johnson, K.N.; Scheurman, H.L. Techniques for prescribing optimal timber harvest and investment under different objectives—Discussion and synthesis. For. Sci. 1977, 23 (Suppl. S1), 1–31. [Google Scholar]
Treatments | Target Pproportions | Main Sources |
---|---|---|
Regeneration | Natural regeneration on moist/wet sites: approx. 9%; failed regeneration: approx. 4% (after legal supervision by the SFA); Scots pine: approx. 12% (% of the reforested area) | Share of genetically improved seedlings today and future development: [21] (p. 34). Regeneration methods and tree species choice: The SFAs regeneration inventory in Kronoberg 2011/12–2015/16 [41], ÄBIN Kronoberg County 2015-2019 [36,37,38,39,40], interviews. Growth of seed tree regenerated pine: Eric Agestam, personal communication [47]. |
Pre-commercial thinning (PCT) | 75% of the production forest area is treated with PCT | Share of the young forest treated with PCT: [21] (p. 34). PCT type: Interviews |
Thinning | - | Interviews, [27]. |
Final felling with retention | Total retention area (i.e., retention patches and retention trees) of each final felling stand: 8% (6% retention patches, 2% retention trees) | Rotation periods: [42] (p. 30), interviews.Share of retention patches of felled area: [21] (p. 31). Retention trees and high stumps: [21] (p. 36) |
Set-asides | Total share of set-asides: approx. 8% of the productive forestland (2% formal set-asides, 6% voluntary set-asides). | Share of voluntary set-asides: [45] (p. 18) Share of formal set-asides: [46] (p. 57) Site selection of nature conservation with/without management: Södras forest management plans in Kronoberg County Management of set-asides with management: Interviews |
Logging residue extraction | - | Site selection: Interviews |
Silvicultural Ttreatments | Descriptions |
---|---|
RE 1 | Standard planting program for Norway spruce in Heureka. Allowed on all sites. |
RE 2 | Standard planting program for Scots pine in Heureka. Used to project regeneration through planting (1/3) and regeneration with seed trees (2/3). The growth was reduced to account for the lower production associated with seed tree regeneration (based on [47]. Allowed on sites with SI (site index) H1001 ≤ 26. |
RE 3 | Natural regeneration on moist and wet sites resulting in an admixture of Birch and Norway spruce. |
RE 4 | Failed regeneration resulting in a very sparse stand dominated by Birch. This program should represent no measure on mesic and dry sites, which is the regeneration method with the highest rate of failure (40% do not fulfil the minimum seedling density requirements in the Forestry act [41]). |
PCT 1 | Standard PCT program in Heureka, favoring conifers at the expense of broadleaves. |
PCT 2 | PCT program aiming to maintain a high share of broadleaves. |
TH 1 | Standard thinning program in Heureka, favoring conifers at the expense of broadleaves. |
TH 2 | Thinning program aiming to maintain a high share of broadleaves. |
Final felling | Permissible 10–60 years past the minimum allowable rotation age depending on dominant species and owner strategy. |
Logging residue extraction | In connection with final felling of spruce dominated stands on dry and mesic sites. |
Nature conservation thinning in set-asides with management | Reoccurring thinnings (approx. every 20 years) favoring broadleaves at the expense of conifers in set-asides actively managed for nature conservation (stands dominated by broadleaves, and especially noble broadleaves2) |
No management in set-asides without management | Undisturbed growth pertaining to set-asides without management (low productive wet/moist stands and broadleaved dominated stands prioritized). |
No management in areas retained at final felling sites | Implemented by assigning no management to 8% of each production stand from the first period in the projections. |
Strategy | Description |
---|---|
Intensive | Excellent regeneration quality i.e., no RE4 and RE3 on suitable sites. All the young forests “in need” of PCT are treated with PCT 1. Max two thinnings with TH 1. Final felling allowed 10 years1 or 20 years2 past the minimum rotation age in the Forestry act. Approx. 8% set-asides with equal share of set-asides with/without management. |
Productivity | Excellent regeneration quality i.e., no RE4 and RE3 on suitable sites. 77.5% of the young forests “in need” of PCT are treated with PCT 1. Max two3 or three4 thinnings with TH 1. Final felling allowed 20 years1 or 30 years2 past the minimum rotation age in the Forestry act. Approx. 8% set-asides with equal share of set-asides with/without management. |
Save | Ok regeneration quality, RE3 on suitable sites but some RE4. 50 % of the young forests “in need” of PCT are treated with PCT 1. Max one3 or two4 thinnings with TH 1. Final felling allowed 30 years1 or 40 years2 past the minimum rotation age in the Forestry act. Approx. 8% set-asides with higher share of set-asides without management. |
Conservation | Ok regeneration quality, some RE 4 and a higher share of RE 3 to avoid scarification and to increase the share of broadleaves. 50% of the young forests “in need” of PCT are treated with PCT 2. Max two thinnings with TH 2. Final felling allowed 30 years1 or 40 years2 past the minimum rotation age in the Forestry act. Approx. 12% set-asides with equal share of set-asides with/without management. |
Passive | Poor regeneration quality i.e., high share of RE4 and RE3. No PCT. Max one thinning with TH 1. Final felling allowed 50 years1 or 60 years2 past the minimum rotation age in the Forestry act. Approx. 8% set-asides without management. |
Strategy | Proportion (%) |
---|---|
Intensive | 30.4 |
Productivity | 39.5 |
Save | 15.2 |
Conservation | 8.3 |
Passive | 6.6 |
Scenario | ||||||
---|---|---|---|---|---|---|
GLOBAL BIOENERGY | EU BIOENERGY | REFERENCE | ||||
Year | Sawlogs | Pulpwood | Sawlogs | Pulpwood | Sawlogs | Pulpwood |
2015 | 452 | 334 | 453 | 335 | 453 | 334 |
2020 | 454 | 335 | 456 | 337 | 455 | 336 |
2025 | 518 | 378 | 510 | 366 | 541 | 376 |
2030 | 583 | 421 | 564 | 394 | 627 | 416 |
2035 | 596 | 432 | 609 | 404 | 635 | 408 |
2040 | 610 | 443 | 654 | 414 | 644 | 401 |
2045 | 606 | 440 | 662 | 413 | 648 | 360 |
2050 | 603 | 436 | 670 | 412 | 652 | 319 |
2055 | 603 | 436 | 684 | 383 | 686 | 328 |
2060 | 602 | 435 | 699 | 353 | 719 | 338 |
2065 | 602 | 435 | 708 | 347 | 718 | 338 |
2070 | 602 | 436 | 717 | 340 | 718 | 338 |
2075 | 632 | 465 | 716 | 341 | 721 | 335 |
2080 | 662 | 495 | 715 | 342 | 724 | 333 |
2085 | 690 | 524 | 712 | 347 | 728 | 327 |
2090 | 719 | 552 | 708 | 352 | 732 | 322 |
2095 | 713 | 562 | 701 | 361 | 740 | 312 |
2100 | 708 | 572 | 693 | 369 | 747 | 302 |
2105 | 708 | 572 | 693 | 369 | 747 | 302 |
2110 | 708 | 572 | 693 | 369 | 747 | 302 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lodin, I.; Eriksson, L.O.; Forsell, N.; Korosuo, A. Combining Climate Change Mitigation Scenarios with Current Forest Owner Behavior: A Scenario Study from a Region in Southern Sweden. Forests 2020, 11, 346. https://doi.org/10.3390/f11030346
Lodin I, Eriksson LO, Forsell N, Korosuo A. Combining Climate Change Mitigation Scenarios with Current Forest Owner Behavior: A Scenario Study from a Region in Southern Sweden. Forests. 2020; 11(3):346. https://doi.org/10.3390/f11030346
Chicago/Turabian StyleLodin, Isak, Ljusk Ola Eriksson, Nicklas Forsell, and Anu Korosuo. 2020. "Combining Climate Change Mitigation Scenarios with Current Forest Owner Behavior: A Scenario Study from a Region in Southern Sweden" Forests 11, no. 3: 346. https://doi.org/10.3390/f11030346