Evaluation of Abiotic Controls on Windthrow Disturbance Using a Generalized Additive Model: A Case Study of the Tatra National Park, Slovakia
Abstract
1. Introduction
2. Materials and Methods
2.1. Wind Event and Study Area
2.2. Variables
2.3. Models
3. Results
3.1. Results of the Linear-Circular Correlation and Statistical Models
3.2. Abiotic Controls on Wind Disturbance
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
Abbreviation | Variable Category and Name |
Vegetation | |
NUp | Number of uprootings |
NSb | Number of stem breakages |
NSt | Number of standing trees |
TT = NUp + NSb + NSt | Total trees |
Di = (NUp + NSb)/TT | Damage index [dependent variable] |
Upi = NUp/TT | Uprooting index [dependent variable] |
Relative abundancies (to all trees) [independent variables] | |
rPicea | Relative abundance of standing European spruce (Picea abies) on a site |
rPinus | Relative abundance of standing pine trees (Pinus silvestris) on a site |
rLarix | Relative abundance of standing European larch (Larix deciduas) on a site |
rBetula | Abundance of standing birch (Betula pendula) on a site |
Exposition (orientation) of georelief [independent variables] | |
EG (degrees, 0 to 359) | The orientation of the georelief to the north |
EGNW (degrees, 0 to 180) | The orientation of the georelief equal to the direction of the north wind |
EGNWW (degrees, 0 to 180) | The orientation of the georelief equal to the direction of the northwest wind |
WIA (degrees, 0 to 359) | The angle of impact of the wind |
Topography [independent variables] | |
Alt (m a.s.l.) | Altitude |
As (degrees) | Slope aspect |
G (degrees) | Slope gradient |
PrC | Profile curvature |
PlC | Plan curvature |
DR (m) | Distance from ridges |
DMF (m) | Distance from main slope foot line |
DSF (m) | Distance from secondary slope foot line |
DV (m) | Distance from valley lines |
Hydrography [independent variables] | |
Wd (m) | Depth of water table |
Sr | Surface water retention |
ID = f(Wd, Sr, G, PrC, PlC) | Index of dryness |
Soil (Topsoil H1, Subsoil H2, Substratum H3) [independent variables] | |
Tx, H1Tx, H2Tx, H3Tx | Soil texture |
STn, H1Tn, H2Tn, H3Tn (cm) | Soil thickness |
Sw, H1Sw, H2Sw, H3Sw | Soil skeleton weathering |
Sv, H1Sv, H2Sv, H3Sv (%) | Volume of soil skeleton |
Sx, H1Sx, H2Sx, H3Sx (cm) | Maximum size of soil skeleton |
Sa, H1Sa, H2Sa, H3Sa (cm) | Average size of soil skeleton |
GSv = (H1Sv − H3Sv)/STn | Vertical gradient of skeleton volume |
GSx = (H1Sx − H3Sx)/STn | Vertical gradient of skeleton maximum size |
GSa = (H1Sa − H3Sa)/STn | Vertical gradient of skeleton average size |
References
- Lindemann, J.D.; Baker, W.L. Attributes if blowdown patches from a severe wind event in the Southern Rocky Mountains, USA. Landsc. Ecol. 2001, 16, 313–325. [Google Scholar] [CrossRef]
- Pickett, S.T.A.; White, P.S. (Eds.) The Ecology of Natural Disturbance and Patch Dynamics; Academic Press: New York, NY, USA, 1985. [Google Scholar]
- Suryawanshi, A.; Ghosh, D. Wind speed prediction using spatiotemporal covariance. Nat. Hazards 2015, 75, 1435–1449. [Google Scholar] [CrossRef]
- Ulanova, N.G. The effects of windthrow on forests at different spatial scales: A review. For. Ecol. Manag. 2000, 135, 155–167. [Google Scholar] [CrossRef]
- Lindner, M.; Maroschek, M.; Netherer, S.; Kremer, A.; Barbati, A.; Garcia Gonzalo, J.; Seidl, R.; Delzon, S.; Corona, P.; Kolström, M.; et al. Climate change impacts, adaptive capacity, and vulnerability of European forest ecosystems. For. Ecol. Manag. 2010, 259, 698–709. [Google Scholar] [CrossRef]
- Hanewinkel, M.; Kuhn, T.; Bugmann, H.; Lanz, A.; Brang, P. Vulnerability of uneven-aged forests to storm damage. Forestry 2014, 87, 525–534. [Google Scholar] [CrossRef]
- Everham, E.M.; Brokaw, N.V.L. Forest Damage and Recovery from Catastrophic Wind. Bot. Rev. 1996, 62, 113–185. [Google Scholar] [CrossRef]
- Kramer, M.G.; Hansen, A.J.; Taper, M.L.; Kissinger, E.J. Abiotic controls on longterm windthrow disturbance and temperate rain forest dynamics in southeast Alaska. Ecology 2001, 82, 2749–2768. [Google Scholar] [CrossRef]
- Seidl, R.; Fernandes, P.M.; Fonseca, T.F.; Gillet, F.; Jonsson, A.M.; Merganičová, K.; Netherer, S.; Arpaci, A.; Bontemps, J.D.; Bugmann, H.; et al. Modelling natural disturbances in forest ecosystems: A review. Ecol. Modeling 2011, 222, 903–924. [Google Scholar] [CrossRef]
- Lohmander, P.; Helles, F. Windhtrow probability as a function of stand characteristics and shelte. Scand. J. For. Res. 1987, 2, 227–238. [Google Scholar]
- Valinger, E.; Fridman, J. Models to assess the risk of snow and wind damage in pine, spruce, and birch forests in Sweden. Environ. Manag. 1999, 24, 209–217. [Google Scholar] [CrossRef]
- Mikita, T.; Klimánek, M.; Kolejka, J. Usage of multidimensional statistic methods with MAXTOPEX factor for windthrow risk assessment. Allg. Forst Und Jagdztg. 2012, 183, 63–74. [Google Scholar]
- Mitchell, S.J.; Hailemariam, T.; Kulis, Y. Empirical modelling of cutblock edge windthrow risk on vancuver Islans, Canada, using stand level information. For. Ecol. Manag. 2001, 154, 117–130. [Google Scholar] [CrossRef]
- Schulte, L.A.; Mladenoff, D.J.; Burrows, S.N.; Sickley, T.A.; Nordheim, E.V. Spatial controls of Pre-Euro-American wind and fire disturbance in Northern Wisconsin (USA) forest landscape. Ecosystems 2005, 8, 73–94. [Google Scholar] [CrossRef]
- Wang, F.; Xu, Y.J. Hurricane Katrina-induced forest damage in relation to ecological factors at landscape scal. Environ. Monit. Asses 2009, 156, 491–507. [Google Scholar] [CrossRef]
- Albrecht, A.; Kohnle, U.; Hanewinkel, M.; Bauhus, J. Storm damage of Douglas-fir unexpectedly high compared to Norway spruce. Ann. Sci. 2013, 70, 195–207. [Google Scholar] [CrossRef]
- Hanewinkel, M.; Zhou, W.; Schill, A. Neural network approach to identify forest stands susceptible to wind damage. For. Ecol. Manag. 2004, 196, 227–243. [Google Scholar] [CrossRef]
- Hanewinkel, M. Neural networks for assessing the risk of windthrow on the forest division level: A case study in Southwest Germany. Eur. J. For. Res. 2005, 124, 243–249. [Google Scholar] [CrossRef]
- Kenderes, K.; Aszalos, R.; Ruff, J.; Barton, Z.; Standovár, T. Effect of topography and tree stand characteristics on susceptibility of forests to natural disturbances (ice and wind) in the Brzsny Mountains (Hungary). Community Ecol. 2007, 8, 209–220. [Google Scholar] [CrossRef]
- Klaus, M.; Holsten, A.; Hostert, P.; Kropp, J.P. Integrated methodology to assess windthrow impacts on forest stands under climate change. For. Ecol. Manag. 2011, 261, 1799–1810. [Google Scholar] [CrossRef]
- Evans, A.M.; Camp, A.E.; Tyrell, M.L.; Riely, C. Biotic and abiotic influences on wind disturbance in forests of NW Pennsylvania, USA. For. Ecol. Manag. 2007, 245, 44–53. [Google Scholar] [CrossRef]
- Jalkanen, A.; Mattila, U. Logistic regression models for wind and snow damage in northern Finland based on the National Forest Inventory data. For. Ecol. Manag. 2000, 135, 315–330. [Google Scholar] [CrossRef]
- Schmidt, M.; Hanewinkel, M.; Kandler, G.; Kublin, E.; Kohnle, U. An inventory-based approach for modeling single tree storm damage experiences with the winter storm of 1999 in southwestern Germanyan. J. For. Res. 2010, 40, 1636–1652. [Google Scholar]
- Salekl, L.; Sivacioglu, A.; Topacoglu, O.; Zahradnile, D.; Jerabkoval, L.; Machar, I. Crowns of Old Remnant Oak Standards. Fresenius Environ. Bull. 2017, 26, 4023–4032. [Google Scholar]
- Machar, I.; Vozenilek, V.; Simon, J.; Pechanec, V.; Brus, J.; Fulnecek, P.; Vitek, T. Joining of the historical research and future prediction as a support tool for the assessment of management strategy for European beech-dominated forests in protected areas. Natonserv. Bulg. 2017, 22, 51–78. [Google Scholar] [CrossRef]
- Pechanec, V.; Machar, I.; Sterbova, L.; Prokopova, M.; Kilianova, H.; Chobot, K.; Cudlin, P. Monetary Valuation of Natural Forest Habitats in Protected Area. Forests 2017, 8, 427. [Google Scholar] [CrossRef]
- Boltižiar, M. Evaluation of vulnerability of high-mountain landscape on example Velicka dolina valley in the Vysoke Tatry Mountains. Ekológia (Bratisl.) 2001, 20, 101–109. [Google Scholar]
- Hreško, J.; Boltižiar, M.; Bugár, G. Spatial structures of geomorphic processes in high-mountain landscape of the Belianske Tatry Mts. Ekológia (Bratisl.) 2003, 22, 341–348. [Google Scholar]
- Hreško, J.; Bugár, G.; Boltižiar, M.; Kohút, F. The dynamic of recent geomorphic processes in the apline zone of the Tatra Mountains. Geogr. Pol. 2008, 81, 53–65. [Google Scholar]
- Kapusta, J.; Hreško, J.; Petrovič, F.; Tomko-Králo, D.; Gallik, J. Water surface overgrowing of the Tatra lake. Ekológia (Bratisl.) 2018, 36, 11–23. [Google Scholar] [CrossRef][Green Version]
- Kapusta, J.; Petrovič, F.; Hreško, J. Monitoring open water area changes in a small tarn using historical orthophotomaps and a historical bathymetric map: A case study of the Litworowy Staw lake, the High Tatras. J. Mt. Sci. 2018, 15, 2089–2102. [Google Scholar] [CrossRef]
- Hreško, J.; Kanásová, D.; Bugár, G.; Petrovič, F.; Mačutek, J. Morphodynamic effect on lacustrine deposits in the High Tatra Mt. Ekológia (Bratisl.) 2012, 31, 390–404. [Google Scholar]
- Reichstein, M.; Bahn, M.; Machecha, M.D.; Kattge, J.; Baldocchi, D.D. Linking plant and ecosystem functional biogeography. Proc. Natl. Acad. Sci. USA 2014, 111, 13697–13702. [Google Scholar] [CrossRef] [PubMed]
- Holec, J.; Bednarik, M.; Sabo, M.; Minár, J.; Yilmaz, I.; Marschalko, M. A small-scale landslide susceptibility assessment for the territory of Western Carpathian. Nat. Hazards 2013, 69, 1081–1107. [Google Scholar] [CrossRef]
- Falťan, V.; Bánovský, M.; Blažek, M. Evaluation of land cover changes after extraordinary windstorm by using the land cover metrics: A case study on the high Tatras foothill. Geografie 2011, 116, 156–171. [Google Scholar] [CrossRef][Green Version]
- Čuchta, P.; Miklisová, D.; Kováč, L. The impact of disturbance and ensuing forestry practices on Collembola in monitored stands of windthrown forests in the Tatra National Park (Slovakia). Environ. Monit. Asses. 2013, 185, 5085–5098. [Google Scholar]
- Lóšková, J.; Ľuptáčik, P.; Miklisová, D.; Kováč, L. The effect of clear-cutting and wildfire on soil Oribatida (Acari) in windthrown stands of the High Tatra Mountains (Slovakia). Eur. J. Soil Biol. 2013, 55, 131–138. [Google Scholar] [CrossRef]
- Mičuda, R.; Simonovičová, A.; Ďuriš, M.; Šimkovic, I.; Lancuch, P.; Hajnalík, P.; Dlapa, P. Soil-ecological characteristics of localities and evaluation of some soil properties in the High Tatra Mountains after the windthrow. Phytopedon 2005, 2, 12–18. [Google Scholar]
- Fleischer, P.; Homolová, Z. (Eds.) Windfall research and monitoring in the High Tatra Mt, objectives, principles, methods, and current status. Contrib. Geophys. Geod. 2011, 38, 233–248. [Google Scholar]
- Mezei, P.; Grodski, W.; Blaženec, M.; Jakuš, R. Factors influencing 535 the wind-bark beetles’ disturbance system in the course of an Ips typhographus outbreak in the Tatra Mountains. For. Ecol. Manag. 2014, 312, 67–77. [Google Scholar] [CrossRef]
- Jonášová, M.; Vávrová, E.; Cudlín, P. Western Carpathian mountain spruce forests after a windthrow: Natural regeneration in cleared and uncleared area. For. Ecol. Manag. 2010, 259, 1127–1134. [Google Scholar] [CrossRef]
- Minár, J.; Falťan, V.; Bánovský, M.; Damankošová, Z.; Kožuch, M. Influence of the site conditions on the windstorm impact (A case study of the High Tatras foothill in 2004). Land Anal. 2009, 10, 95–101. [Google Scholar]
- Falťan, V.; Katina, S.; Bánovský, M.; Damankošová, Z. The influence of site condition on the impact of windstorms on forest: The case of the High Tatras Foothills (Slovakia) in 2004. Morav. Geog Rep. 2009, 17, 10–18. [Google Scholar]
- Nikolov, C.; Konopka, B.; Kajba, M.; Galko, J.; Kunca, A.; Jansky, L. Post-disaster forest management and bark beetle outbreak in Tatra National Park, Slovakia. MTE Dev. 2014, 34, 326–335. [Google Scholar] [CrossRef]
- Minár, J. Detailed physical-geographical (geoecological) research and mapping in the landscape ecology. Ekológia (Bratisl.) 2003, 22, 141–149. [Google Scholar]
- Minár, J.; Falťan, V.; Bánovský, M.; Damankošová, Z. Impact of a catastrophic wind on various types of site in the Tatra National Park. Folia 550 Geographica. Ser. Geogr.-Phys. 2008, XXXIX, 95–106. [Google Scholar]
- R Core Team: A Language and Environment for Statistical Computing Foundation for Statistical Computing, Vienna. 2020. Available online: http://www.Rproject.org/ (accessed on 29 February 2020).
- Pawsey, A.; Neuhauser, M.; Ruxton, G.D. Circular Statistics in R; Oxford University Press: New York, NY, USA, 2013. [Google Scholar]
- Gayen, A.K. The frequency distribution of the product-moment correlation coefficient in random samples of any size drawn from non-normal universe. Biometrika 1951, 38, 219–247. [Google Scholar] [CrossRef]
- Breiman, L.; Friedman, J.H.; Olshen, A.; Stone, C.J. Classification and Regression Trees; CRC Press: Boca Raton, FL, USA, 1984. [Google Scholar]
- Wood, S.N. Generalized Additive Models: An Introduction with R; Chapman & Hall/CRC: New York, NY, USA, 2017. [Google Scholar]
- Marra, G.; Wood, S.N. Practical variable selection for generalized additive models. Comput. Stat. Data Anal. 2011, 55, 2372–2387. [Google Scholar] [CrossRef]
- Korpel, S. Die Urwalder der Westkarpaten; Gustav Fischer Verlag: Stuttgart, Germany, 1995. [Google Scholar]
- Ott, E.; Frehner, M.; Frey, H.U.; Lüscher, P. Gebirgsnadelwalde. In Ein praxisorientierter Leitfaden fur eine standortgerechte Waldbehandlung; Paul Haupt: Stuttgart, Germany, 1997. [Google Scholar]
- Guisan, A.; Edwards, T.; Hastie, T. Generalized linear and generalized additive models in studies of species distributions: Setting the scene. Ecol. Model. 2002, 157, 89–100. [Google Scholar] [CrossRef]
- Clarke, E.D.; Spear, L.B.; McCracken, M.L.; Marques, F.F.; Borches, D.L.; Buckland, S.T.; Ainley, D.G. Validating the use of generalized additive models and at-sea surveys to estimate size and temporal trends of seabird population. J. Appl. Ecol. 2003, 40, 278–292. [Google Scholar] [CrossRef]
- López-Moreno, J.I.; Nogúes-Bravo, D. Generalized additive model for the spatial distribution of snowpack in the Spanish Pyrenees. Hydrol. Process. 2005, 19, 3167–3176. [Google Scholar] [CrossRef]
- Leathwick, J.; Elith, J.; Hastie, T. Comparative performance of generalized additive models and multivariate adaptive regression splines for statistical modelling of species distribution. Ecol. Model. 2006, 199, 188–196. [Google Scholar] [CrossRef]
- Peterson, J.; Pickett, S.T.A. Treefall and resprouting following catastrophic windthrow in an old-growth hemlock-hardwoods forest. For. Ecol. Manag. 1991, 42, 205–217. [Google Scholar] [CrossRef]
- Xi, W. Forest Response to Natural Disturbance: Changes in Structure and Diversity on a North Carolina Piedmont Forest in Response to Catastrophic Wind Events; The University of North Carolina: Chapel Hill, NC, USA, 2005. [Google Scholar]
- Rottmann, M. Wind- Und Sturmschäden Im Wald; JD Sauerlanders Verlag: Dransfeld, Germany, 1989. [Google Scholar]
- Konôpka, B.; Moravčík, M.; Pajtík, J.; Lukac, M. Effect of soil waterlogging on belowground biomass allometric relations in Norway spruce. Plant Biosyst. 2010, 144, 448–457. [Google Scholar] [CrossRef]
- Basnet, K. Studies of Ecological and Geological Factors Controlling the Pattern of Tabonuco Forests in the Luquillo Experimental Forest, Puerto Rico; Rutgers University: New Brunswick, NJ, USA, 1990. [Google Scholar]
- Boose, E.; Chamberlin, K.E.; Foster, D. Landscape and regional impacts of hurricanes in New England. Ecol. Monog. 2001, 71, 27–48. [Google Scholar] [CrossRef]
- Alexander, R.R. Minimizing windfall around clear cuttings in spruce-fir forests. For. Sci. 1964, 10, 130–142. [Google Scholar]
- Seidl, R.; Schelhaas, M.-J.J.; Rammer, W.; Verkerk, P.J. Increasing forest disturbances in Europe and their impact on carbon storage. Nat. Clim. Chang. 2014, 4, 806–810. [Google Scholar] [CrossRef] [PubMed]
- Bolte, A.; Ammer, C.; Lὅf, M.; Madsen, P.; Nabuurs, G.J.; Schall, P.; Spathelf, P.; Rock, J. Adaptive forest management in central Europe: Climate change impacts, strategies and integrative concept. Scand. J. For. Res. 2009, 24, 476–482. [Google Scholar] [CrossRef]
Variable | n | r | LB | UB | z-Statistic | p-Value |
---|---|---|---|---|---|---|
Upi vs. EG | 245 | 0.247 | 0.1261 | 0.3616 | 3.9318 | 0.00008 |
Upi vs. EGNW | 245 | 0.176 | 0.0522 | 0.2952 | 2.7727 | 0.00556 |
Upi vs. EGNWW | 245 | 0.267 | 0.1469 | 0.3799 | 4.2625 | 0.00002 |
Upi vs. WIA | 250 | 0.138 | 0.0137 | 0.2572 | 2.1757 | 0.02958 |
Di vs. EG | 242 | 0.167 | 0.0419 | 0.2872 | 2.6083 | 0.00910 |
Di vs. EGNW | 242 | 0.127 | 0.0005 | 0.2487 | 1.9679 | 0.04908 |
Di vs. EGNWW | 242 | 0.187 | 0.0625 | 0.3060 | 2.9272 | 0.00342 |
Di vs. WIA | 247 | 0.128 | 0.0035 | 0.2491 | 2.0142 | 0.04399 |
Upi vs. EG, EG 0–90 | 68 | 0.089 | −0.1523 | 0.3209 | 0.7223 | 0.47013 |
Upi vs. EG, EG 90–180 | 148 | 0.140 | −0.0220 | 0.2945 | 1.6944 | 0.09018 |
Upi vs. EG, EG 180–270 | 25 | 0.181 | −0.2306 | 0.5377 | 0.8588 | 0.39047 |
Upi vs. EG, EG 270–359 | 4 | 0.995 | 0.7661 | 0.9999 | 2.9708 | 0.00297 |
Di vs. EG, EG 0–90 | 68 | 0.170 | −0.0715 | 0.3923 | 1.3824 | 0.16686 |
Di vs. EG, EG 90–180 | 146 | 0.128 | −0.0357 | 0.2841 | 1.5332 | 0.12522 |
Di vs. EG, EG 180–270 | 24 | 0.149 | −0.2709 | 0.5209 | 0.6867 | 0.49230 |
Di vs. EG, EG 270–359 | 4 | 0.999 | 0.9385 | 1.0000 | 3.6853 | 0.00023 |
rPicea > 0, Upi vs. EG | 101 | 0.262 | 0.0707 | 0.4356 | 2.6608 | 0.00780 |
rPicea > 0, Upi vs. EGNW | 101 | 0.250 | 0.0572 | 0.4245 | 2.5266 | 0.01152 |
rPicea > 0, Upi vs. EGNWW | 101 | 0.247 | 0.0540 | 0.4219 | 2.4953 | 0.01258 |
rPicea > 0, Upi vs. WIA | 102 | 0.220 | 0.0269 | 0.3977 | 2.2277 | 0.02590 |
rPicea > 0, Di vs. EG | 99 | 0.229 | 0.0336 | 0.4084 | 2.2891 | 0.02207 |
rPicea > 0, Di vs. EGNW | 99 | 0.149 | −0.0528 | 0.3339 | 1.4418 | 0.14935 |
rPicea > 0, Di vs. EGNWW | 99 | 0.229 | 0.0327 | 0.4076 | 2.2801 | 0.02260 |
rPicea > 0, Di vs. WIA | 100 | 0.236 | 0.0412 | 0.4130 | 2.3660 | 0.01798 |
rLarix ≥ 0.4835 Di vs. EG | 25 | 0.523 | 0.1617 | 0.7611 | 2.7253 | 0.00642 |
rLarix ≥ 0.4835 Di vs. EGNW | 25 | 0.523 | 0.1617 | 0.7611 | 2.7253 | 0.00642 |
rLarix ≥ 0.4835 Di vs. EGNWW | 25 | 0.367 | −0.0327 | 0.6657 | 1.8065 | 0.07085 |
rLarix ≥ 0.4835 Di vs. WIA | 25 | 0.540 | 0.1848 | 0.7710 | 2.8369 | 0.00456 |
Variable | β | SD(β) | t-Statistic | p-Value |
---|---|---|---|---|
intercept H1Sx | −1.1494 −0.0019 | 1.05259 0.00074 | −1.0993 −2.6183 | 0.279 0.011 |
ID Alt | −0.0349 0.0017 | 0.01624 0.00093 | −2.1465 1.8173 | 0.036 0.074 |
DMF | 0.0001 | 0.00007 | 1.2912 | 0.201 |
Variable | β | SD(β) | t-Statistic | p-Value |
---|---|---|---|---|
intercept | 0.4058 | 0.06653 | 6.0987 | <0.0001 |
H1Tn | 0.0055 | 0.00259 | 2.1223 | 0.036 |
ID | −0.0261 | 0.00998 | −2.6186 | 0.010 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Falťan, V.; Katina, S.; Minár, J.; Polčák, N.; Bánovský, M.; Maretta, M.; Zámečník, S.; Petrovič, F. Evaluation of Abiotic Controls on Windthrow Disturbance Using a Generalized Additive Model: A Case Study of the Tatra National Park, Slovakia. Forests 2020, 11, 1259. https://doi.org/10.3390/f11121259
Falťan V, Katina S, Minár J, Polčák N, Bánovský M, Maretta M, Zámečník S, Petrovič F. Evaluation of Abiotic Controls on Windthrow Disturbance Using a Generalized Additive Model: A Case Study of the Tatra National Park, Slovakia. Forests. 2020; 11(12):1259. https://doi.org/10.3390/f11121259
Chicago/Turabian StyleFalťan, Vladimír, Stanislav Katina, Jozef Minár, Norbert Polčák, Martin Bánovský, Martin Maretta, Stanislav Zámečník, and František Petrovič. 2020. "Evaluation of Abiotic Controls on Windthrow Disturbance Using a Generalized Additive Model: A Case Study of the Tatra National Park, Slovakia" Forests 11, no. 12: 1259. https://doi.org/10.3390/f11121259
APA StyleFalťan, V., Katina, S., Minár, J., Polčák, N., Bánovský, M., Maretta, M., Zámečník, S., & Petrovič, F. (2020). Evaluation of Abiotic Controls on Windthrow Disturbance Using a Generalized Additive Model: A Case Study of the Tatra National Park, Slovakia. Forests, 11(12), 1259. https://doi.org/10.3390/f11121259