Evaluation of Abiotic Controls on Windthrow Disturbance Using a Generalized Additive Model: A Case Study of the Tatra National Park, Slovakia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Wind Event and Study Area
2.2. Variables
2.3. Models
3. Results
3.1. Results of the Linear-Circular Correlation and Statistical Models
3.2. Abiotic Controls on Wind Disturbance
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
Abbreviation | Variable Category and Name |
Vegetation | |
NUp | Number of uprootings |
NSb | Number of stem breakages |
NSt | Number of standing trees |
TT = NUp + NSb + NSt | Total trees |
Di = (NUp + NSb)/TT | Damage index [dependent variable] |
Upi = NUp/TT | Uprooting index [dependent variable] |
Relative abundancies (to all trees) [independent variables] | |
rPicea | Relative abundance of standing European spruce (Picea abies) on a site |
rPinus | Relative abundance of standing pine trees (Pinus silvestris) on a site |
rLarix | Relative abundance of standing European larch (Larix deciduas) on a site |
rBetula | Abundance of standing birch (Betula pendula) on a site |
Exposition (orientation) of georelief [independent variables] | |
EG (degrees, 0 to 359) | The orientation of the georelief to the north |
EGNW (degrees, 0 to 180) | The orientation of the georelief equal to the direction of the north wind |
EGNWW (degrees, 0 to 180) | The orientation of the georelief equal to the direction of the northwest wind |
WIA (degrees, 0 to 359) | The angle of impact of the wind |
Topography [independent variables] | |
Alt (m a.s.l.) | Altitude |
As (degrees) | Slope aspect |
G (degrees) | Slope gradient |
PrC | Profile curvature |
PlC | Plan curvature |
DR (m) | Distance from ridges |
DMF (m) | Distance from main slope foot line |
DSF (m) | Distance from secondary slope foot line |
DV (m) | Distance from valley lines |
Hydrography [independent variables] | |
Wd (m) | Depth of water table |
Sr | Surface water retention |
ID = f(Wd, Sr, G, PrC, PlC) | Index of dryness |
Soil (Topsoil H1, Subsoil H2, Substratum H3) [independent variables] | |
Tx, H1Tx, H2Tx, H3Tx | Soil texture |
STn, H1Tn, H2Tn, H3Tn (cm) | Soil thickness |
Sw, H1Sw, H2Sw, H3Sw | Soil skeleton weathering |
Sv, H1Sv, H2Sv, H3Sv (%) | Volume of soil skeleton |
Sx, H1Sx, H2Sx, H3Sx (cm) | Maximum size of soil skeleton |
Sa, H1Sa, H2Sa, H3Sa (cm) | Average size of soil skeleton |
GSv = (H1Sv − H3Sv)/STn | Vertical gradient of skeleton volume |
GSx = (H1Sx − H3Sx)/STn | Vertical gradient of skeleton maximum size |
GSa = (H1Sa − H3Sa)/STn | Vertical gradient of skeleton average size |
References
- Lindemann, J.D.; Baker, W.L. Attributes if blowdown patches from a severe wind event in the Southern Rocky Mountains, USA. Landsc. Ecol. 2001, 16, 313–325. [Google Scholar] [CrossRef]
- Pickett, S.T.A.; White, P.S. (Eds.) The Ecology of Natural Disturbance and Patch Dynamics; Academic Press: New York, NY, USA, 1985. [Google Scholar]
- Suryawanshi, A.; Ghosh, D. Wind speed prediction using spatiotemporal covariance. Nat. Hazards 2015, 75, 1435–1449. [Google Scholar] [CrossRef]
- Ulanova, N.G. The effects of windthrow on forests at different spatial scales: A review. For. Ecol. Manag. 2000, 135, 155–167. [Google Scholar] [CrossRef]
- Lindner, M.; Maroschek, M.; Netherer, S.; Kremer, A.; Barbati, A.; Garcia Gonzalo, J.; Seidl, R.; Delzon, S.; Corona, P.; Kolström, M.; et al. Climate change impacts, adaptive capacity, and vulnerability of European forest ecosystems. For. Ecol. Manag. 2010, 259, 698–709. [Google Scholar] [CrossRef]
- Hanewinkel, M.; Kuhn, T.; Bugmann, H.; Lanz, A.; Brang, P. Vulnerability of uneven-aged forests to storm damage. Forestry 2014, 87, 525–534. [Google Scholar] [CrossRef] [Green Version]
- Everham, E.M.; Brokaw, N.V.L. Forest Damage and Recovery from Catastrophic Wind. Bot. Rev. 1996, 62, 113–185. [Google Scholar] [CrossRef]
- Kramer, M.G.; Hansen, A.J.; Taper, M.L.; Kissinger, E.J. Abiotic controls on longterm windthrow disturbance and temperate rain forest dynamics in southeast Alaska. Ecology 2001, 82, 2749–2768. [Google Scholar] [CrossRef]
- Seidl, R.; Fernandes, P.M.; Fonseca, T.F.; Gillet, F.; Jonsson, A.M.; Merganičová, K.; Netherer, S.; Arpaci, A.; Bontemps, J.D.; Bugmann, H.; et al. Modelling natural disturbances in forest ecosystems: A review. Ecol. Modeling 2011, 222, 903–924. [Google Scholar] [CrossRef] [Green Version]
- Lohmander, P.; Helles, F. Windhtrow probability as a function of stand characteristics and shelte. Scand. J. For. Res. 1987, 2, 227–238. [Google Scholar]
- Valinger, E.; Fridman, J. Models to assess the risk of snow and wind damage in pine, spruce, and birch forests in Sweden. Environ. Manag. 1999, 24, 209–217. [Google Scholar] [CrossRef]
- Mikita, T.; Klimánek, M.; Kolejka, J. Usage of multidimensional statistic methods with MAXTOPEX factor for windthrow risk assessment. Allg. Forst Und Jagdztg. 2012, 183, 63–74. [Google Scholar]
- Mitchell, S.J.; Hailemariam, T.; Kulis, Y. Empirical modelling of cutblock edge windthrow risk on vancuver Islans, Canada, using stand level information. For. Ecol. Manag. 2001, 154, 117–130. [Google Scholar] [CrossRef]
- Schulte, L.A.; Mladenoff, D.J.; Burrows, S.N.; Sickley, T.A.; Nordheim, E.V. Spatial controls of Pre-Euro-American wind and fire disturbance in Northern Wisconsin (USA) forest landscape. Ecosystems 2005, 8, 73–94. [Google Scholar] [CrossRef]
- Wang, F.; Xu, Y.J. Hurricane Katrina-induced forest damage in relation to ecological factors at landscape scal. Environ. Monit. Asses 2009, 156, 491–507. [Google Scholar] [CrossRef]
- Albrecht, A.; Kohnle, U.; Hanewinkel, M.; Bauhus, J. Storm damage of Douglas-fir unexpectedly high compared to Norway spruce. Ann. Sci. 2013, 70, 195–207. [Google Scholar] [CrossRef] [Green Version]
- Hanewinkel, M.; Zhou, W.; Schill, A. Neural network approach to identify forest stands susceptible to wind damage. For. Ecol. Manag. 2004, 196, 227–243. [Google Scholar] [CrossRef]
- Hanewinkel, M. Neural networks for assessing the risk of windthrow on the forest division level: A case study in Southwest Germany. Eur. J. For. Res. 2005, 124, 243–249. [Google Scholar] [CrossRef]
- Kenderes, K.; Aszalos, R.; Ruff, J.; Barton, Z.; Standovár, T. Effect of topography and tree stand characteristics on susceptibility of forests to natural disturbances (ice and wind) in the Brzsny Mountains (Hungary). Community Ecol. 2007, 8, 209–220. [Google Scholar] [CrossRef]
- Klaus, M.; Holsten, A.; Hostert, P.; Kropp, J.P. Integrated methodology to assess windthrow impacts on forest stands under climate change. For. Ecol. Manag. 2011, 261, 1799–1810. [Google Scholar] [CrossRef]
- Evans, A.M.; Camp, A.E.; Tyrell, M.L.; Riely, C. Biotic and abiotic influences on wind disturbance in forests of NW Pennsylvania, USA. For. Ecol. Manag. 2007, 245, 44–53. [Google Scholar] [CrossRef]
- Jalkanen, A.; Mattila, U. Logistic regression models for wind and snow damage in northern Finland based on the National Forest Inventory data. For. Ecol. Manag. 2000, 135, 315–330. [Google Scholar] [CrossRef]
- Schmidt, M.; Hanewinkel, M.; Kandler, G.; Kublin, E.; Kohnle, U. An inventory-based approach for modeling single tree storm damage experiences with the winter storm of 1999 in southwestern Germanyan. J. For. Res. 2010, 40, 1636–1652. [Google Scholar]
- Salekl, L.; Sivacioglu, A.; Topacoglu, O.; Zahradnile, D.; Jerabkoval, L.; Machar, I. Crowns of Old Remnant Oak Standards. Fresenius Environ. Bull. 2017, 26, 4023–4032. [Google Scholar]
- Machar, I.; Vozenilek, V.; Simon, J.; Pechanec, V.; Brus, J.; Fulnecek, P.; Vitek, T. Joining of the historical research and future prediction as a support tool for the assessment of management strategy for European beech-dominated forests in protected areas. Natonserv. Bulg. 2017, 22, 51–78. [Google Scholar] [CrossRef] [Green Version]
- Pechanec, V.; Machar, I.; Sterbova, L.; Prokopova, M.; Kilianova, H.; Chobot, K.; Cudlin, P. Monetary Valuation of Natural Forest Habitats in Protected Area. Forests 2017, 8, 427. [Google Scholar] [CrossRef] [Green Version]
- Boltižiar, M. Evaluation of vulnerability of high-mountain landscape on example Velicka dolina valley in the Vysoke Tatry Mountains. Ekológia (Bratisl.) 2001, 20, 101–109. [Google Scholar]
- Hreško, J.; Boltižiar, M.; Bugár, G. Spatial structures of geomorphic processes in high-mountain landscape of the Belianske Tatry Mts. Ekológia (Bratisl.) 2003, 22, 341–348. [Google Scholar]
- Hreško, J.; Bugár, G.; Boltižiar, M.; Kohút, F. The dynamic of recent geomorphic processes in the apline zone of the Tatra Mountains. Geogr. Pol. 2008, 81, 53–65. [Google Scholar]
- Kapusta, J.; Hreško, J.; Petrovič, F.; Tomko-Králo, D.; Gallik, J. Water surface overgrowing of the Tatra lake. Ekológia (Bratisl.) 2018, 36, 11–23. [Google Scholar] [CrossRef] [Green Version]
- Kapusta, J.; Petrovič, F.; Hreško, J. Monitoring open water area changes in a small tarn using historical orthophotomaps and a historical bathymetric map: A case study of the Litworowy Staw lake, the High Tatras. J. Mt. Sci. 2018, 15, 2089–2102. [Google Scholar] [CrossRef]
- Hreško, J.; Kanásová, D.; Bugár, G.; Petrovič, F.; Mačutek, J. Morphodynamic effect on lacustrine deposits in the High Tatra Mt. Ekológia (Bratisl.) 2012, 31, 390–404. [Google Scholar]
- Reichstein, M.; Bahn, M.; Machecha, M.D.; Kattge, J.; Baldocchi, D.D. Linking plant and ecosystem functional biogeography. Proc. Natl. Acad. Sci. USA 2014, 111, 13697–13702. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Holec, J.; Bednarik, M.; Sabo, M.; Minár, J.; Yilmaz, I.; Marschalko, M. A small-scale landslide susceptibility assessment for the territory of Western Carpathian. Nat. Hazards 2013, 69, 1081–1107. [Google Scholar] [CrossRef]
- Falťan, V.; Bánovský, M.; Blažek, M. Evaluation of land cover changes after extraordinary windstorm by using the land cover metrics: A case study on the high Tatras foothill. Geografie 2011, 116, 156–171. [Google Scholar] [CrossRef] [Green Version]
- Čuchta, P.; Miklisová, D.; Kováč, L. The impact of disturbance and ensuing forestry practices on Collembola in monitored stands of windthrown forests in the Tatra National Park (Slovakia). Environ. Monit. Asses. 2013, 185, 5085–5098. [Google Scholar]
- Lóšková, J.; Ľuptáčik, P.; Miklisová, D.; Kováč, L. The effect of clear-cutting and wildfire on soil Oribatida (Acari) in windthrown stands of the High Tatra Mountains (Slovakia). Eur. J. Soil Biol. 2013, 55, 131–138. [Google Scholar] [CrossRef]
- Mičuda, R.; Simonovičová, A.; Ďuriš, M.; Šimkovic, I.; Lancuch, P.; Hajnalík, P.; Dlapa, P. Soil-ecological characteristics of localities and evaluation of some soil properties in the High Tatra Mountains after the windthrow. Phytopedon 2005, 2, 12–18. [Google Scholar]
- Fleischer, P.; Homolová, Z. (Eds.) Windfall research and monitoring in the High Tatra Mt, objectives, principles, methods, and current status. Contrib. Geophys. Geod. 2011, 38, 233–248. [Google Scholar]
- Mezei, P.; Grodski, W.; Blaženec, M.; Jakuš, R. Factors influencing 535 the wind-bark beetles’ disturbance system in the course of an Ips typhographus outbreak in the Tatra Mountains. For. Ecol. Manag. 2014, 312, 67–77. [Google Scholar] [CrossRef]
- Jonášová, M.; Vávrová, E.; Cudlín, P. Western Carpathian mountain spruce forests after a windthrow: Natural regeneration in cleared and uncleared area. For. Ecol. Manag. 2010, 259, 1127–1134. [Google Scholar] [CrossRef]
- Minár, J.; Falťan, V.; Bánovský, M.; Damankošová, Z.; Kožuch, M. Influence of the site conditions on the windstorm impact (A case study of the High Tatras foothill in 2004). Land Anal. 2009, 10, 95–101. [Google Scholar]
- Falťan, V.; Katina, S.; Bánovský, M.; Damankošová, Z. The influence of site condition on the impact of windstorms on forest: The case of the High Tatras Foothills (Slovakia) in 2004. Morav. Geog Rep. 2009, 17, 10–18. [Google Scholar]
- Nikolov, C.; Konopka, B.; Kajba, M.; Galko, J.; Kunca, A.; Jansky, L. Post-disaster forest management and bark beetle outbreak in Tatra National Park, Slovakia. MTE Dev. 2014, 34, 326–335. [Google Scholar] [CrossRef]
- Minár, J. Detailed physical-geographical (geoecological) research and mapping in the landscape ecology. Ekológia (Bratisl.) 2003, 22, 141–149. [Google Scholar]
- Minár, J.; Falťan, V.; Bánovský, M.; Damankošová, Z. Impact of a catastrophic wind on various types of site in the Tatra National Park. Folia 550 Geographica. Ser. Geogr.-Phys. 2008, XXXIX, 95–106. [Google Scholar]
- R Core Team: A Language and Environment for Statistical Computing Foundation for Statistical Computing, Vienna. 2020. Available online: http://www.Rproject.org/ (accessed on 29 February 2020).
- Pawsey, A.; Neuhauser, M.; Ruxton, G.D. Circular Statistics in R; Oxford University Press: New York, NY, USA, 2013. [Google Scholar]
- Gayen, A.K. The frequency distribution of the product-moment correlation coefficient in random samples of any size drawn from non-normal universe. Biometrika 1951, 38, 219–247. [Google Scholar] [CrossRef]
- Breiman, L.; Friedman, J.H.; Olshen, A.; Stone, C.J. Classification and Regression Trees; CRC Press: Boca Raton, FL, USA, 1984. [Google Scholar]
- Wood, S.N. Generalized Additive Models: An Introduction with R; Chapman & Hall/CRC: New York, NY, USA, 2017. [Google Scholar]
- Marra, G.; Wood, S.N. Practical variable selection for generalized additive models. Comput. Stat. Data Anal. 2011, 55, 2372–2387. [Google Scholar] [CrossRef]
- Korpel, S. Die Urwalder der Westkarpaten; Gustav Fischer Verlag: Stuttgart, Germany, 1995. [Google Scholar]
- Ott, E.; Frehner, M.; Frey, H.U.; Lüscher, P. Gebirgsnadelwalde. In Ein praxisorientierter Leitfaden fur eine standortgerechte Waldbehandlung; Paul Haupt: Stuttgart, Germany, 1997. [Google Scholar]
- Guisan, A.; Edwards, T.; Hastie, T. Generalized linear and generalized additive models in studies of species distributions: Setting the scene. Ecol. Model. 2002, 157, 89–100. [Google Scholar] [CrossRef] [Green Version]
- Clarke, E.D.; Spear, L.B.; McCracken, M.L.; Marques, F.F.; Borches, D.L.; Buckland, S.T.; Ainley, D.G. Validating the use of generalized additive models and at-sea surveys to estimate size and temporal trends of seabird population. J. Appl. Ecol. 2003, 40, 278–292. [Google Scholar] [CrossRef] [Green Version]
- López-Moreno, J.I.; Nogúes-Bravo, D. Generalized additive model for the spatial distribution of snowpack in the Spanish Pyrenees. Hydrol. Process. 2005, 19, 3167–3176. [Google Scholar] [CrossRef]
- Leathwick, J.; Elith, J.; Hastie, T. Comparative performance of generalized additive models and multivariate adaptive regression splines for statistical modelling of species distribution. Ecol. Model. 2006, 199, 188–196. [Google Scholar] [CrossRef]
- Peterson, J.; Pickett, S.T.A. Treefall and resprouting following catastrophic windthrow in an old-growth hemlock-hardwoods forest. For. Ecol. Manag. 1991, 42, 205–217. [Google Scholar] [CrossRef]
- Xi, W. Forest Response to Natural Disturbance: Changes in Structure and Diversity on a North Carolina Piedmont Forest in Response to Catastrophic Wind Events; The University of North Carolina: Chapel Hill, NC, USA, 2005. [Google Scholar]
- Rottmann, M. Wind- Und Sturmschäden Im Wald; JD Sauerlanders Verlag: Dransfeld, Germany, 1989. [Google Scholar]
- Konôpka, B.; Moravčík, M.; Pajtík, J.; Lukac, M. Effect of soil waterlogging on belowground biomass allometric relations in Norway spruce. Plant Biosyst. 2010, 144, 448–457. [Google Scholar] [CrossRef]
- Basnet, K. Studies of Ecological and Geological Factors Controlling the Pattern of Tabonuco Forests in the Luquillo Experimental Forest, Puerto Rico; Rutgers University: New Brunswick, NJ, USA, 1990. [Google Scholar]
- Boose, E.; Chamberlin, K.E.; Foster, D. Landscape and regional impacts of hurricanes in New England. Ecol. Monog. 2001, 71, 27–48. [Google Scholar] [CrossRef]
- Alexander, R.R. Minimizing windfall around clear cuttings in spruce-fir forests. For. Sci. 1964, 10, 130–142. [Google Scholar]
- Seidl, R.; Schelhaas, M.-J.J.; Rammer, W.; Verkerk, P.J. Increasing forest disturbances in Europe and their impact on carbon storage. Nat. Clim. Chang. 2014, 4, 806–810. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bolte, A.; Ammer, C.; Lὅf, M.; Madsen, P.; Nabuurs, G.J.; Schall, P.; Spathelf, P.; Rock, J. Adaptive forest management in central Europe: Climate change impacts, strategies and integrative concept. Scand. J. For. Res. 2009, 24, 476–482. [Google Scholar] [CrossRef]
Variable | n | r | LB | UB | z-Statistic | p-Value |
---|---|---|---|---|---|---|
Upi vs. EG | 245 | 0.247 | 0.1261 | 0.3616 | 3.9318 | 0.00008 |
Upi vs. EGNW | 245 | 0.176 | 0.0522 | 0.2952 | 2.7727 | 0.00556 |
Upi vs. EGNWW | 245 | 0.267 | 0.1469 | 0.3799 | 4.2625 | 0.00002 |
Upi vs. WIA | 250 | 0.138 | 0.0137 | 0.2572 | 2.1757 | 0.02958 |
Di vs. EG | 242 | 0.167 | 0.0419 | 0.2872 | 2.6083 | 0.00910 |
Di vs. EGNW | 242 | 0.127 | 0.0005 | 0.2487 | 1.9679 | 0.04908 |
Di vs. EGNWW | 242 | 0.187 | 0.0625 | 0.3060 | 2.9272 | 0.00342 |
Di vs. WIA | 247 | 0.128 | 0.0035 | 0.2491 | 2.0142 | 0.04399 |
Upi vs. EG, EG 0–90 | 68 | 0.089 | −0.1523 | 0.3209 | 0.7223 | 0.47013 |
Upi vs. EG, EG 90–180 | 148 | 0.140 | −0.0220 | 0.2945 | 1.6944 | 0.09018 |
Upi vs. EG, EG 180–270 | 25 | 0.181 | −0.2306 | 0.5377 | 0.8588 | 0.39047 |
Upi vs. EG, EG 270–359 | 4 | 0.995 | 0.7661 | 0.9999 | 2.9708 | 0.00297 |
Di vs. EG, EG 0–90 | 68 | 0.170 | −0.0715 | 0.3923 | 1.3824 | 0.16686 |
Di vs. EG, EG 90–180 | 146 | 0.128 | −0.0357 | 0.2841 | 1.5332 | 0.12522 |
Di vs. EG, EG 180–270 | 24 | 0.149 | −0.2709 | 0.5209 | 0.6867 | 0.49230 |
Di vs. EG, EG 270–359 | 4 | 0.999 | 0.9385 | 1.0000 | 3.6853 | 0.00023 |
rPicea > 0, Upi vs. EG | 101 | 0.262 | 0.0707 | 0.4356 | 2.6608 | 0.00780 |
rPicea > 0, Upi vs. EGNW | 101 | 0.250 | 0.0572 | 0.4245 | 2.5266 | 0.01152 |
rPicea > 0, Upi vs. EGNWW | 101 | 0.247 | 0.0540 | 0.4219 | 2.4953 | 0.01258 |
rPicea > 0, Upi vs. WIA | 102 | 0.220 | 0.0269 | 0.3977 | 2.2277 | 0.02590 |
rPicea > 0, Di vs. EG | 99 | 0.229 | 0.0336 | 0.4084 | 2.2891 | 0.02207 |
rPicea > 0, Di vs. EGNW | 99 | 0.149 | −0.0528 | 0.3339 | 1.4418 | 0.14935 |
rPicea > 0, Di vs. EGNWW | 99 | 0.229 | 0.0327 | 0.4076 | 2.2801 | 0.02260 |
rPicea > 0, Di vs. WIA | 100 | 0.236 | 0.0412 | 0.4130 | 2.3660 | 0.01798 |
rLarix ≥ 0.4835 Di vs. EG | 25 | 0.523 | 0.1617 | 0.7611 | 2.7253 | 0.00642 |
rLarix ≥ 0.4835 Di vs. EGNW | 25 | 0.523 | 0.1617 | 0.7611 | 2.7253 | 0.00642 |
rLarix ≥ 0.4835 Di vs. EGNWW | 25 | 0.367 | −0.0327 | 0.6657 | 1.8065 | 0.07085 |
rLarix ≥ 0.4835 Di vs. WIA | 25 | 0.540 | 0.1848 | 0.7710 | 2.8369 | 0.00456 |
Variable | β | SD(β) | t-Statistic | p-Value |
---|---|---|---|---|
intercept H1Sx | −1.1494 −0.0019 | 1.05259 0.00074 | −1.0993 −2.6183 | 0.279 0.011 |
ID Alt | −0.0349 0.0017 | 0.01624 0.00093 | −2.1465 1.8173 | 0.036 0.074 |
DMF | 0.0001 | 0.00007 | 1.2912 | 0.201 |
Variable | β | SD(β) | t-Statistic | p-Value |
---|---|---|---|---|
intercept | 0.4058 | 0.06653 | 6.0987 | <0.0001 |
H1Tn | 0.0055 | 0.00259 | 2.1223 | 0.036 |
ID | −0.0261 | 0.00998 | −2.6186 | 0.010 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Falťan, V.; Katina, S.; Minár, J.; Polčák, N.; Bánovský, M.; Maretta, M.; Zámečník, S.; Petrovič, F. Evaluation of Abiotic Controls on Windthrow Disturbance Using a Generalized Additive Model: A Case Study of the Tatra National Park, Slovakia. Forests 2020, 11, 1259. https://doi.org/10.3390/f11121259
Falťan V, Katina S, Minár J, Polčák N, Bánovský M, Maretta M, Zámečník S, Petrovič F. Evaluation of Abiotic Controls on Windthrow Disturbance Using a Generalized Additive Model: A Case Study of the Tatra National Park, Slovakia. Forests. 2020; 11(12):1259. https://doi.org/10.3390/f11121259
Chicago/Turabian StyleFalťan, Vladimír, Stanislav Katina, Jozef Minár, Norbert Polčák, Martin Bánovský, Martin Maretta, Stanislav Zámečník, and František Petrovič. 2020. "Evaluation of Abiotic Controls on Windthrow Disturbance Using a Generalized Additive Model: A Case Study of the Tatra National Park, Slovakia" Forests 11, no. 12: 1259. https://doi.org/10.3390/f11121259
APA StyleFalťan, V., Katina, S., Minár, J., Polčák, N., Bánovský, M., Maretta, M., Zámečník, S., & Petrovič, F. (2020). Evaluation of Abiotic Controls on Windthrow Disturbance Using a Generalized Additive Model: A Case Study of the Tatra National Park, Slovakia. Forests, 11(12), 1259. https://doi.org/10.3390/f11121259