Genetically Determined Differences in Annual Shoot Elongation of Young Norway Spruce
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Rytter, L.; Johansson, K.; Karlsson, B.; Lars-Göran, S. Tree Species, Genetics and Regeneration for Bioenergy Feedstock in Northern Europe. In Forest BioEnergy Production: Management, Carbon Sequestration and Adaptation; Kellomäki, S., Kilpeläinen, A., Alam, A., Eds.; Springer Science & Business Media: New York, NY, USA, 2013; pp. 7–37. [Google Scholar]
- Jansson, G.; Hansen, J.K.; Haapanen, M.; Kvaalen, H.; Steffenrem, A. The genetic and economic gains from forest tree breeding programmes in Scandinavia and Finland. Scand. J. For. Res. 2017, 32, 273–286. [Google Scholar] [CrossRef]
- Liziniewicz, M.; Karlsson, B.; Helmersson, A. Improved varieties perform well in realized genetic gain trials with Norway spruce seed sources in southern Sweden. Scand. J. For. Res. 2019, 34, 409–416. [Google Scholar] [CrossRef]
- Simonsen, R.; Rosvall, O.; Gong, P.; Wibe, S. Profitability of measures to increase forest growth. For. Policy Econ. 2010, 12, 473–482. [Google Scholar] [CrossRef]
- Park, T.; Ganguly, S.; Tømmervik, H.; Euskirchen, E.S.; Høgda, K.A.; Karlsen, S.R.; Brovkin, V.; Nemani, R.R.; Myneni, R.B. Changes in growing season duration and productivity of northern vegetation inferred from long-term remote sensing data. Environ. Res. Lett. 2016, 11. [Google Scholar] [CrossRef]
- Hänninen, H. Climate warming and the risk of frost damage to boreal forest trees: Identification of critical ecophysiological traits. Tree Physiol. 2006, 26, 889–898. [Google Scholar] [CrossRef] [Green Version]
- Liu, Q.; Piao, S.; Janssens, I.A.; Fu, Y.; Peng, S.; Lian, X.; Ciais, P.; Myneni, R.B.; Peñuelas, J.; Wang, T. Extension of the growing season increases vegetation exposure to frost. Nat. Commun. 2018, 9. [Google Scholar] [CrossRef] [Green Version]
- Hannerz, M.; Sonesson, J.; Ekberg, I. Genetic correlations between growth and growth rhythm observed in a short-term test and performance in long-term field trials of Norway spruce. Can. J. For. Res. 1999, 29, 768–778. [Google Scholar] [CrossRef]
- Hannerz, M. Evaluation of temperature models for predicting bud burst in Norway spruce. Can. J. For. Res. 1999, 29, 9–19. [Google Scholar] [CrossRef]
- Mihai, G.; Curtu, A.L.; Garbacea, P.; Alexandru, A.M.; Mirancea, I.; Teodosiu, M. Genetic variation and inheritance of bud flushing in a Norway spruce seed orchard established in Romania. In Proceedings of the Biennial International Symposium “Forest and sustainable development”, Brașov, Romania, 25–27 October 2018; Borz, S.A., Curtu, A.L., Mușat, E.C., Eds.; Transilvania University Press: Brașov, Romania, 2019; pp. 73–82. [Google Scholar]
- Skrøppa, T.; Hylen, G.; Dietrichson, J. Relationships between wood density components and juvenile height growth and growth rhythm traits for Norway spruce provenances and families. Silvae Genet. 1999, 48, 235–239. [Google Scholar]
- Skrøppa, T.; Steffenrem, A. Genetic variation in phenology and growth among and within Norway spruce populations from two altitudinal transects in mid-Norway. Silva Fenn. 2019, 53, 1–19. [Google Scholar] [CrossRef]
- Lindner, M. Developing adaptive forest management strategies to cope with climate. Tree Physiol. 2000, 20, 299–307. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bolte, A.; Ammer, C.; Löf, M.; Madsen, P.; Nabuurs, G.J.; Schall, P.; Spathelf, P.; Rock, J. Adaptive forest management in central Europe: Climate change impacts, strategies and integrative concept. Scand. J. For. Res. 2009, 24, 473–482. [Google Scholar] [CrossRef]
- Zeltinš, P.; Katrevičs, J.; Gailis, A.; Maaten, T.; Desaine, I.; Jansons, A. Adaptation capacity of norway spruce provenances in Western Latvia. Forests 2019, 10, 840. [Google Scholar] [CrossRef] [Green Version]
- Isabel, N.; Holliday, J.A.; Aitken, S.N. Forest genomics: Advancing climate adaptation, forest health, productivity, and conservation. Evol. Appl. 2020, 13, 3–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rweyongeza, D.M.; Yeh, F.C.; Dhir, N.K. Genetic parameters for seasonal height and height growth curves of white spruce seedlings and their implications to early selection. For. Ecol. Manag. 2004, 187, 159–172. [Google Scholar] [CrossRef]
- Liziniewicz, M.; Berlin, M.; Karlsson, B. Early assessments are reliable indicators for future volume production in Norway spruce (Picea abies L. Karst) genetic field trials. For. Ecol. Manag. 2018, 411, 75–81. [Google Scholar] [CrossRef]
- Liziniewicz, M.; Berlin, M. Differences in growth and areal production between Norway spruce (Picea abies L. Karst) regeneration material representing different levels of genetic improvement. For. Ecol. Manag. 2019, 435, 158–169. [Google Scholar] [CrossRef]
- Jansson, G.; Danusevičius, D.; Grotehusman, H.; Kowalczyk, J.; Krajmerova, D.; Skrøppa, T.; Wolf, H. Norway spruce (Picea abies (L.) H.Karst.). In Forest Tree Breeding in Europe: Current State-of-the-Art and Perspectives; Pâques, L.E., Ed.; Springer Science & Business Media: Dordrecht, The Netherlands, 2013; pp. 123–176. [Google Scholar]
- Hannrup, B.; Cahalan, C.; Chantre, G.; Grabner, M.; Karlsson, B.; Le Bayon, I.; Jones, G.L.; Müller, U.; Pereira, H.; Rodrigues, J.C.; et al. Genetic parameters of growth and wood quality traits in Picea abies. Scand. J. For. Res. 2004, 19, 14–29. [Google Scholar] [CrossRef]
- Kowalczyk, J. Comparison of phenotypic and genetic selections in Scots pine (Pinus sylvestris L.) single tree plot half-sib progeny tests. Dendrobiology 2005, 53, 45–56. [Google Scholar]
- Kroon, J.; Ericsson, T.; Jansson, G.; Andersson, B. Patterns of genetic parameters for height in field genetic tests of Picea abies and Pinus sylvestris in Sweden. Tree Genet. Genomes 2011, 7, 1099–1111. [Google Scholar] [CrossRef]
- Skovsgaard, J.P.; Vanclay, J.K. Forest site productivity: A review of the evolution of dendrometric concepts for even-aged stands. Forestry 2008, 81, 13–31. [Google Scholar] [CrossRef] [Green Version]
- Johansson, T. Site index curves for Norway spruce (Picea abies (L.) karst.) planted on abandoned farm land. New For. 1996, 11, 9–29. [Google Scholar] [CrossRef]
- Perin, J.Ô.; Hébert, J.; Brostaux, Y.; Lejeune, P.; Claessens, H. Modelling the top-height growth and site index of Norway spruce in Southern Belgium. For. Ecol. Manag. 2013, 298, 62–70. [Google Scholar] [CrossRef]
- Levanič, T.; Gričar, J.; Gagen, M.; Jalkanen, R.; Loader, N.J.; McCarroll, D.; Oven, P.; Robertson, I. The climate sensitivity of Norway spruce (Picea abies (L.) Karst.) in the southeastern European Alps. Trees Struct. Funct. 2009, 23, 169–180. [Google Scholar] [CrossRef] [Green Version]
- Konôpka, B.; Pajtík, J.; Bošela, M.; Hlásny, T.; Sitková, Z. Inter-and intra-annual dynamics of height increment in young beech and spruce stands in relation to tree size and weather conditions. For. J. 2014, 60, 51–59. [Google Scholar] [CrossRef] [Green Version]
- Carles, S.; Boyer Groulx, D.; Lamhamedi, M.S.; Rainville, A.; Beaulieu, J.; Bernier, P.; Bousquet, J.; Deblois, J.; Margolis, H.A. Family variation in the morphology and physiology of white spruce (Picea glauca) seedlings in response to elevated CO2 and temperature. J. Sustain. For. 2015, 34, 169–198. [Google Scholar] [CrossRef]
- Skrøppa, T.; Magnussen, S. Provenance variation in shoot growth components of Norway spruce. Silvae Genet. 1993, 42, 111–120. [Google Scholar]
- Ekberg, I.; Eriksson, G.; Namkoong, G.; Nilsson, C.; Norell, L. Genetic correlations for growth rhythm and growth capacity at ages 3–8 years in provenance hybrids of Picea abies. Scand. J. For. Res. 1994, 9, 25–33. [Google Scholar] [CrossRef]
- Matisons, R.; Zeltiņš, P.; Danusevičius, D.; Džeriņa, B.; Desaine, I.; Jansons, Ā. Genetic control of intra-annual height growth in 6-year-old norway spruce progenies in Latvia. iForest 2019, 12, 214–219. [Google Scholar] [CrossRef]
- Tjørve, K.M.C.; Tjørve, E. The use of Gompertz models in growth analyses, and new Gompertz-model approach: An addition to the Unified-Richards family. PLoS ONE 2017, 12, e0178691. [Google Scholar] [CrossRef]
- Bušs, K. Forest ecosystem classification in Latvia. Proc. Latv. Acad. Sci. Sect. B Nat. Exact Appl. Sci. 1997, 51, 204–218. [Google Scholar]
- R Core Team, R. The R Project for Statistical Computing. Available online: https://www.r-project.org/ (accessed on 11 November 2020).
- Bates, D.; Mächler, M.; Bolker, B.M.; Walker, S.C. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 2015, 67, 1–48. [Google Scholar] [CrossRef]
- Kuznetsova, A.; Brockhoff, P.B.; Christensen, R.H.B. lmerTest package: Tests in linear mixed effects models. J. Stat. Softw. 2017, 82, 1–26. [Google Scholar] [CrossRef] [Green Version]
- Lenth, R.; Buerkner, P.; Herve, M.; LOve, J.; Riebl, H.; Singmann, H. CRAN—Package Emmeans. Available online: https://cran.r-project.org/web/packages/emmeans/index.html (accessed on 11 November 2020).
- Seo, J.W.; Salminen, H.; Jalkanen, R.; Eckstein, D. Chronological coherence between intra-annual height and radial growth of scots pine (Pinus sylvestris L.) in the northern boreal zone of Finland. Balt. For. 2010, 16, 57–65. [Google Scholar]
- Partanen, J.; Koski, V.; Hänninen, H. Effects of photoperiod and temperature on the timing of bud burst in Norway spruce (Picea abies). Tree Physiol. 1998, 18, 811–816. [Google Scholar] [CrossRef]
- Sutinen, S.; Partanen, J.; Viherä-Aarnio, A.; Häkkinen, R. Development and growth of primordial shoots in Norway spruce buds before visible bud burst in relation to time and temperature in the field. Tree Physiol. 2012, 32, 987–997. [Google Scholar] [CrossRef]
- Fløistad, I.S.; Granhus, A. Timing and duration of short-day treatment influence morphology and second bud flush in Picea abies seedlings. Silva Fenn. 2013, 47, 1–10. [Google Scholar] [CrossRef]
- Floistad, I.S.; Granhus, A. Morphology and phenology in picea abies seedlings in response to split short-day treatments. Balt. For. 2019, 25, 38–44. [Google Scholar] [CrossRef]
- Saksa, T.; Heiskanen, J.; Miina, J.; Tuomola, J.; Kolström, T. Multilevel modelling of height growth in young Norway spruce plantations in southern Finland. Silva Fenn. 2005, 39, 143–153. [Google Scholar] [CrossRef] [Green Version]
- Worrall, J. Seasonal, daily, and hourly growth of height and radius in Norway spruce. Can. J. For. Res. 1973, 3, 501–511. [Google Scholar] [CrossRef]
- Langvall, O.; Nilsson, U.; Örlander, G. Frost damage to planted Norway spruce seedlings—Influence of site preparation and seedling type. For. Ecol. Manag. 2001, 141, 223–235. [Google Scholar] [CrossRef]
- Leinonen, I.; Hänninen, H. Adaptation of the timing of bud burst of Norway spruce to temperate and boreal climates. Silva Fenn. 2002, 36, 695–701. [Google Scholar] [CrossRef] [Green Version]
- Hoch, G.; Richter, A.; Körner, C. Non-structural carbon compounds in temperate forest trees. Plant Cell Environ. 2003, 26, 1067–1081. [Google Scholar] [CrossRef]
- Villar-Salvador, P.; Uscola, M.; Jacobs, D.F. The role of stored carbohydrates and nitrogen in the growth and stress tolerance of planted forest trees. New For. 2015, 46, 813–839. [Google Scholar] [CrossRef]
- Katrevics, J.; Neimane, U.; Dzerina, B.; Kitenberga, M.; Jansons, J.; Jansons, A. Environmental factors affecting formation of lammas shoots in young stands of Norway spruce (Picea abies Karst.) in Latvia. iForest 2018, 11, 809–815. [Google Scholar] [CrossRef]
- Danjon, F. Heritabilities and genetic correlations for estimated growth curve parameters in maritime pine. Theor. Appl. Genet. 1994, 89, 911–921. [Google Scholar] [CrossRef] [PubMed]
- Haapanen, M.; Veiling, P.; Annala, M.-L. Progeny trial estimates of genetic parameters for growth and quality traits in Scots pine. Silva Fenn. 1997, 31, 3–12. [Google Scholar] [CrossRef]
- Karlsson, B.; Högberg, K. Genotypic parameters and clone x site interaction in clone tests of Norway spruce (Picea abies (L.) Karst.). For. Genet. 1998, 5, 21–30. [Google Scholar]
- Rweyongeza, D.M.; Yeh, F.C.; Dhir, N.K. Genetic parameters for bud flushing and growth characteristics of white spruce seedlings. Silvae Genet. 2010, 59, 151–158. [Google Scholar] [CrossRef] [Green Version]
- Ununger, J.; Ekberg, I.; Kang, H. Genetic control and age-related changes of juvenile growth characters in Picea abies. Scand. J. For. Res. 1988, 3, 55–66. [Google Scholar] [CrossRef]
Trial | Group of Families | Gompertz Model Coefficients | SL, mm | GI, mm day−1 | ||
---|---|---|---|---|---|---|
α | β | k | ||||
R | superior10% | 652 ± 29 a | 2.54 ± 0.12 a | 0.071 ± 0.002 a | 624 ± 26 a | 10.2 ± 0.4 a |
rest | 518 ± 10 b | 2.83 ± 0.05 a | 0.079 ± 0.001 b | 499 ± 9 b | 8.1 ± 0.1 b | |
inferior10% | 373 ± 21 c | 2.93 ± 0.14 a | 0.087 ± 0.002 c | 362 ± 21 c | 5.9 ± 0.3 c | |
J | superior10% | 754 ± 36 a | 4.15 ± 0.14 a | 0.057 ± 0.002 a | 662 ± 26 a | 11.3 ± 0.4 a |
rest | 636 ± 13 b | 4.21 ± 0.08 a | 0.065 ± 0.001 b | 558 ± 10 b | 9.4 ± 0.2 b | |
inferior10% | 520 ± 41 b | 4.59 ± 0.31 a | 0.073 ± 0.004 c | 468 ± 33 c | 7.8 ± 0.6 c |
Trial | Parameters | h2 ± SE | CVa, % |
---|---|---|---|
Rembate | α | 0.21 ± 0.011 | 8 |
β | 0.97 ± 0.08 | 17 | |
k | 0.30 ± 0.10 | 5 | |
Tree height | 0.24 ± 0.10 | 7 | |
Shoot length | 0.23 ± 0.11 | 8 | |
Jelgava | α | 0.03 ± 0.05 | 6 |
β | 0.16 ± 0.06 | 17 | |
k | 0.19 ± 0.08 | 7 | |
Tree height | 0.31 ± 0.09 | 7 | |
Shoot length | 0.08 ± 0.10 | 4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jansone, B.; Neimane, U.; Šēnhofa, S.; Matisons, R.; Jansons, Ā. Genetically Determined Differences in Annual Shoot Elongation of Young Norway Spruce. Forests 2020, 11, 1260. https://doi.org/10.3390/f11121260
Jansone B, Neimane U, Šēnhofa S, Matisons R, Jansons Ā. Genetically Determined Differences in Annual Shoot Elongation of Young Norway Spruce. Forests. 2020; 11(12):1260. https://doi.org/10.3390/f11121260
Chicago/Turabian StyleJansone, Baiba, Una Neimane, Silva Šēnhofa, Roberts Matisons, and Āris Jansons. 2020. "Genetically Determined Differences in Annual Shoot Elongation of Young Norway Spruce" Forests 11, no. 12: 1260. https://doi.org/10.3390/f11121260
APA StyleJansone, B., Neimane, U., Šēnhofa, S., Matisons, R., & Jansons, Ā. (2020). Genetically Determined Differences in Annual Shoot Elongation of Young Norway Spruce. Forests, 11(12), 1260. https://doi.org/10.3390/f11121260