Next Article in Journal
Multi-Threading a State-of-the-Art Maximum Clique Algorithm
Next Article in Special Issue
Stability, Optimality and Manipulation in Matching Problems with Weighted Preferences
Previous Article in Journal
An Emergent Approach to Text Analysis Based on a Connectionist Model and the Web
Previous Article in Special Issue
Stable Flows over Time
Open AccessArticle

Local Search Approaches in Stable Matching Problems

University of Padova, Padova 35131, Italy
Tulane University and IHMC, New Orleans, LA, USA
NICTA and UNSW, Sydney, NSW 1466, Australia
Author to whom correspondence should be addressed.
Algorithms 2013, 6(4), 591-617;
Received: 14 August 2013 / Revised: 4 September 2013 / Accepted: 22 September 2013 / Published: 3 October 2013
(This article belongs to the Special Issue Special Issue on Matching under Preferences)
The stable marriage (SM) problem has a wide variety of practical applications, ranging from matching resident doctors to hospitals, to matching students to schools or, more generally, to any two-sided market. In the classical formulation, n men and n women express their preferences (via a strict total order) over the members of the other sex. Solving an SM problem means finding a stable marriage where stability is an envy-free notion: no man and woman who are not married to each other would both prefer each other to their partners or to being single. We consider both the classical stable marriage problem and one of its useful variations (denoted SMTI (Stable Marriage with Ties and Incomplete lists)) where the men and women express their preferences in the form of an incomplete preference list with ties over a subset of the members of the other sex. Matchings are permitted only with people who appear in these preference lists, and we try to find a stable matching that marries as many people as possible. Whilst the SM problem is polynomial to solve, the SMTI problem is NP-hard. We propose to tackle both problems via a local search approach, which exploits properties of the problems to reduce the size of the neighborhood and to make local moves efficiently. We empirically evaluate our algorithm for SM problems by measuring its runtime behavior and its ability to sample the lattice of all possible stable marriages. We evaluate our algorithm for SMTI problems in terms of both its runtime behavior and its ability to find a maximum cardinality stable marriage. Experimental results suggest that for SM problems, the number of steps of our algorithm grows only as O(n log(n)), and that it samples very well the set of all stable marriages. It is thus a fair and efficient approach to generate stable marriages. Furthermore, our approach for SMTI problems is able to solve large problems, quickly returning stable matchings of large and often optimal size, despite the NP-hardness of this problem. View Full-Text
Keywords: local search; stable matching; sampling; ties and incomplete preference lists local search; stable matching; sampling; ties and incomplete preference lists
Show Figures

Figure 1

MDPI and ACS Style

Gelain, M.; Pini, M.S.; Rossi, F.; Venable, K.B.; Walsh, T. Local Search Approaches in Stable Matching Problems. Algorithms 2013, 6, 591-617.

Show more citation formats Show less citations formats

Article Access Map

Only visits after 24 November 2015 are recorded.
Back to TopTop