Multiplication Symmetric Convolution Property for Discrete Trigonometric Transforms
Abstract
:1. Introduction
2. Symmetric-Convolution Multiplication Property
3. Multiplication Symmetric-Convolution Property
4. Applications
= (4.243, −1.465, 0, 1.689) T
= (36, − 19.823, 0, 11.272) T
5. Conclusions
Acknowledgements
Appendix
SCM (Symmetric-Conv. Mult.) | Forward transform | Inverse transform | |||||||
Input index range | Output index range | Input index range | Output index range | Input index range | Output index range | ||||
y = SIE−1 (RT JTC1e) SIE x | 0→N | 1→N−1 | RT JT | ||||||
y = SIE−1 S1e RT JT CIE (A1 x) | 0→N | 1→N−1 | RT JT | ||||||
y = − A1−1CIE−1 J RS1e SIE x | 1→N−1 | 0→N | J R | ||||||
y = CIIE−1C2e JT CIE(A1 x) | 0→N | 0→N−1 | JT | ||||||
y = SIIE−1S2e KT CIE (A1 x) | 0→N | 1→N | KT | ||||||
y = −CIIE−1 R S1e QT SIIE x | 1→N | 1→N−1 | QT | 1→N−1 | 0→N−1 | R | |||
y = −CIIE−1R (QT S2e) SIE x | 1→N | 1→N−1 | QT | 1→N−1 | 0→N−1 | R | |||
y = A1−1CIE−1 J C2e CIIE x | 0→N−1 | 0→N | J | ||||||
y = SIE−1 (QTS2e) RT CIIE x | 0→N−1 | 1→N−1 | RT | 1→N | 1→N−1 | QT | |||
y = SIE−1 (RTC2e) Q T SIIE x | 1→N | 1→N−1 | QT | 0→N−1 | 1→N−1 | RT | |||
y = − A1−1 CIE−1 K S2e SIIE x | 1→N | 0→N | K |
SCM (Symmetric-Conv. Mult.) | Forward transform | Inverse transform | |||||||
Input index range | Output index range | Input index range | Output index range | Input index range | Output index range | ||||
y = SIO−1 (RTC1o) SIO x | 0→N−1 | 1→N−1 | RT | ||||||
y = SIO−1 S1o RT CIO (A2 x) | 0→N−1 | 1→N−1 | R T | ||||||
y = − A2−1 CIO−1 R S1o SIO x | 1→N−1 | 0→N−1 | R | ||||||
y = SIIO−1S1o RT CIIO (A4 x) | 0→N−1 | 1→N−1 | RT | ||||||
y = SIIO−1 (RTC2o) SIO x | 0→N−1 | 1→N−1 | RT | ||||||
y = SIIO−1 (RTC1o) SIIo x | 0→N−1 | 1→N−1 | RT | ||||||
y = SIIO−1S2o RT CIO (A2 x) | 0→N−1 | 1→N−1 | RT | ||||||
y = − A4−1 CIIO−1 R S1o SIIO x | 1→N−1 | 0→N−1 | R | ||||||
y = − A4−1 CIIO−1 R S2o SIO x | 1→N−1 | 0→N−1 | R | ||||||
y = SIO−1 S2o RT CIIO (A4 x) | 0→N−1 | 1→N−1 | RT | ||||||
y = SIO−1 (RTC2o) SIIO x | 0→N−1 | 1→N−1 | RT | ||||||
y = − A2−1 CIO−1 R S2o SIIO x | 1→N−1 | 0→N−1 | R | ||||||
y = SIIIO−1 S3o QT CIIIO (A2 x) | 0→N−1 | 0→N−2 | Q T | ||||||
y = SIIIO−1 QTC3o Q SIIIO x | 0→N−2 | 0→N−1 | Q | 0→N−1 | 0→N−2 | QT | |||
y = − A2−1 CIIIO−1 Q S3o SIIIO x | 0→N−2 | 0→N−1 | Q | ||||||
y = CIVO−1 (QTC3o) CIVO x | 0→N−1 | 0→N−2 | Q T | ||||||
y = CIVO−1C4o QT CIIIO (A2 x) | 0→N−1 | 0→N−2 | Q T | ||||||
y = A4−1 SIVO−1 Q S3o CIVO x | 0→N−2 | 0→N−1 | Q | ||||||
y = A4−1 SIVO−1 Q C4o SIIIO x | 0→N−2 | 0→N−1 | Q | ||||||
y = −CIVO−1S3o QT SIVO (A4 x) | 0→N−1 | 0→N−2 | QT | ||||||
y = −CIVO−1 (QTS4o) SIIIO x | 0→N−1 | 0→N−2 | QT | ||||||
y = A2−1 CIIIO−1 Q C4o CIVO x | 0→N−2 | 0→N−1 | Q | ||||||
y = SIIIO−1 (QTS4o) CIVO x | 0→N−1 | 0→N−2 | Q T | ||||||
y = SIIIO−1C4o QT SIVO (A4 x) | 0→N−1 | 0→N−2 | QT |
SCM (Symmetric-Conv. Mult.) | MSC (Mult. Symmetric-Conv.) | |
y = A1−1CIE−1C1e CIE (A1 x) | Y = A1−1CIE hC1e CIE −1(A1 X) | (A1) |
y = SIE−1 (RT JT C1e) SIE x | Y = SIE (RT JT C1e) SIE−1 X | (A2) |
y = SIE−1 S1e RT JT CIE (A1 x) | Y = SIES1e RT JT CIE−1 (A1 X) | |
y = − A1−1CIE−1 J R S1e SIE x | Y = − A1−1CIE J RhS1e SIE −1 X | (A3) |
y = CIIE−1C1e CIIE x | Y = CIIIE hC1e CIIIE −1 X | (A4) |
y = CIIE −1C2e JT CIE(A1 x) | Y = CIIIE hC3e JT CIE−1(A1 X) | |
y = SIIE−1S1e CIIE x | Y = SIIIE hS1e CIIIE−1 X | (A5) |
y = SIIE−1C2e SIE x | Y = SIIIE hC3e SIE−1 X | |
y = SIIE−1C1e SIIE x | Y = SIIIE hC1e SIIIE−1 X | (A6) |
y = SIIE−1S2e KT CIE (A1 x) | Y = SIIE hS3e KT CIE−1(A1 X) | |
y = −CIIE−1 R S1e QT SIIE x | Y = −CIIIE R hS1e QT SIIIE−1 X | (A7) |
y = −CIIE−1R (QT S2e) SIE x | Y = −CIIIE R (QT hS3e) SIE−1 X | |
y = A1−1CIE−1 J C2e CIIE x | Y = A1−1CIE J h C3e CIIIE −1 X | (A8) |
y = SIE−1 (QT S2e) RT CIIE x | Y = SIE (QT h S3e) RT CIIIE−1 X | (A9) |
y = SIE−1 (RT C2e) Q T SIIE x | Y = SIE (RT hC3e) Q T SIIIE−1 X | |
y = − A1−1 CIE−1 K S2e SIIE x | Y = − A1−1 CIE K h S3e SIIIE −1 X | (A10) |
y = A2−1 CIIIE−1C3e CIIIE(A2 x) | Y = A2−1 CIIE h C2e CIIE−1(A2 X) | (A11) |
y = A3−1 SIIIE−1S3e CIIIE(A2 x) | Y = A3−1 SIIE h S2e CIIE −1(A2 X) | (A12) |
y = A3−1 SIIIE−1C3e SIIIE(A3 x) | Y = A3−1 SIIE h S2e SIIE −1(A3 X) | |
y = A2−1 CIIIE−1S3e SIIIE(A3 x) | Y = A2−1 CIIE h S2e SIIE −1(A3 X) | (A13) |
y = CIVE−1C3e CIVE x | Y = CIVE h C2e CIVE−1 X | |
y = CIVE−1C4e CIIIE(A2 x) | Y = CIVE h C4e CIIE−1(A2 X) | (A14) |
y = SIVE−1S3e CIVE x | Y = SIVEh S2e CIVE−1X | (A15) |
y = SIVE−1C4e SIIIE(A3 x) | Y = SIVEh C4e SIIE−1(A3 X) | |
y = SIVE−1C3e SIVE x | Y = SIVE h C2e SIVE−1 X | (A16) |
y = SIVE−1S4e CIIIE(A2 x) | Y = SIVE h S4e CIIE−1(A2 X) | |
y = −CIVE−1S3e SIVE x | Y = −CIVE h S2e SIVE−1 X | (A17) |
y = −CIVE−1S4e SIIIE(A3 x) | Y = −CIVE h S4e SIIE−1 (A3 X) | |
y = A2−1 CIIIE−1C4e CIVE x | Y = A2−1 CIIE h C4e CIVE −1 X | (A18) |
y = A3−1 SIIIE−1S4e CIVE x | Y = A3−1 SIIE h S4e CIVE−1 X | (A19) |
y = A3−1 SIIIE−1C4e SIVE x | Y = A3−1 SIIE h C4e SIVE−1 X | |
y = − A2−1 CIIIE−1S4e SIVE x | Y = − A2−1 CIIE h S4e SIVE−1 X | (A20) |
SCM (Symmetric-Conv. Mult.) | MSC (Mult. Symmetric-Conv.) | |
y = A2−1 CIO−1C1o CIO (A2 x) | Y = A2−1 CIO h C1o CIO −1(A2 X) | (A21) |
y = SIO−1 (RTC1o) SIO x | Y = SIO (RT h C1o) SIO−1 X | (A22) |
y = SIO−1 S1o RT CIO (A2 x) | Y = SIO h S1o RT CIO−1(A2 X) | |
y = − A2−1 CIO−1 RS1o SIO x | Y = − A2−1 CIO R h S1o SIO −1 X | (A23) |
y = A4−1 CIIO−1C1o CIIO (A4 x) | Y = A4−1 CIIIO h C1o CIIIO −1 (A4 X) | (A24) |
y = A4−1 CIIO−1 C2o CIO (A2 x) | Y = A4−1 CIIIO h C3o CIO−1(A2 X) | |
y = SIIO−1S1o RT CIIO (A4 x) | Y = SIIIO h S1o RT CIIIO −1 (A4 X) | (A25) |
y = SIIO−1 (RTC2o) SIO x | Y = SIIIO (R T h C3o) SIO−1 X | |
y = SIIO−1 (RTC1o) SIIo x | Y = SIIIO (RT h C1o) SIIIO−1 X | (A26) |
y = SIIO−1S2o RT CIO (A2 x) | Y = SIIIO h S3o RT CIO−1 (A2 X) | |
y = − A4−1 CIIO−1 R S1o SIIO x | Y = − A4−1 CIIIO R h S3o SIO−1 X | (A27) |
y = − A4−1 CIIO−1 R S2o SIO x | Y = − A4−1 CIIIO R h S1o SIIIO−1 X | |
y = A2−1 CIO−1 C2o CIIO (A4 x) | Y = A2−1 CIOh C3o CIIIO−1 (A4 X) | (A28) |
y = SIO−1 S2o RT CIIO (A4 x) | Y = SIO h S3o RT CIIIO−1 (A4 X) | (A29) |
y = SIO−1 (RTC2o) SIIO x | Y = SIO−1 (RT h C3o) SIIIO X | |
y = − A2−1 CIO−1 R S2o SIIO x | Y = − A2−1 CIO R h S3o SIIIO−1 X | (A30) |
y = A2−1 CIIIO−1 C3o CIIIO(A2 x) | Y = A2−1 CIIO h C2o CIIO−1(A2 X) | (A31) |
y = SIIIO−1 S3o QT CIIIO (A2 x) | Y = SIIO h S2o QT CIIO−1(A2 X) | (A32) |
y = SIIIO−1 QT C3o Q SIIIO x | Y = SIIO QT h S2o Q SIIO−1 X | |
y = − A2−1 CIIIO−1 Q S3o SIIIO x | Y = − A2−1 CIIO Q h S2o SIIO−1 X | (A33) |
y = CIVO−1 (QT C3o) CIVO x | Y = CIVO (QT h C2o) CIVO−1 X | (A34) |
y = CIVO−1C4o QT CIIIO (A2 x) | Y = CIVO h C4o QT CIIO−1(A2 X) | |
y = A4−1 SIVO−1 Q S3o CIVO x | Y = A4−1 SIVO Q h S2o CIVO−1 X | (A35) |
y = A4−1 SIVO−1 Q C4o SIIIO x | Y = A4−1 SIVOQ h C4o SIIO−1 X | |
y = A4−1 SIVO−1C3o SIVO (A4 x) | Y = A4−1 SIVO h C2o SIVO−1 (A4 X) | (A36) |
y = A4−1 SIVOE−1S4o CIIIO (A2 x) | Y = A4−1 SIVOh S4o CIIO−1 (A2 X) | |
y = − CIVO−1S3o QT SIVO (A4 x) | Y = − CIVOh S2o QT SIVO−1 (A4 X) | (A37) |
y = − CIVO−1 (QTS4o) SIIIO x | Y = − CIVO (QT h S4o) SIIIO−1 X | |
y = A2−1 CIIIO−1 Q C4o CIVO x | Y = A2−1 CIIO Q h C4o CIVO−1 X | (A38) |
y = SIIIO−1 (QTS4o) CIVO x | Y = SIIO (QT h S4o) CIVO−1 x | (A39) |
y = SIIIO−1C4o QT SIVO (A4 x) | Y = SIIO−1 h C4o QT SIVO−1 (A4 X) | |
y = − A2−1 CIIIO−1S4o SIVO (A4 x) | Y = − A2−1 CIIO h S4o SIVO−1 (A4 x) | (A40) |
References and Notes
- Shen, Bo; Sethi, I.K.; Bhaskaran, V. DCT convolution and its application in compressed domain. IEEE T. Circ. Syst. Vid. 1998, 8, 947–952. [Google Scholar]
- Martucci, S.A. Symmetric convolution and the discrete sine and cosine transforms. IEEE Trans. SP 1994, 42, 1038–1051. [Google Scholar] [CrossRef]
- Zou, X.; Muramatsu, S.; Kiya, H. The generalized overlap-add and overlap-save methods using discrete sine and cosine transforms for FIR filtering. In Proceedings of the 3rd IEEE Int’l Conf. on Signal Processing, ICSP'96, Beijing, China, October 1996; pp. 91–94.
- Reju, V.G.; Koh, S.N.; Soon, I.Y. Convolution using discrete sine and cosine transforms. IEEE Signal Proc. Let. 2007, 14, 445–448. [Google Scholar] [CrossRef]
- Korohoda, P.; Dabrowski, A. Generalized convolution as a tool for the multi-dimensional filtering tasks. Multidim. Syst. Sign. P. 2008, 19, 361–377. [Google Scholar] [CrossRef]
- Foltz, T.M.; Welsh, B.M.; Holmberg, C.D. Symmetric convolution using unitary transform matrices. IEEE T. Signal Proces. 2000, 48, 2691–2692. [Google Scholar] [CrossRef]
- Park, Y.S.; Park, H.W. Design and analysis of an image resizing filter in the block-DCT domain. IEEE T. Circ. Syst. Vid. 2004, 14, 274–279. [Google Scholar]
- Sánchez, V.; García, P.; Peinado, A.M.; Segura, J.C.; Rubio, A.J. Diagonalizing properties of the discrete cosine transforms. IEEE T. Signal Proces. 1995, 43, 2631–2641. [Google Scholar] [CrossRef]
- Sánchez, V.; García, P.; Peinado, A.M.; Segura, J.C.; Rubio, A.J. Generating matrices for the discrete sine transforms. IEEE T. Signal Proces. 1996, 44, 2644–2646. [Google Scholar] [CrossRef]
- Martucci, S.A. Image resizing in the discrete sine and cosine domain. In Proceedings of the IEEE International Conference on Image Processing 1995, Washington, DC, USA, October 1995; Volume 2, pp. 244–247.
- Foltz, T.M.; Welsh, B.M. Symmetric convolution of asymmetric multidimensional sequences using discrete trigonometric transforms. IEEE T. Image Proces. 1999, 8, 640–651. [Google Scholar] [CrossRef] [PubMed]
- Rao, K.R.; Yip, P. Discrete Cosine Transform: Algorithms, Advantages, And Applications; Academic Press: London, England, 1990. [Google Scholar]
- Britanak, V.; Yip, P.; Rao, K.R. Discrete Cosine and Sine Transforms; Academic Press (Elsevier): Orlando, FL, USA, 2007; pp. 32–38. [Google Scholar]
© 2009 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, D.N.; Rao, K.R. Multiplication Symmetric Convolution Property for Discrete Trigonometric Transforms. Algorithms 2009, 2, 1221-1231. https://doi.org/10.3390/a2031221
Kim DN, Rao KR. Multiplication Symmetric Convolution Property for Discrete Trigonometric Transforms. Algorithms. 2009; 2(3):1221-1231. https://doi.org/10.3390/a2031221
Chicago/Turabian StyleKim, Do Nyeon, and K. R. Rao. 2009. "Multiplication Symmetric Convolution Property for Discrete Trigonometric Transforms" Algorithms 2, no. 3: 1221-1231. https://doi.org/10.3390/a2031221
APA StyleKim, D. N., & Rao, K. R. (2009). Multiplication Symmetric Convolution Property for Discrete Trigonometric Transforms. Algorithms, 2(3), 1221-1231. https://doi.org/10.3390/a2031221