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Abstract:



The symmetric-convolution multiplication (SCM) property of discrete trigonometric transforms (DTTs) based on unitary transform matrices is developed. Then as the reciprocity of this property, the novel multiplication symmetric-convolution (MSC) property of discrete trigonometric transforms, is developed.
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1. Introduction


Shen et al. [1] developed fast DCT-domain convolution for time/spatial-domain multiplication using DCT type-2. They exploited symmetry and orthogonality for the fast algorithm. Logo-keying operation in the spatial domain can be done in the DCT domain for compressed image/video editing. However, they have not derived the convolution from the symmetric-convolution multiplication (SCM) property of discrete trigonometric transforms (DTTs), which will be the focus of this paper.



Time-domain symmetric convolution for a linear phase filtering application has been developed by Martucci [2] and is called the symmetric-convolution multiplication property of DTTs. Based on the SCM property, Zou et al. [3] have developed a symmetric convolution for linear phase FIR filtering. Filter coefficients consist of symmetric and asymmetric parts.



Based on those earlier works, Reju et al. [4] have finally developed fast circular convolution using DTTs. The input sequences to be convolved need not be symmetric or asymmetric. Thus fast DCTs and DSTs can be used instead of the FFTs for FIR filtering. Generalized fast convolution using numerous transforms as well as the DFT and DTTs has been studied by Korohoda et al. in [5].



In this paper we show that swapping the forward and inverse transforms in the SCM property [2] yields a multiplication-convolution (MSC) property. That is, the convolution of transformed sequences gives the same results as the forward transform after element-by-element multiplication of the data sequences. The necessary scaling factor M for these new properties has been described in the third line below Eq. (20) in [2], saying “it is possible to swap the usage of the forward and inverse transform; in that case, an extra scaling factor may be required”. Here M is the size of the generalized DFT (GDFT) when a DTT is derived from an M-point GDFT. We can get 40 types of MSCs corresponding to 40 types of SCMs in Tables VI, VII of [2].



In (1) of [6], the formulation of the SCM for the unitary matrices is presented, with only the exception of some of the 40 options mentioned by Martucci [2], because they cannot be expressed with the assumed tools. Here, we fill that gap. Consider the following matrix relationship between convolutional/unnormalized DTTs (denoted with lower-case subscript like C1e) and unitary DTTs (denoted with capital-letter subscript like CIE).
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Here the fact that scalars commute with matrices is used for C3e and others.
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where diag(a11, a11, …, aNN) implies a diagonal matrix with the diagonal elements as (a11, a11, …, aNN). IN is the identity matrix of size N × N.



Let matrices J, K, Q, and R be defined as:


[image: there is no content]



(15)




where O1×N is the zero row-vector, with N elements, whose entries are all zero. Multiplying one of those matrices with an input vector appends a single zero on the top of the first or under the last element of the vector. Multiplying the transpose of one of those matrices with an input vector discards the first or last element of the vector.




2. Symmetric-Convolution Multiplication Property


One of the forty cases of symmetric convolution is proven as an example.



Property.

y = A1−1CIE−1 J [image: there is no content]C2e CIIE x        [(A8) in Table 3]



Table 3. 20 of 40 types of SCM and MSC properties for the DTTs, M = 2N.







	
SCM (Symmetric-Conv. Mult.)

	
MSC (Mult. Symmetric-Conv.)

	




	
y = A1−1CIE−1[image: there is no content]C1e CIE (A1 x)

	
Y = A1−1CIEhC1e CIE−1(A1 X)

	
(A1)




	
y = SIE−1 (RT JT [image: there is no content]C1e) SIE x

	
Y = SIE (RT JT [image: there is no content]C1e) SIE−1 X

	
(A2)




	
y = SIE−1[image: there is no content]S1e RT JT CIE (A1 x)

	
Y = SIE[image: there is no content]S1e RT JT CIE−1 (A1 X)

	




	
y = − A1−1CIE−1 J R [image: there is no content]S1e SIE x

	
Y = − A1−1CIE J RhS1e SIE−1 X

	
(A3)




	
y = CIIE−1[image: there is no content]C1e CIIE x

	
Y = CIIIEhC1e CIIIE−1 X

	
(A4)




	
y = CIIE−1[image: there is no content]C2e JT CIE(A1 x)

	
Y = CIIIEhC3e JT CIE−1(A1 X)

	




	
y = SIIE−1[image: there is no content]S1e CIIE x

	
Y = SIIIEhS1e CIIIE−1 X

	
(A5)




	
y = SIIE−1[image: there is no content]C2e SIE x

	
Y = SIIIEhC3e SIE−1 X

	




	
y = SIIE−1[image: there is no content]C1e SIIE x

	
Y = SIIIEhC1e SIIIE−1 X

	
(A6)




	
y = SIIE−1[image: there is no content]S2e KT CIE (A1 x)

	
Y = SIIEhS3e KT CIE−1(A1 X)

	




	
y = −CIIE−1 R [image: there is no content]S1e QT SIIE x

	
Y = −CIIIE R hS1e QT SIIIE−1 X

	
(A7)




	
y = −CIIE−1R (QT [image: there is no content]S2e) SIE x

	
Y = −CIIIE R (QT hS3e) SIE−1 X

	




	
y = A1−1CIE−1 J [image: there is no content]C2e CIIE x

	
Y = A1−1CIE J h C3e CIIIE−1 X

	
(A8)




	
y = SIE−1 (QT [image: there is no content]S2e) RT CIIE x

	
Y = SIE (QT h S3e) RT CIIIE−1 X

	
(A9)




	
y = SIE−1 (RT [image: there is no content]C2e) Q T SIIE x

	
Y = SIE (RT hC3e) Q T SIIIE−1 X

	




	
y = − A1−1 CIE−1 K [image: there is no content]S2e SIIE x

	
Y = − A1−1 CIE K h S3e SIIIE−1 X

	
(A10)




	
y = A2−1 CIIIE−1[image: there is no content]C3e CIIIE(A2 x)

	
Y = A2−1 CIIEh C2e CIIE−1(A2 X)

	
(A11)




	
y = A3−1 SIIIE−1[image: there is no content]S3e CIIIE(A2 x)

	
Y = A3−1 SIIEh S2e CIIE−1(A2 X)

	
(A12)




	
y = A3−1 SIIIE−1[image: there is no content]C3e SIIIE(A3 x)

	
Y = A3−1 SIIEh S2e SIIE−1(A3 X)

	




	
y = A2−1 CIIIE−1[image: there is no content]S3e SIIIE(A3 x)

	
Y = A2−1 CIIEh S2e SIIE−1(A3 X)

	
(A13)




	
y = CIVE−1[image: there is no content]C3e CIVE x

	
Y = CIVEh C2e CIVE−1 X

	




	
y = CIVE−1[image: there is no content]C4e CIIIE(A2 x)

	
Y = CIVEh C4e CIIE−1(A2 X)

	
(A14)




	
y = SIVE−1[image: there is no content]S3e CIVE x

	
Y = SIVEh S2e CIVE−1X

	
(A15)




	
y = SIVE−1[image: there is no content]C4e SIIIE(A3 x)

	
Y = SIVEh C4e SIIE−1(A3 X)

	




	
y = SIVE−1[image: there is no content]C3e SIVE x

	
Y = SIVEh C2e SIVE−1 X

	
(A16)




	
y = SIVE−1[image: there is no content]S4e CIIIE(A2 x)

	
Y = SIVEh S4e CIIE−1(A2 X)

	




	
y = −CIVE−1[image: there is no content]S3e SIVE x

	
Y = −CIVEh S2e SIVE−1 X

	
(A17)




	
y = −CIVE−1[image: there is no content]S4e SIIIE(A3 x)

	
Y = −CIVEh S4e SIIE−1 (A3 X)

	




	
y = A2−1 CIIIE−1[image: there is no content]C4e CIVE x

	
Y = A2−1 CIIEh [image: there is no content]C4e CIVE−1 X

	
(A18)




	
y = A3−1 SIIIE−1[image: there is no content]S4e CIVE x

	
Y = A3−1 SIIEh S4e CIVE−1 X

	
(A19)




	
y = A3−1 SIIIE−1[image: there is no content]C4e SIVE x

	
Y = A3−1 SIIEh C4e SIVE−1 X

	




	
y = − A2−1 CIIIE−1[image: there is no content]S4e SIVE x

	
Y = − A2−1 CIIEh S4e SIVE−1 X

	
(A20)












Proof.

Equation (A.1) in the appendix of [2] can be rewritten as:
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(16)




where [image: there is no content] is the kernel.
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(18)









From (16), (17) and (18):


[image: there is no content]
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From (1) and (10):


[image: there is no content]



(21)







Let x and w be input column vectors in time domain. Let y be an output column vector in time domain. Let [image: there is no content]C2e be a diagonal matrix defined as [image: there is no content]C2e = diag([C2e w]T), where superscript T denotes the transpose operator. We rewrite the 8th property in Table VI of [2] as:


y=C1e−1{ℋC2eC2ex}=C1e−1{ℋC2e[2N/km]NCIIEx}=[1/kn]N+1CIE−1[km]N+1J{ℋC2e[1/km]NCIIEx}



(22)







The matrix J shows up in the last line of (22) for zero padding. Since [image: there is no content]C2e and [[image: there is no content]]N are diagonal matrices, they can commute. Thus:


y=[1/kn]N+1CIE−1J{ℋC2eCIIEx}=[1/kn]N+1CIE−1J{ℋC2eCIIEx}



(23)







Another example is shown in (11) of [6]. Equation (12) of [6] is expanded to full for our derivation and only results are listed in the first column of Table 3 and Table 4 in the Appendix.



Table 4. 20 of 40 types of SCM and MSC properties for the DTTs, M = 2N − 1.







	
SCM (Symmetric-Conv. Mult.)

	
MSC (Mult. Symmetric-Conv.)

	




	
y = A2−1 CIO−1[image: there is no content]C1o CIO (A2 x)

	
Y = A2−1 CIOh C1o CIO−1(A2 X)

	
(A21)




	
y = SIO−1 (RT[image: there is no content]C1o) SIO x

	
Y = SIO (RT h C1o) SIO−1 X

	
(A22)




	
y = SIO−1[image: there is no content]S1o RT CIO (A2 x)

	
Y = SIOh S1o RT CIO−1(A2 X)

	




	
y = − A2−1 CIO−1 R[image: there is no content]S1o SIO x

	
Y = − A2−1 CIO R h S1o SIO−1 X

	
(A23)




	
y = A4−1 CIIO−1[image: there is no content]C1o CIIO (A4 x)

	
Y = A4−1 CIIIOh C1o CIIIO−1 (A4 X)

	
(A24)




	
y = A4−1 CIIO−1[image: there is no content]C2o CIO (A2 x)

	
Y = A4−1 CIIIOh C3o CIO−1(A2 X)

	




	
y = SIIO−1[image: there is no content]S1o RT CIIO (A4 x)

	
Y = SIIIOh S1o RT CIIIO−1 (A4 X)

	
(A25)




	
y = SIIO−1 (RT[image: there is no content]C2o) SIO x

	
Y = SIIIO (R T h C3o) SIO−1 X

	




	
y = SIIO−1 (RT[image: there is no content]C1o) SIIo x

	
Y = SIIIO (RT h C1o) SIIIO−1 X

	
(A26)




	
y = SIIO−1[image: there is no content]S2o RT CIO (A2 x)

	
Y = SIIIOh S3o RT CIO−1 (A2 X)

	




	
y = − A4−1 CIIO−1 R [image: there is no content]S1o SIIO x

	
Y = − A4−1 CIIIO R h S3o SIO−1 X

	
(A27)




	
y = − A4−1 CIIO−1 R [image: there is no content]S2o SIO x

	
Y = − A4−1 CIIIO R h S1o SIIIO−1 X

	




	
y = A2−1 CIO−1[image: there is no content]C2o CIIO (A4 x)

	
Y = A2−1 CIOh C3o CIIIO−1 (A4 X)

	
(A28)




	
y = SIO−1[image: there is no content]S2o RT CIIO (A4 x)

	
Y = SIOh S3o RT CIIIO−1 (A4 X)

	
(A29)




	
y = SIO−1 (RT[image: there is no content]C2o) SIIO x

	
Y = SIO−1 (RT h C3o) SIIIO X

	




	
y = − A2−1 CIO−1 R [image: there is no content]S2o SIIO x

	
Y = − A2−1 CIO R h S3o SIIIO−1 X

	
(A30)




	
y = A2−1 CIIIO−1[image: there is no content]C3o CIIIO(A2 x)

	
Y = A2−1 CIIOh C2o CIIO−1(A2 X)

	
(A31)




	
y = SIIIO−1[image: there is no content]S3o QT CIIIO (A2 x)

	
Y = SIIOh S2o QT CIIO−1(A2 X)

	
(A32)




	
y = SIIIO−1 QT [image: there is no content]C3o Q SIIIO x

	
Y = SIIO QT h S2o Q SIIO−1 X

	




	
y = − A2−1 CIIIO−1 Q [image: there is no content]S3o SIIIO x

	
Y = − A2−1 CIIO Q h S2o SIIO−1 X

	
(A33)




	
y = CIVO−1 (QT [image: there is no content]C3o) CIVO x

	
Y = CIVO (QT h C2o) CIVO−1 X

	
(A34)




	
y = CIVO−1[image: there is no content]C4o QT CIIIO (A2 x)

	
Y = CIVOh C4o QT CIIO−1(A2 X)

	




	
y = A4−1 SIVO−1 Q [image: there is no content]S3o CIVO x

	
Y = A4−1 SIVO Q h S2o CIVO−1 X

	
(A35)




	
y = A4−1 SIVO−1 Q [image: there is no content]C4o SIIIO x

	
Y = A4−1 SIVOQ h C4o SIIO−1 X

	




	
y = A4−1 SIVO−1[image: there is no content]C3o SIVO (A4 x)

	
Y = A4−1 SIVOh C2o SIVO−1 (A4 X)

	
(A36)




	
y = A4−1 SIVOE−1[image: there is no content]S4o CIIIO (A2 x)

	
Y = A4−1 SIVOh S4o CIIO−1 (A2 X)

	




	
y = − CIVO−1[image: there is no content]S3o QT SIVO (A4 x)

	
Y = − CIVOh S2o QT SIVO−1 (A4 X)

	
(A37)




	
y = − CIVO−1 (QT[image: there is no content]S4o) SIIIO x

	
Y = − CIVO (QT h S4o) SIIIO−1 X

	




	
y = A2−1 CIIIO−1 Q [image: there is no content]C4o CIVO x

	
Y = A2−1 CIIO Q h C4o CIVO−1 X

	
(A38)




	
y = SIIIO−1 (QT[image: there is no content]S4o) CIVO x

	
Y = SIIO (QT h S4o) CIVO−1 x

	
(A39)




	
y = SIIIO−1[image: there is no content]C4o QT SIVO (A4 x)

	
Y = SIIO−1h C4o QT SIVO−1 (A4 X)

	




	
y = − A2−1 CIIIO−1[image: there is no content]S4o SIVO (A4 x)

	
Y = − A2−1 CIIOh S4o SIVO−1 (A4 x)

	
(A40)











3. Multiplication Symmetric-Convolution Property


Let X and Y be transformed input and output data vectors. Since there are one-to-one correspondences between unitary discrete trigonometric transforms (DTTs), we can exchange the forward transform for inverse one and vice versa as follows. In other words, a pair has the same matrix but has different names. Define h C3e as:


h C3e = diag( [(C3e) −1 W]T )



(24)




where C3e will be defined in (27). That is, [image: there is no content]C2e and h C3e are the same matrix with different names (thus names of DTTs need to change).



Then from (23):


[image: there is no content]



(25







Notice the forward transform matrix CIIE is replaced by the inverse transform matrix CIIIE−1 since they are the same matrix, and vice versa. Now this equation represents a SCM of DTTs. A key point of this new property is that we need to redefine convolution forms of DCTs and DSTs. The factor of M is divided for the inverse DCT of the convolution form in [2] whereas it is divided for the forward DCT of the new convolution form. M is 2N for even and 2N – 1 for odd. Now new convolution form for DCT 2 is denoted as C2e:


ForwardInverse(old)C2e⇔C2e−1=1MC3e



(26)






[image: there is no content]



(27)







The rest of DTTs can be readily obtained from the appendix of [2].



MSC properties can be described in terms of convolutional / unnormalized DTTs to obtain similar results:


[image: there is no content]



(28)








[image: there is no content]



(29)





Only results are listed. Matrices J, K, Q, and R are required for different index ranges between operands. Link between the index range-based maneuvers described by Martucci [2] and the introduction of the J, K, Q and R matrices is presented in Table 1 and Table 2 for M = 2N and M = 2N − 1, respectively.



Table 1. Link between the index range-based maneuvers described by Martucci [2] and the introduction of the J, K, Q and R matrices, M = 2N.







	
SCM (Symmetric-Conv. Mult.)

	
Forward transform

	
[image: there is no content]

	
Inverse transform




	
Input

index

range

	
Output

index

range

	

	
Input

index

range

	
Output

index

range

	

	
Input

index

range

	
Output

index

range

	




	
y = SIE−1 (RT JT[image: there is no content]C1e) SIE x

	

	

	

	
0→N

	
1→N−1

	
RT

JT

	

	

	




	
y = SIE−1[image: there is no content]S1e RT JT CIE (A1 x)

	
0→N

	
1→N−1

	
RT

JT

	

	

	

	

	

	




	
y = − A1−1CIE−1 J R[image: there is no content]S1e SIE x

	
1→N−1

	
0→N

	
J R

	

	

	

	

	

	




	
y = CIIE−1[image: there is no content]C2e JT CIE(A1 x)

	
0→N

	
0→N−1

	
JT

	

	

	

	

	

	




	
y = SIIE−1[image: there is no content]S2e KT CIE (A1 x)

	
0→N

	
1→N

	
KT

	

	

	

	

	

	




	
y = −CIIE−1 R [image: there is no content]S1e QT SIIE x

	
1→N

	
1→N−1

	
QT

	

	

	

	
1→N−1

	
0→N−1

	
R




	
y = −CIIE−1R (QT [image: there is no content]S2e) SIE x

	

	

	

	
1→N

	
1→N−1

	
QT

	
1→N−1

	
0→N−1

	
R




	
y = A1−1CIE−1 J [image: there is no content]C2e CIIE x

	

	

	

	

	

	

	
0→N−1

	
0→N

	
J




	
y = SIE−1 (QT[image: there is no content]S2e) RT CIIE x

	
0→N−1

	
1→N−1

	
RT

	
1→N

	
1→N−1

	
QT

	

	

	




	
y = SIE−1 (RT[image: there is no content]C2e) Q T SIIE x

	
1→N

	
1→N−1

	
QT

	
0→N−1

	
1→N−1

	
RT

	

	

	




	
y = − A1−1 CIE−1 K [image: there is no content]S2e SIIE x

	

	

	

	

	

	

	
1→N

	
0→N

	
K










Table 2. Link between the index range-based maneuvers described by Martucci [2] and the introduction of the J, K, Q and R matrices, M = 2N − 1.







	
SCM (Symmetric-Conv. Mult.)

	
Forward transform

	
[image: there is no content]

	
Inverse transform




	
Input

index

range

	
Output

index

range

	

	
Input

index

range

	
Output

index

range

	

	
Input

index

range

	
Output

index

range

	




	
y = SIO−1 (RT[image: there is no content]C1o) SIO x

	

	

	

	
0→N−1

	
1→N−1

	
RT

	

	

	




	
y = SIO−1[image: there is no content]S1o RT CIO (A2 x)

	
0→N−1

	
1→N−1

	
R T

	

	

	

	

	

	




	
y = − A2−1 CIO−1 R [image: there is no content]S1o SIO x

	

	

	

	

	

	

	
1→N−1

	
0→N−1

	
R




	
y = SIIO−1[image: there is no content]S1o RT CIIO (A4 x)

	
0→N−1

	
1→N−1

	
RT

	

	

	

	

	

	




	
y = SIIO−1 (RT[image: there is no content]C2o) SIO x

	

	

	

	
0→N−1

	
1→N−1

	
RT

	

	

	




	
y = SIIO−1 (RT[image: there is no content]C1o) SIIo x

	

	

	

	
0→N−1

	
1→N−1

	
RT

	

	

	




	
y = SIIO−1[image: there is no content]S2o RT CIO (A2 x)

	
0→N−1

	
1→N−1

	
RT

	

	

	

	

	

	




	
y = − A4−1 CIIO−1 R [image: there is no content]S1o SIIO x

	

	

	

	

	

	

	
1→N−1

	
0→N−1

	
R




	
y = − A4−1 CIIO−1 R [image: there is no content]S2o SIO x

	

	

	

	

	

	

	
1→N−1

	
0→N−1

	
R




	
y = SIO−1[image: there is no content]S2o RT CIIO (A4 x)

	
0→N−1

	
1→N−1

	
RT

	

	

	

	

	

	




	
y = SIO−1 (RT[image: there is no content]C2o) SIIO x

	

	

	

	
0→N−1

	
1→N−1

	
RT

	

	

	




	
y = − A2−1 CIO−1 R [image: there is no content]S2o SIIO x

	

	

	

	

	

	

	
1→N−1

	
0→N−1

	
R




	
y = SIIIO−1[image: there is no content]S3o QT CIIIO (A2 x)

	
0→N−1

	
0→N−2

	
Q T

	

	

	

	

	

	




	
y = SIIIO−1 QT[image: there is no content]C3o Q SIIIO x

	
0→N−2

	
0→N−1

	
Q

	

	

	

	
0→N−1

	
0→N−2

	
QT




	
y = − A2−1 CIIIO−1 Q [image: there is no content]S3o SIIIO x

	

	

	

	

	

	

	
0→N−2

	
0→N−1

	
Q




	
y = CIVO−1 (QT[image: there is no content]C3o) CIVO x

	

	

	

	
0→N−1

	
0→N−2

	
Q T

	

	

	




	
y = CIVO−1[image: there is no content]C4o QT CIIIO (A2 x)

	
0→N−1

	
0→N−2

	
Q T

	

	

	

	

	

	




	
y = A4−1 SIVO−1 Q [image: there is no content]S3o CIVO x

	

	

	

	

	

	

	
0→N−2

	
0→N−1

	
Q




	
y = A4−1 SIVO−1 Q [image: there is no content]C4o SIIIO x

	

	

	

	

	

	

	
0→N−2

	
0→N−1

	
Q




	
y = −CIVO−1[image: there is no content]S3o QT SIVO (A4 x)

	
0→N−1

	
0→N−2

	
QT

	

	

	

	

	

	




	
y = −CIVO−1 (QT[image: there is no content]S4o) SIIIO x

	

	

	

	
0→N−1

	
0→N−2

	
QT

	

	

	




	
y = A2−1 CIIIO−1 Q [image: there is no content]C4o CIVO x

	

	

	

	

	

	

	
0→N−2

	
0→N−1

	
Q




	
y = SIIIO−1 (QT[image: there is no content]S4o) CIVO x

	

	

	

	
0→N−1

	
0→N−2

	
Q T

	

	

	




	
y = SIIIO−1[image: there is no content]C4o QT SIVO (A4 x)

	
0→N−1

	
0→N−2

	
QT

	

	

	

	

	

	











4. Applications


For an image resizing (filter) application, one of 40 MSC properties is used. The definition of a normalizing parameter F(k) in [7] needs a minor change as:


F(k)=2k=011≤k≤N−1











Then we can derive one of MSC properties, which is (4) in [7], from our equation as follows:





CII{x(n)×w(n)}=CII{x(n)}⊗C2e{w(n)}=CII{x(n)}⊗12NC2e{w(n)}








where the symbol ⊗ denotes symmetric convolution. Since C2e = [image: there is no content] A2−1CIIE in (1),





[image: there is no content]











By the associativity of (continuous and discrete) convolution:


CII{x(n)×w(n)}=12NCII{x(n)}⊗A2−1CII{w(n)}=12NA2[A2−1CII{x(n)}⊗A2−1CII{w(n)}]



(30)







This is shown in block diagram format in Fig. 1(b). Since G(k) and F(k) are A2−1 and [image: there is no content] A2 in matrix form:


CII{x(n) × w(n)} = G(k) [ F(k) CII{x(n)} ⊗ F(k) CII{w(n)} ]










Figure 1. For compressed image / video editing, logo-keying operation (alpha blending) can be done in (a) the spatial and (b) transform domains [1]. The symbol × denotes the element-by-element multiplication of the two vectors and ⊗ denotes the symmetric convolution of the two vectors.



[image: Algorithms 02 01221 g001]






Convolution has the property of associativity with scalar multiplication. Let F and G be any real sequences. Then:


a(F ⊗ G) = (aF) ⊗ G = F ⊗ (aG)








for any real (or complex) number a.



For a numerical example, let:


w = (1, 2, 3, 4) T, x = (1, 0, 3, 2) T and N = 4








Then the time domain element-by-element multiplication of the two vectors is:



w × x = (1, 0, 9, 8) T



W = A2−1 CII w = (a0, a1, a2, a3) T



       = (7.071, − 2.230, 0, − 0.159) T


X = A2−1 CII x

         = (4.243, −1.465, 0, 1.689) T










Y = W ⊗ X = (Wt + Wh) X

   = (36, − 19.823, 0, 11.272) T



(31)




where:


[image: there is no content]



(32)




Equation (32) is [image: there is no content] in [8, p. 2635], and Wt and Wh are a symmetric Toeplitz matrix and a Hankel matrix [9]. Symmetric convolution is represented in matrix multiplication form of (31) using (32). Since the expression inside the square brackets of (30) is the matrix Y defined in (31):


[image: there is no content]



(33)






[image: there is no content]



(34)







Equation (34) corresponds to (30). Thus Y can be computed by using either (33) or (31). In other words, the symmetric convolution of DCT coefficients, Figure 1(b) is an alternative method to computing the DCT of multiplication of two time sequences, Figure 1(a).






5. Conclusions


For logo-keying operation or alpha blending, one image is scaled by α and the other is scaled by (1 − α), where α is a value between zero and one, and then two images are added up. For compressed image / video editing, multiplication operation in logo-keying operation in the spatial can be done in the DTT domain by convolving the unitary DTT coefficients of the two images. For those applications, we have developed 40 types of the MSC properties for the unitary DTTs (DCTs and DSTs [11,12,13]).
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