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Abstract: The symmetric-convolution multiplication (SCM) property of discrete
trigonometric transforms (DTTs) based on unitary transform matrices is developed. Then as
the reciprocity of this property, the novel multiplication symmetric-convolution (MSC)
property of discrete trigonometric transforms, is developed.
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1. Introduction

Shen et al. [1] developed fast DCT-domain convolution for time/spatial-domain multiplication
using DCT type-2. They exploited symmetry and orthogonality for the fast algorithm. Logo-keying
operation in the spatial domain can be done in the DCT domain for compressed image/video editing.
However, they have not derived the convolution from the symmetric-convolution multiplication
(SCM) property of discrete trigonometric transforms (DTTs), which will be the focus of this paper.

Time-domain symmetric convolution for a linear phase filtering application has been developed by
Martucci [2] and is called the symmetric-convolution multiplication property of DTTs. Based on the
SCM property, Zou et al. [3] have developed a symmetric convolution for linear phase FIR filtering.
Filter coefficients consist of symmetric and asymmetric parts.

Based on those earlier works, Reju ef al. [4] have finally developed fast circular convolution using
DTTs. The input sequences to be convolved need not be symmetric or asymmetric. Thus fast DCTs



Algorithms 20009, 2 1222

and DSTs can be used instead of the FFTs for FIR filtering. Generalized fast convolution using
numerous transforms as well as the DFT and DTTs has been studied by Korohoda et al. in [5].

In this paper we show that swapping the forward and inverse transforms in the SCM property [2]
yields a multiplication-convolution (MSC) property. That is, the convolution of transformed sequences
gives the same results as the forward transform after element-by-element multiplication of the data
sequences. The necessary scaling factor M for these new properties has been described in the third line
below Eq. (20) in [2], saying “it is possible to swap the usage of the forward and inverse transform; in
that case, an extra scaling factor may be required”. Here M is the size of the generalized DFT (GDFT)
when a DTT is derived from an M-point GDFT. We can get 40 types of MSCs corresponding to 40
types of SCMs in Tables VI, VII of [2].

In (1) of [6], the formulation of the SCM for the unitary matrices is presented, with only the
exception of some of the 40 options mentioned by Martucci [2], because they cannot be expressed with
the assumed tools. Here, we fill that gap. Consider the following matrix relationship between
convolutional/unnormalized DTTs (denoted with lower-case subscript like Ci.) and unitary DTTs
(denoted with capital-letter subscript like Cy).

Cio= V2N A Ciz A Cae= V2N Ay 'Cig (1)
Cse = V2N Cuiz Az Cae= +2N Cive (2)
Sie= 2N Sie S = V2N A3 'Sug (3)
S3e = V2N Smiz Az S4e = V2N Swve 4)
Cio=+v2N-1 Ay 'CloAs  Co=+v2N—-1 Ay 'Crip A4 (5)
Cs3o= V2N-1 Ay CioAs  Cap= 2N -1 Civo (6)
Sio=~2N-1Si0 S20= 2N -1Sn0 (7)
S30 = 2N -1 Smo S4,= V2N -1 As~' Svo As (8)

Here the fact that scalars commute with matrices is used for Cs, and others.

Ar= [k, v = [k, Iva =diag(5, 1, 1,...,1, %), wherem,n=0,1,...,N (9)
Ar= [k, =1k, Iv=diag(5. 1, 1, .., 1), wherem,n=0,1,..,N-1  (10)
As= [k, Iv=T[k, Iv=diag(1, 1, .., 1, -5), where m,n=1,2, ..., N (11)
Ag=[I, =1L, Iv=diag(1, 1, ..., 1, L), where m,n=0,1,..,N—-1 (12
k,=1/2 p=0,N (13)

=1 p=1,2..,N-1
I, =1 p=0,1,...,N-2 (14)

=12 p=N-1

where diag(aii, a1, ..., ayy) implies a diagonal matrix with the diagonal elements as (a1, ai, ..., an).
Iy is the identity matrix of size N x N.
Let matrices J, K, Q, and R be defined as:
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j :[ Iy j K :(Omvj Q= Iy R :[01X(N-1)J (15)
Ol><N IN le(Nfl) IN—I
(N+1)xN (N+1)xNN x(N—-1) Nx(N-1)
where Oy is the zero row-vector, with N elements, whose entries are all zero. Multiplying one of
those matrices with an input vector appends a single zero on the top of the first or under the last

element of the vector. Multiplying the transpose of one of those matrices with an input vector discards
the first or last element of the vector.

2. Symmetric-Convolution Multiplication Property

One of the forty cases of symmetric convolution is proven as an example.
Property. y=A;"'Cir' J Hcae Curx [(A8) in Table 3]

Proof.  Equation (A.1) in the appendix of [2] can be rewritten as:
Cre=2 éle [Kn]ne1 (16)
where C,_is the kernel.
Cie= \/2/_N [\/E]NH éle [\/k_,,]Nﬂ (17)
([, v ™ = Ik, T (18)

From (16), (17) and (18):

Cie=[2N/k, In+1Cie [\/E]NH (19)
Cie™" = [\I/k, Tt Cue™ [k, J@N) T (20)
From (1) and (10):

Ca ' =Cuz ' [k, /2N) v 21)

Let x and w be input column vectors in time domain. Let y be an output column vector in time
domain. Let Hcy. be a diagonal matrix defined as Hcy, = diag([Cae W]T), where superscript 7' denotes

the transpose operator. We rewrite the 8th property in Table VI of [2] as:
y=Cic" { Heze Coe X}

= Ci”' { Heae [\2N/k,, Tv Cug X}
= [k, v Cu™" [k, Tver T { e [1/K,, Iy Cuex ) (22)
The matrix J shows up in the last line of (22) for zero padding. Since Hca. and [\/l/Tm |y are
diagonal matrices, they can commute. Thus:
[\/VTW]NH Ciz ' J { Heze Cupx }
[\/1/7,,]N+1 Ciz ' J Heze Cup X ] (23)
Another example is shown in (11) of [6]. Equation (12) of [6] is expanded to full for our derivation

y

and only results are listed in the first column of Tables 3 and 4 in the Appendix.
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3. Multiplication Symmetric-Convolution Property

Let X and Y be transformed input and output data vectors. Since there are one-to-one
correspondences between unitary discrete trigonometric transforms (DTTs), we can exchange the
forward transform for inverse one and vice versa as follows. In other words, a pair has the same matrix
but has different names. Define /% c3,. as:

h ¢z = diag([(C*) ™ W]") (24)
where C* will be defined in (27). That is, Hc,. and 4 c3. are the same matrix with different names (thus

names of DTTs need to change).

Then from (23):
Y = [k, Iv1Ciz I hcse Cne ™' X (25)

Notice the forward transform matrix Cy is replaced by the inverse transform matrix Cyyg ! since
they are the same matrix, and vice versa. Now this equation represents a SCM of DTTs. A key point of
this new property is that we need to redefine convolution forms of DCTs and DSTs. The factor of M is
divided for the inverse DCT of the convolution form in [2] whereas it is divided for the forward DCT
of the new convolution form. M is 2N for even and 2N — 1 for odd. Now new convolution form for
DCT 2 is denoted as C*:

Forward Inverse
(old) Cae =N Ca ' = 1 Cs, (26)
(new) C*=LC o (C*)'=Cs or (C*)7'=Cy (27)

The rest of DTTs can be readily obtained from the appendix of [2].

MSC properties can be described in terms of convolutional / unnormalized DTTs to obtain similar

results:
(11th SCM in Table IV of [2]) Cse™' (Cie x Cae) (28)
(ours, MSC) M C*(C* ' x (€™ (29)

Only results are listed. Matrices J, K, Q, and R are required for different index ranges between
operands. Link between the index range-based maneuvers described by Martucci [2] and the
introduction of the J, K, Q and R matrices is presented in Tables 1 and 2 for M = 2N and M = 2N -1,
respectively.

4. Applications

For an image resizing (filter) application, one of 40 MSC properties is used. The definition of a
normalizing parameter F(k) in [7] needs a minor change as:

Fk)= 2 k=0
1 1<k<N-1

Then we can derive one of MSC properties, which is (4) in [7], from our equation as follows:
Cr{x(n) x w(n)} = Cuix(n)} ® C* {w(n)}
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= Cu{x(n)} ® 57 C,, {iw(n)}

where the symbol ® denotes symmetric convolution. Since Ca. = 2N A, 'Cyg in (1),

Cufx(n) x w(n)} = Cu{x(n)} ® <= Ay~ Cuf{w(n)}
By the associativity of (continuous and discrete) convolution:
Cuf{x(n) x w(n)} = ﬁ Cr{x(n)} ® Ay'Cr{w(n)}
= = A2 [Ay'Cufx(n)} ® Ay Cu{w(n)}]

1225

(30)

This is shown in block diagram format in Fig. 1(b). Since G(k) and F(k) are A, and ﬁAz in

matrix form:

Cuix(n) x w(n)} = G(k) [ F(k) Cuix(n)} ® F(k) Cuf{w(n)} ]

Convolution has the property of associativity with scalar multiplication. Let F' and G be any real

sequences. Then:
aF® G)=(aF)® G=F ® (aG)

for any real (or complex) number a.
For a numerical example, let:

w=(1,2,3,4",x=(1,0,3,2)"and N=4

Then the time domain element-by-element multiplication of the two vectors is:

wxx=(1,0,9,8)"
W=A"' Cyw= (a0, a1, @z, a3) "
=(7.071,-2.230,0, - 0.159) "
X=Ay"Cpx
= (4.243,-1.465, 0, 1.689) "
Y=W®X=(W,+ WX
=(36,-19.823,0,11.272)"

where:
a, a a, a, 0 a a a
W=W,+W,) =& @ & a |+ 0 a a 0
a, a, a, aq 0 a; 0 —a,
a, a, a a, 0 0 —-a —aq

(1)

(32)

Equation (32) is [yéf,),,]+ [yflf,)’h] in [8, p. 2635], and W; and W), are a symmetric Toeplitz matrix and a

Hankel matrix [9]. Symmetric convolution is represented in matrix multiplication form of (31) using

(32). Since the expression inside the square brackets of (30) is the matrix Y defined in (31):

Y = V2N Ay 'Cr (W x x)

CH (W X X) = ﬁ AzY

(33)
(34)
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Equation (34) corresponds to (30). Thus Y can be computed by using either (33) or (31). In other
words, the symmetric convolution of DCT coefficients, Figure 1(b) is an alternative method to
computing the DCT of multiplication of two time sequences, Figure 1(a).

Figure 1. For compressed image / video editing, logo-keying operation (alpha blending)
can be done in (a) the spatial and (b) transform domains [1]. The symbol x denotes the
element-by-element multiplication of the two vectors and ® denotes the symmetric
convolution of the two vectors.

Unita
C X —> ry X
' IDCT-II :
_| Unitary
W X X > _’C“E(WXX)
DCT-II
Cie W Unitary | |,
HE W —
IDCT-II
(a)

At = [k, I ’?

| B —— AB

Cue X —’—l X Matrix

Y multiplication
WR X ———— C||E(W><X)

where A is a
Clug w —»—T i ‘ diagonal matrix.
A|\—1 [Vk,/2N In = 1/2N A,
2

(b)

5. Conclusions

For logo-keying operation or alpha blending, one image is scaled by o and the other is scaled by (1
— o), where a is a value between zero and one, and then two images are added up. For compressed
image / video editing, multiplication operation in logo-keying operation in the spatial can be done in
the DTT domain by convolving the unitary DTT coefficients of the two images. For those applications,
we have developed 40 types of the MSC properties for the unitary DTTs (DCTs and DSTs [11]-[13]).
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Appendix

Table 1. Link between the index range-based maneuvers described by Martucci [2] and the
introduction of the J, K, Q and R matrices, M = 2N.

Forward transform H Inverse transform
SCM (Symmetric-Conv. | Input | Output Input | Output Input | Output
Mult.) index | index index | index index | index
range | range range | range range | range
y=Si " (R" I Here) Sizx 0—>N 1->N-1 | R

y= SIE_I Hsie RTJT Ciz (A1 x) 0—->N 1>N-1 | RTTT

y=—A"'C ' IR Hs1e Srx | IoN-1 [ 0N [ IR

- T
y = Cuz "Heae I Cle(A X) 0N 0—>N-1 | ]

y =Sz Hsze K Ci (A ) 0—->N 1>N K’

y= _CIIE_I R HSle QT SIIE X >N 1->N-1 QT 1->N-1 0—-N-1 R
y=—Cus R (Q" Hsze) Stz x >N 1-N-1 | Q" l->N-1 | 0>N-1 | R
y=A"'Cir ' T Heze Cuip x 0>N-1 | 0N | T

y=8ir" (Q" Hs2e) R" Cex | 0>N=1 | 1>N-1 R" 1->N | 15N-1 | Q"
y =S (R" Heae) Q7 Sup x 1->N I->N-1 | Q" [ 0>N-1 | 1>N-1 | RT

y=—A;" Ciz ' K Hse Siiz X 15N |05N | K

Table 2. Link between the index range-based maneuvers described by Martucci [2] and the
introduction of the J, K, Q and R matrices, M =2N — 1.

Forward transform H Inverse transform
SCM (Symmetric-Conv. Input | Output Input | Output Input | Output
Mult.) index | index index | index index | index
range | range range | range range | range
y=Si0 (R"Hcio) Sio x 0>N- | I>N-1 | R
1
y=S10" Hsio R" Cip (A1 X) 0>N- | 1>N-1 | R
1
y=—A," Cio”' R Hs10 Si0 X 1->N-1 | 0->N-1 | R

- T
v =Suo "Hsio R” Ciip (A4 X) 0>N- | 1-N-1 | R

Y =Sio ' (R" Hez) Sio x (1)—>N— 1>N-1 | R

y=Sno " (R" Hcio) Suo X (1)—>N— 1>N-1 | R

¥ =Suo "Hs2 R" Cip (A, X) (1)—>N— 1-N-1 | RT

y=—As" Cuo' R Hs1, Sno X 1->N-1 | 0>N-1 | R

y==As" Cio ' R Hs, Sio X 1->N-1 | 0oN-1 | R
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Table 2. Cont.
Forward transform H Inverse transform
SCM (Symmetric-Conv. Input | Output Input | Output Input | Output
Mult.) index | index index | index index | index
range | range range | range range | range
y= SIO_1 HSZo RT CIIO (A4 X) 0—>N- 1->N-1 RT
1
y= Sio ! (RT Hcao) Stio X (1)—>N— 1->N-1 | RT
y=-— Az_l C[O_l R Hszo SIIO X 1->N-1 0—-N-1 R
Y =Smo ' Hszo Q" Cino (A2 %) ?_’N_ 0—>N-2 [ Q"
y=Smo ' Q" Hcso Q Simo x 0—>N- | 0>N-1 | Q 0—>N-1 | 0N-2 | Q"
2
y=—Ay" Co ' Q Hs3o Smo X 0—>N-2 | 0>N-1 | Q
y=Civo ' (Q" Hcso) Civo x 0>N- | 0>N-2 | Q"
1
y=Cro "Heao Q" Ciio (Ay x) | 0oN- | 0>N-2 Q'
1
y=As" Swo ' Q Hsso Crvo X 0—>N-2 | 0>N-1 | Q
y= A4_1 Slvo_1 Q Hcao Smio X 0—>N-2 | 0>N-1 | Q
y=-Crvo "Hsso Q" Sivo (Agx) | 0>N- | 0->N-2 Q"
1
y= ~Civo ! (QT Hsao) Smo x 0->N- | 0>N=2 | Q"
1
y= Az_l Cmo_l Q Hcso Crvo X 0—->N-2 | 0->N-1 | Q
Y =Smo ' (Q Hsso) Crvo x 0>N- | 0>N-2 | Q"
1
¥ = Smo "Heao Q" Swvo (As ) 0->N- | 0->N-2 | Q
1

Table 3. 20 of 40 types of SCM and MSC properties for the DTTs, M = 2N.

SCM (Symmetric-Conv. Mult.)

MSC (Mult. Symmetric-Conv.)

y=A;"'Ciz "Here Cie (A1 X) Y =A"'Cig here Cie ' (A1 X) (A1)
y=Si" R" T Here) Siex Y =Siz(R" I Here) Siz' X (A2)
y =Sz Hsie R" I Ciz (A x) Y = SizHsie R I Cir ™' (A1 X)
y=—A;"'Cir ' TR Hsie Siz X Y=-A"'"Cz IR hs1e Siz 7' X (A3)
y=Cuz "Here Cuig X Y = Cmzhcie Crng ™' X (A4)
y = Cug " "Heae ) Cip(A) X) Y = Cing hese ) Cig (A1 X)

y=Suz Hsie Cug X Y = Smzhsie Cmng ' X (AS)
v =Suz "Hcae Stz X Y = Smiphcse Sir X

y=Suz Hcie Suz X Y = Smehcie Sme ' X (A6)

y =Sz Hsze K Ciz (A x)

Y = Suz hsze KT Ciz (A X)
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Table 3. Cont.

SCM (Symmetric-Conv. Mult.)

MSC (Mult. Symmetric-Conv.)

y=-Cnz ' R Hsie Q" Supx Y =~Crig R hsie Q" S ' X (A7)
y=—Cuz 'R (Q" Hsze) St x Y =—Criz R (Q" hs3e) Sir ' X
y=A,"'Ciz ' J Heze Cup x Y=A"Cir T hcse Cuir ' X (A8)
y =Sz (Q" Hs2e) R Ciip x Y =S (Q hs3e) R"Cur ' X (A9)
y=S1 "' (R" Heze) Q7 Sue x Y =Sir (R  hese) Q7 S ' X

y=—A;" Cir ' K Hsze Suz x Y=-A;" Ce K hs3e Sz~ X (A10)
y=As" Cur "Heze Crue(Az X) Y = Ay Cug hcae Ciie ™ (A2 X) (A1)
y=A;" Sur "Hsse Cinp(Az x) Y =A;" Sup hsze Cuie (A2 X) (A12)
y=As" Smr "Hese Sme(As x) Y = As' Sug hsae Sur (A3 X)

y=Ay" Cur "Hsse Sme(Az x) Y=A" Cup hsae Sue (A3 X) | (A13)
y= Crve "Hese Crve X Y =Crvehcre Cve ' X

y = Cive  Heae Cinp(Az X) Y =Cive hcae Cuig ' (A2 X) (Al4)
y= Sve “Hsse Crve X Y =Sz hsze Cve X (A15)
y = Sive Hecae Ste(As X) Y =Sivz A cae Sz (As X)

y= Sve “Hese Sive X Y =Swehca Sve ' X (A16)
y =S Hsse Crnie(Az X) Y =Sz hsse Ciiz '(Az X)

y= —Cive "Hsse Sive X Y = —Crve hsze Sve ' X (A17)
y=—Cive "Hsse Smz(Asz X) Y =—Cive hsae Siie ' (Az X)

y=Ay" Cig "Hese Crve x Y = Ay Cug h Hese Crve ™' X (A1)
y=As" Sz "Hsse Crve X Y = A3 Sug hsse Crve ' X (A19)
y= A3 Sis "Heae Sive X Y = A3 Sug hcae Sve ' X

y=—Ay" Cuug "Hsse Sive X Y =—Ay" Cughsse Sve ' X (A20)

Table 4. 20 of 40 types of SCM and MSC properties for the DTTs, M =2N — 1.

SCM (Symmetric-Conv. Mult.) MSC (Mult. Symmetric-Conv.)

y=As" Cio"Heio Cio (A2 X) Y =A;"Cio hcioCio~ (A2 X) (A21)
y=S10" (R" He1,) Sio x Y =Sio (R hicio) Sio ' X (A22)
y=Si0" Hsio R" Cio (A2 X) Y =Si0 hsio RT Cio™'(Az X)

y=-Ay" Cio' R'Hs, S0 x Y=-A;"CoRhsi, Sio”' X (A23)
y=A4" Cuo "Heio Crio (As X) Y =As" Cumo hcio Co ™' (A4 X) | (A24)
y=A4" Cno™" Hezo Cro (Az X) Y =As™ Cio hczo Cro ' (Ar X)

v =Sno "Hsio R” Cuio (A4 X) Y =Smo hsio R Cino ™' (Ag X) (A25)
y=Suo ' (R" Heao) Sio x Y =Smo (R hcso) Sio ™' X
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Table 4. Cont.

SCM (Symmetric-Conv. Mult.)

MSC (Mult. Symmetric-Conv.)

y=Suo ' (R" Heio) Suo x Y =Smo (R hci,) Smo ™' X (A26)
¥ =Suo "Hszo R" Cio (A2 x) Y =Smo ks R Cio ' (Ay X)

y=-As" Cuo ' R Hsio Suo X Y =—As"' CioR hs30 Sio”' X (A27)
y=—As" Cuo ' R Hsao Sio X Y =-A;" CiioR hsio Smo ' X

y=As" Cio! Hezo Crio (Ag x) Y =Ay" Ciohcso Cno ™' (As X) (A28)
y=Si0 ' Hszo R" Ciio (A4 %) Y =Si0 hs3o R Co ™' (A4 X) (A29)
y=S10" (R" Hcao) Suo x Y =Si0" (R hc30) Smo X

y=-Ay" Co ' R Hsz Sio x Y=-A;"Cio R hs3, Smo ™' X | (A30)
y=As" Cimo Hezo Cimio (A2 X) Y=A"Cuo hcaoCrio (A2 X) | (A3D)
y=Smo ' Hss Q" Cio (A2 x) Y =Suo s Q" Crio (A2 X) (A32)
y=Smo ' Q" Hcso Q Smo x Y=Suo Q s QS0 X

y=—Ay" Cuo ™' Q Hs3o Sio X Y=-Ay"Cuo QhsoSuo " X (A33)
y=Crvo ' (Q" Hcso) Crvo x Y =Cwo Q" hea) Cvo ' X (A34)
y=Cwvo "Heo Q" Cino (A2 x) Y =Cvo hcao Q" Cio (A2 X)

y=As" Swvo ' Q Hsso Crvo x Y=As"SvoQ hs Crvo ' X (A35)
y=As" Svo ' Q Heuo Stio X Y=As" SwvoQ hcso Suo ' X

y=As" Swvo "Hezo Stvo (Ag X) Y =As" Swo hca Svo ' (AgX) | (A36)
y=A4" Sivor "Hs4o Ciio (As X) Y =As" Swo hsao Crio” (Ar X)
y=-Cwvo "Hszo Q" Svo (A4 X) Y =—Crvohsi Q' Swvo ' (AsX) | (A37)
y=-Cwo ' (Q" Hsso) Suio x Y == Crvo (Q" hsso) Smo ' X

y= Ay Cmo ' Q Heso Crvo x Y=A"CioQ hcao Cvo™' X (A38)
y=Smo ' (Q" Hs4,) Crvo X Y = S0 (Q" h1540) Crvo ' x (A39)
¥ =Smo "Heao Q" Svo (A4 X) Y =Sno ' hcao Q" Svo ' (A4 X)

y=—As" Ciio "Hsao Svo (Asx) | Y=— Ay Cuo hisao Svo ™ (Agx) | (A40)
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