Actual Pathogen Detection: Sensors and Algorithms - a Review
Abstract
:1. Introduction
2. Non Destructive Sensing
2.1. Non Destructive Measurements
2.2. Disease Warning Systems
2.3. Remote Sensing
2.4. Algorithms
3. Sensing Per Crop
Fruit or vegetable | Pathogen common name | Pathogen scientific name |
---|---|---|
Mango and avocado | Anthracnose | Colletotrichum gloeosporioides |
stem-end rot | Lasiodiplodia theobromae | |
Potato | Fusarium wilt | Fusarium oxysporum |
Late blight | Phytophthora infestans | |
Tomato | Fusarium wilt | Fusarium. oxysporum |
Rhizopus rot | Rhizopus stolonifer | |
Downy mildew | Pseudoperonospora cubensis | |
Apple | Apple scab | Venturia inaequalis |
Fire blight | Erwinia amylovora | |
Black rot | Physalospora obtuse | |
Citrus | Black spot | Guignardia citricarpa |
Gummosis | Phytophthora parasitica | |
Trizteza | Toxoptera citricidus | |
Sooty canker | Hendersonula toruloidea | |
Grapes | Downy mildew | Plasmopara vitcola |
Bunch rot | Botrytis cinerea |
3.1. Sensing Mango and Avocado Diseases
3.1.1. Sensors and Algorithms
Ultrasonic | Magnetic resonance | Machine vision | Spectral analysis | X-ray | Others | |
---|---|---|---|---|---|---|
Mango and avocado | ◘ | ◘ | ◘ | ◘ | ||
Potato | ◘ | ◘ | ◘ | ◘ | ◘ | |
Tomato | ◘ | ◘ | Electronic nose | |||
Apple | ◘ | ◘ | ◘ | |||
Citric | ◘ | ◘ | ||||
Grapes | ◘ | Chlorophyll fluorescence |
Maturity & Bruise | TSS, firmness | Disease det. | Freezing & chilling injury | |
---|---|---|---|---|
Mango and avocado | ◘ | ◘ | ◘ | |
Potato | ◘ | ◘ | ||
Tomato | ◘ | ◘ | ◘ | |
Apple | ◘ | ◘ | ◘ | ◘ |
Citric | ◘ | ◘ | ||
Grapes | ◘ |
PCA | LDA | Neural networks | Others | ||||
Mango and avocado | ◘ | ◘ | |||||
Potato | ◘ | ◘ | ◘ | ||||
Tomato | ◘ | ◘ | ◘ | Fuzzy | |||
Apple | ◘ | ◘ | ◘ | Fuzzy | |||
Citric | ◘ | ◘ | ◘ | Fuzzy | |||
Grapes | ◘ | ||||||
Disease warning systems | Remote sensing | ||||||
Spectral ratios & NDVI | Infrared | Fluor & Thermog. | |||||
Mango and avocado | ◘ | ||||||
Potato | ◘ | ◘ | |||||
Tomato | ◘ | ◘ | ◘ | ◘ | |||
Apple | ◘ | ◘ | ◘ | ||||
Citric | ◘ | ◘ | ◘ | ||||
Grapes | ◘ | ◘ | ◘ | ◘ |
3.2. Sensing Apple Diseases
3.2.1 Sensors and Algorithms
3.3. Sensing Citrus Diseases
3.3.1. Sensors and Algorithms
3.4. Sensing Tomato and Cucumber Diseases
3.4.1 Sensors and Algorithms
3.5. Sensing Potato Diseases
3.5.1. Sensors and Algorithms
3.6. Sensing Grape Diseases
3.6.1 Sensors and Algorithms
4. Pathogen Detection in the Future
5. Conclusions
References and Notes
- Cook, R.J.; Duniway, J.M. Water relations in the life-cycles of soilborne plant pathogens. In Water Potential Relations in Soil Microbiology; Parr, J.F., Gardner, W.R., Elliott, L.F., Eds.; Soil Science Society of America: Madison, WI, 1981; Vol. 9, pp. 119–139. [Google Scholar]
- Rotem, J. Climatic and weather influences on epidemics. In Plant Disease: An Advanced Treatise; Horsfall, J.G., Cowling, E.B., Eds.; Academic Press: New York, 1978; Vol. 2, pp. 317–337. [Google Scholar]
- Swan, L.D.; Backhouse, D.; Burguess, L.W. Surface soil moisture and stubble management practice effects on the progress of infection of wheat by Fusarium pseudograminearum. Aust. J. Exp. Agr. 2000, 40, 693–698. [Google Scholar] [CrossRef]
- Zhang, W.; Pfender, W.F. Effect of residue management on wetness duration and ascocarp production by Pyrenophora triticirepentis in wheat residue. Phytopathology 1992, 82, 1434–1439. [Google Scholar] [CrossRef]
- Rosenberg, N.J.; Blad, B.L.; Verma, S.B. Microclimate: The Biological Environment, 2nd Ed. ed; John Wiley & Sons: New York, NY, U.S.A., 1983. [Google Scholar]
- Sirjusingh, C.; Sutton, J.C. Effects of wetness duration and temperature on infection of geranium by Botrytis cinerea. Plant Dis. 1996, 80, 160–165. [Google Scholar] [CrossRef]
- Agrios, G. N. Plant Pathology, 3rd Ed. ed; Academic Press, Inc.: New York, NY, U.S.A., 1988. [Google Scholar]
- Fidanza, M.A.; Dernoeden, P.H.; Grybauskas, A.P. Development and field validation of a brown patch warning model for perennial ryegrass turf. Phytopathology 1996, 86, 385–390. [Google Scholar] [CrossRef]
- Giesler, L.K.; Yuen, G.Y.; Horst, G.L. The microclimate in tall fescue turf as affected by canopy density and its influence on brown patch disease. Plant Dis. 1996, 80, 389–394. [Google Scholar] [CrossRef]
- Leininger, T.D.; Schmoldt, D.L.; Tainter, F.H. Using ultrasound to detect defects in trees: current knowledge and future needs. In Proceedings of the 1st International Precision Forestry Cooperative Symposium, Seattle, Washington, USA, June 2001; pp. 99–107.
- Ross, R.J.; Fuller, J.J.; Dramm, J.R. Nondestructive evaluation of green defect prone red oak lumber: a pilot study. Forestry Prod. J. 1995, 45, 51–52. [Google Scholar]
- Janisiewicz, W.J.; Korsten, L. Biological control of postharvest diseases of fruits. Ann. Rev. Phytopathol. 2002, 40, 411–441. [Google Scholar] [CrossRef] [PubMed]
- Merzlyak, M.; Gitelson, A.; Chivkunova, A.; Pogosyan, S. Application of reflectance spectroscopy for analysis of higher plant pigments. Russ. J. Plant Physiol. 2003, 50, 704–710. [Google Scholar] [CrossRef]
- Eckert, J.W.; Ogawa, J.M. The chemical control of postharvest diseases: subtropical and tropical fruits. Ann. Rev. Phytopathol. 1985, 23, 421–454. [Google Scholar] [CrossRef]
- Arauz, L.F.; Mora, D. Evaluation of postharvest problems in six tropical fruits of Costa Rica. Agron. Costarric. 1983, 7, 43–53. (In Spanish) [Google Scholar]
- Zarco-Tejada, P.; Miller, J.; Morales, A.; Berjon, A.; Agüera, J. Hyperspectral indices and model simulation for chlorophyll estimation in open canopy tree crops. Remote. Sens. Environ. 2004, 90, 463–476. [Google Scholar] [CrossRef]
- Carter, G.A. Primary and secondary effects of water content on the spectral reflectance of leaves. Amer. J. Bot. 1991, 78, 916–924. [Google Scholar] [CrossRef]
- Gitelson, A.; Merzlyak, M. Signature analysis of leaf reflectance spectra: algorithm development for remote sensing of chlorophyll. J. Plant Physiol. 1996, 148, 495–500. [Google Scholar] [CrossRef]
- Shah, J. The salicylic acid loop in plant defense. Curr. Opin. Plant Biol. 2003, 6, 365–371. [Google Scholar] [CrossRef]
- Dixon, R.A.; Achnine, L.; Kota, P.; Liu, C-J.; Reddy, M.S.S.; Wang, L. The phenylpropanoid pathway and plant defense: a genomics perspective. Mol. Plant Pathol. 2002, 3, 371–390. [Google Scholar] [CrossRef] [PubMed]
- Lichtenthaler, H.K.; Schweige, J. Cell wall bound ferulic acid, the major substance of the blue-green fluorescence emission of plants. J. Plant Physiol. 1998, 152, 272–282. [Google Scholar] [CrossRef]
- Lichtenthaler, H.K.; Lang, M.; Sowinska, M.; Heisel, F.; Miehe, J.A. Detection of vegetation stress via a new high resolution fluorescence imaging system. J. Plant Physiol. 1996, 148, 599–612. [Google Scholar] [CrossRef]
- Chaerle, L.; Van Der Straeten, D. Seeing is believing: imaging techniques to monitor plant health. BBA-Gene Struct. Express 2001, 1519, 153–166. [Google Scholar] [CrossRef]
- Abeles, F.B; Morgan, P.W.; Saltveit, M.E. Ethylene in Plant Biology; Academic Press: San Diego, CA, U.S.A., 1992. [Google Scholar]
- Lai, L.; De Dominicis, L.; Fantoni, R.; Giubileo, G.; Piccinelli, D.; Dumitras, D.C. Detection of ethylene traces by photoacoustic spectroscopy. Proc. SPIE 2003, 5131, 295–299. [Google Scholar]
- Osborne, L.; Jin, Y. Soil surface wetness sensor: Report of further testing. In Proceedings of 2001 National Fusarium Head Blight Forum, Erlanger, KY, Dec. 2001; Michigan State University: East Lansing, MI, U.S.A., 2001; pp. 142–146. [Google Scholar]
- Osborne, L.; Jin, Y. Wetness sensor for the air–soil interface. Agron. J. 2004, 96, 1–8. [Google Scholar] [CrossRef]
- Henneberry, T.J.; Hart, W.G.; Bariola, L.A.; Kittock, D.L.; Arle, H.F.; Davis, M.R.; Ingle, S.J. Parameters of cotton cultivation from infrared aerial photography. Photogramm. Eng. Remote Sens. 1979, 45, 1129–1133. [Google Scholar]
- Cook, C.G.; Escobar, D.E.; Everitt, J.H.; Cavazos, I.; Robinson, A.F.; Davis, M.R. Utilizing airborne video imagery in kenaf management and production. Ind. Crops Prod. 1999, 9, 205–210. [Google Scholar] [CrossRef]
- Fletcher, R.S. Evaluating high spatial resolution imagery for detecting citrus orchards affected by sooty mould. Int. J. Remote Sens. 2005, 26, 495–502. [Google Scholar] [CrossRef]
- Vogelmann, J.E.; Rock, B.N. Use of TM data for the detection of forest damage caused by the pear thrips. Remote Sens. Environ. 1989, 30, 217–225. [Google Scholar] [CrossRef]
- Ciesla, W.M.; Dull, C.W.; Acciavatti, R.E. Interpretation of SPOT-1 colour composites for mapping defoliation of hardwood forests by gypsy moth. Photogramm. Eng. Remote Sens. 1989, 55, 1465–1470. [Google Scholar]
- Franklin, S.E. Classification of hemlock looper defoliation using SPOT HRV imagery. Can. J. Remote Sens. 1989, 15, 178–182. [Google Scholar] [CrossRef]
- Galili, N.; Mizrach, A.; Rosenhouse, G. Ultrasonic testing of whole fruit for nondestructive quality evaluation. Am. Soc. Agric. Eng. Paper. 1993. [Google Scholar]
- Wang, X.; Allison, R.B.; Wang, L.; Ross, R.J. Acoustic tomography for decay detection in red oak trees; Research paper FPL-RP-642; United States Department of Agriculture, Forest Service, Forest Product Laboratory: Madison, WI, U.S.A., 2007.
- Jivanuwong, S. Nondestructive detection of hollow heart in potatoes using ultrasonics. M.S., Thesis, Virginia Polytechnic Institute and State University, Blacksburg, VA, U.S.A., 1998. [Google Scholar]
- Lin, Ta-Te; Yung-Chen, L.; Huang, T.; Ouyang, C.; Jiang, J.; Yang, M.; Yang, E. X-ray Computed Tomography Analysis of Internal Injuries of Selected Fruits. In ASABE Annual International Meeting, Rhode Island, RI, U.S.A. 2008. Paper No. 084208. [Google Scholar]
- Njoroge, J.B.; Ninomiya, K.; Kondo, N.; Toita, H. Automated fruit grading system using image processing. In Proceedings of the 41st SICE Annual Conference, Osaka, Japan, August 2002; 2, pp. 1346–1351.
- Ogawa, Y.; Kondo, N.; Shibusawa, S. Inside quality evaluation of fruit by X-ray image. Proc. 2003 IEEE/ASME International Conference on Advanced Intelligent Mechatronics 2003, 2, 1360–1365. [Google Scholar]
- Reyes, M.U.; R.E. Paull, L.D.; Gautz, J.W.; Armstrong, P.A.; Follett, N. Non-destructive inspection of mango fruit (MANGIFERA INDICA L.) with soft X-ray imaging. Proceedings of VI International Symposium on Mango. Acta Hort. (ISHS) 1991, 509, 787–792. [Google Scholar]
- Brosnan, T; Sun, D-W. Improving quality inspection of food products by computer vision––a review. J. Food Eng. 2004, 61, 3–16. [Google Scholar] [CrossRef]
- Jiang, J.; Chang, H-Y.; Wu, K-H.; Ouyang, C-S.; Yang, M-M.; Yang, E-C.; Chen, T-W.; Lin, T-T. An adaptive image segmentation algorithm for X-ray quarantine inspection of selected fruits. Comput. Elect. Agric. 2008, 60, 190–200. [Google Scholar] [CrossRef]
- Barcelon, E.G.; Tojo, S.; Watanabe, K. X-ray Imaging and qualit y detection of peach different physiological maturity. Trans. ASAE 1999, 42, 435–441. [Google Scholar] [CrossRef]
- Bortoleto, G. G.; Fernandes, D.N.; Tagliaferro, E.A.; Ferrari, F.S.; Bueno, M. I. Potential of X-Ray Spectrometry and Chemometrics to Discriminate Organic from Conventional Grown Agricultural Products. In Proceedings of 16th IFOAM Organic World Congress, Modena, Italy; 2008. [Google Scholar]
- Hills, B.; Clark, C.J. Quality assessment of horticultural products by NMR. Ann. R. NMR S. 2003, 50, 75–120. [Google Scholar]
- Butz, P.; Hoffmann, C.; Tauscher, B. Recent developments in noninvasive techniques for fresh fruit and vegetable internal quality analysis. J. Food Sci. 2005, 70, 131–141. [Google Scholar] [CrossRef]
- Hills, B. Magnetic Resonance Imaging in Food Science; Wiley: New York, NY, U.S.A., 1998. [Google Scholar]
- Aristizabal, I. D. Study, application and processing imaging automation for magnetic resonance for the evaluation and detection of internal defects in citric and peaches. Doctoral Thesis, Department of Mechanization and Agrarian Technology, Universidad Politécnica, Valencia, Spain, 2006. [Google Scholar]
- Clark, C.J.; Hockings, P.D.; Joyce, D.C.; Mazucco, R.A. Application of magnetic resonance imaging to pre and post-harvest studies of fruits and vegetables. Postharv. Biol. Technol. 1997, 11, 1–21. [Google Scholar] [CrossRef]
- Tu, S.; Choi, Y.; McCarthy, M.; McCarthy, K. Tomato quality evaluation by peak force and NMR spin–spin relaxation time. Postharv. Biol. Technol. 2007, 44, 157–164. [Google Scholar] [CrossRef]
- Hernández, N.; Barreiro, P.; Cabello, J.R. On-line Identification of seeds in mandarins with magnetic resonance imaging. Biosyst. Eng. 2006, 95, 529–536. [Google Scholar] [CrossRef] [Green Version]
- Galed, G.; Fernández, M.E.; Martínez, A.; Heras, A. Application of MRI to monitor the process of ripening and decay in citrus treated with chitosan solutions. J. Magn. Reson. Imaging 2004, 22, 127–137. [Google Scholar] [CrossRef] [PubMed]
- Thybo, A.K.; Jespersen, S.N.; Lærke, P.E.; Stødkilde, H.J. Nondestructive detection of internal bruise and spraing disease symptoms in potatoes using magnetic resonance imaging. Magn. Reson. Imaging 2004, 22, 1311–1317. [Google Scholar] [CrossRef] [PubMed]
- Kerr, W.L.; Clark, C.J.; McCarthy, M.J.; De Ropp, J.S. Freezing effects in fruit tissue of kiwifruit observed by magnetic resonance imaging. Sci. Hort. 1997, 69, 169–179. [Google Scholar] [CrossRef]
- Ishida, N.; Ogawa, H.; Koizumi, M.; Kano, H. Ontogenetic changes of the water status and accumulated soluble compounds in growing cherry fruits studied by NMR imaging. Magn. Reson.Chem. 1997, 35, 22–28. [Google Scholar] [CrossRef]
- Mehl, P.M.; Chen, Y-R.; Kim, M.S.; Chan, D.E. Development of hyperspectral imaging technique for the detection of apple surface defects and contaminations. J. Food Eng. 2004, 61, 67–81. [Google Scholar]
- Brosnan, T.; Sun, D-W. Inspection and grading of agricultural and food products by computer vision systems - a review. Comput. Elect. Agric. 2002, 36, 193–213. [Google Scholar] [CrossRef]
- Wen, Z.; Tao, Y. Building a rule-based machine-vision system for defect inspection on apple sorting and packing lines. Exp. Syst. Appl. 1999, 16, 307–313. [Google Scholar] [CrossRef]
- Shahin, M.A.; Tollner, E.W.; McClendon, R.W.; Arabnia, H.R. Apple classification based on surface bruises using image processing and neural networks. Trans. ASAE 2002, 45, 1619–1627. [Google Scholar]
- Blackbourn, H.D.; Jeger, M.J.; Telfer, A.; Barber, J. Inhibition of degreening in the peel of bananas ripened at tropical temperature. IV. Photosynthetic capacity of ripening bananas and plantains in relation to changes in the lipid composition of ripening banana peel. Ann. Appl. Biol. 1990, 117, 163–174. [Google Scholar] [CrossRef]
- Bron, I.U.; Ribeiro, R.V.; Azzolini, M.; Jacomino, A.P.; Machado, E.C. Chlorophyll fluorescence as a tool to evaluate the ripening of ‘Golden’ papaya fruit. Postharv. Biol. Technol. 2004, 33, 163–173. [Google Scholar] [CrossRef]
- Singh, B. Visible and near-infrared spectroscopic analysis of potatoes. M.Sc. Thesis, McGill University, Montreal, PQ, Canada, 2005. [Google Scholar]
- Lu, R.; Chen, Y.R. Hyperspectral imaging for safety inspection of food and agricultural products. In Proceedings of SPIE: Pathogen Detection and Remediation for Safe Eating; 1998; 3544, pp. 121–133. [Google Scholar]
- Kim, M.S.; Lefcourt, A.M.; Chao, K.; Chen, Y.R.; Kim, I.; Chan, D.E. Multispectral detection of fecal contamination on apples based on hyperspectral imagery: part I. Application of visible and near-infrared reflectance imaging. Trans. ASAE 2002, 45, 2027–2037. [Google Scholar]
- Polder, G.; van der Heijden, G.W.A.M.; Young, I.T. Hyperspectral image analysis for measuring ripeness of tomatoes. In 2000 ASAE International Meeting, Milwaukee, WI, U.S.A., July 2000. Paper No. 003089.
- Lu, R.; Qin, J.; Peng, Y. Measurement of the Optical Properties of Apples by Hyperspectral Imaging for Assessing Fruit Quality. In ASAE Annual International Meeting, Portland, OR, U.S.A. 2006. Paper No. 066179. [Google Scholar]
- Peirs, A.; Scheerlinck, N.; Nicolaï, B.M.; De Baerdemaeker, J. Starch degradation analysis of apple fruits measured with a hyperspectral (NIR) imaging system. Acta Hort. (ISHS) 2003, 599, 315–321. [Google Scholar]
- Nagata, M.; Tallada, J.G.; Kobayashi, T.; Toyoda, H. NIR Hyperspectral Imaging for Measurement of Internal Quality in Strawberries. In 2005 ASAE International Meeting, Tampa, Fl, U.S.A., July 2005. Paper No. 053131.
- Nagata, M.; Tallada, J.G.; Kobayashi, T. Bruise Detection using NIR Hyperspectral Imaging for Strawberry (Fragaria * ananassa Duch). Environ Control Biol. 2006, 44, 133–142. [Google Scholar] [CrossRef]
- Ariana, D.P.; Lu, R.; Guyer, D.E. Near-infrared hyperspectral reflectance imaging for detection of bruises on pickling cucumbers. Comput. Elect. Agric. 2006, 53, 60–70. [Google Scholar] [CrossRef]
- Kleynen, O.; Leemans, V.; Destain, M.-F. Development of a multi-spectral vision system for the detection of defects on apples. J. Food Eng. 2005, 69, 41–49. [Google Scholar] [CrossRef]
- Kolb, C.A.; Kopecky, J.; Riederer, M.; Pfundel, E. UV screening by phenolics in berries of grapevine (Vitis vinifera). Funct. Plant Biol. 2003, 30, 1177–1186. [Google Scholar] [CrossRef]
- Daughtry, C.S.T.; McMurtrey, J.E.; Kim, M.S.; Chappelle, E.W. Estimating Crop Residue Cover by Blue Fluorescence Imaging. Remote Sens. Environ. 1997, 60, 14–21. [Google Scholar] [CrossRef]
- Endo, R.; Omasa, K. Chlorophyll Fluorescence Imaging of Individual Algal Cells: Effects of Herbicide on Spirogyra distenta at Different Growth Stages. Environ. Sci. Technol. 2004, 38, 4165–4168. [Google Scholar] [CrossRef] [PubMed]
- Abbott, J.A. Quality measurement of fruits and vegetables. Postharv. Biol. Technol. 1999, 15, 207–225. [Google Scholar] [CrossRef]
- Smillie, R.M. Calvin cycle activity in fruit and the effect of heat stress. Sci. Hort. 1992, 51, 83–95. [Google Scholar] [CrossRef]
- Nedbal, L.; Soukupova, J.; Kaftan, D.; Whitmarsh, J.; Trtılek, M. Kinetic imaging of chlorophyll fluorescence using modulated light. Photosynth. Res. 2000, 66, 3–12. [Google Scholar] [CrossRef] [PubMed]
- Huybrechts, C.J.G.; Deckers, T.; Valcke, R. Predicting fruit quality and maturity of apples by fluorescence imaging: effect of ethylene and avg. Acta Hort.(ISHS) 2003, 599, 243–247. [Google Scholar]
- Jones, A.L. Role of wet periods in predicting foliar diseases. In Plant Disease Epidemiology: Population Dynamics and Management; Leonard, K.J., Fry, W.E., Eds.; Macmillan Publishing: New York, NY, U.S.A., 1987; Vol. 1, pp. 87–100. [Google Scholar]
- Huber, L.; Gillespie, T.J. Modeling leaf wetness in relation to plant disease epidemiology. Ann. Rev. Phytopathol. 1992, 30, 553–577. [Google Scholar] [CrossRef]
- Figueroa, L.; Fitt, B.D.L.; Welham, J.; Shaw, M.W.; McCartney, H.A. Early development of light leaf spot (Pyrenopeziza brassicae) on winter oilseed rape (Brassica napus) in relation to temperature and leaf wetness. Plant Pathol. 1995, 44, 641–654. [Google Scholar] [CrossRef]
- Broome, J.C.; English, J.T.; Marois, J.J.; Latorre, B.A.; Aviles, J.C. Development of an infection model for Botrytis bunch rot of grapes based on wetness duration and temperature. Phytopathology 1995, 85, 97–102. [Google Scholar] [CrossRef]
- Duthie, J.A. Models of the Response of Foliar Parasites to the Combined Effects of Temperature and Duration of Wetness. Phytopathology 1997, 87, 1088–1095. [Google Scholar] [CrossRef] [PubMed]
- Akem, C.N. Mango anthracnose disease: Present status and future research priorities. Plant Pathol. 2006, 5, 266–273. [Google Scholar]
- Huband, N.D.S.; Butler, D.R. A comparison of wetness sensors for use with computer or microprocessor systems designed for disease forecasting. Proceedings of the British Crop Protection Conference - Pests and Diseases 1984, 2, 633–638. [Google Scholar]
- Weiss, A.; Lukens, D.L. Electronic circuit for detecting leaf wetness and comparison of two sensors. Plant Dis. 1981, 65, 41–43. [Google Scholar] [CrossRef]
- Weiss, A.; Lukens, D.L.; Steadman, J.R. A sensor for the direct measurement of leaf wetness: Construction techniques and testing under controlled conditions. Agric. For. Meteorol. 1988, 43, 241–249. [Google Scholar] [CrossRef]
- Sutton, J.C.; Gillespie, T.J.; Hildebrand, P.D. Monitoring weather factors in relation to plant disease. Plant Dis. 1984, 68, 78–84. [Google Scholar] [CrossRef]
- Gillespie, T.J.; Duan, R.X. A comparison of cylindrical and flat plate sensors. Agr. Forest Meteorol. 1987, 40, 61–70. [Google Scholar] [CrossRef]
- Singh, R.; Semwal, D.P.; Rai, A.; Chhikara, R.S. Small area estimation of crop yield using remote sensing satellite data. Int. J. Remote Sens. 2002, 23, 49–56. [Google Scholar] [CrossRef]
- Sun, J.L. Dynamic monitoring and yield estimation of crops by mainly using the remote sensing technique in China. Photogramm. Eng. Remote Sens. 2000, 66, 645–650. [Google Scholar]
- Sims, D.A.; Gamon, J.A. Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and development stages. Remote Sens. Environ. 2002, 81, 337–354. [Google Scholar] [CrossRef]
- Barrett, E.C.; Curtis, L.F. Introduction to Environmental Remote Sensing; Stanley Thornes: Cheltenham, U.K, 1999. [Google Scholar]
- Lamb, D.W. The use of qualitative airborne multispectral imaging for managing agricultural crops – a case study in south-eastern Australia. Aust. J. Exp. Agr. 2000, 40, 725–38. [Google Scholar] [CrossRef]
- King, D. Evaluation of radiometric quality, statistical characteristics and spatial resolution of multispectral videography. J. Imaging Sci. Technol. 1992, 36, 394–404. [Google Scholar]
- Louis, J.; Lamb, D.W.; McKenzie, G.; Chapman, G.; Edirisinghe, A.; McCloud, I.; Pratley, J. Operational use and calibration of airborne video imagery for agricultural and environmental land management. In Proceedings of 15th Biennial American Workshop on Colour Photography and Videography in Resource Assessment, May 1995; Terre Haute: IN, U.S.A.; pp. 326–333.
- Hall, A.; Lamb, D.W.; Holzapfel, B.; Louis, J. Optical remote sensing applications in viticulture - a review. Aust. J. Grape Wine Res. 2002, 8, 34–47. [Google Scholar] [CrossRef]
- Campbell, J.B. Introduction to Remote Sensing; Guildford Press: New York, London, 1996. [Google Scholar]
- Wiegend, C.L.; Richardson, A.J.; Escobar, D.E.; Gerbermann, A.H. Vegetation indices in crop assessments. Remote Sens. Environ. 1991, 35, 105–119. [Google Scholar] [CrossRef]
- Price, J.C.; Bausch, W.C. Leaf area index estimation from visible and near infrared reflectance data. Remote Sens. Environ. 1995, 52, 55–65. [Google Scholar] [CrossRef]
- Krueger, D.W.; Coble, H.D.; Wilkerson, G.G. Software for mapping and analyzing weed distributions: gWeed Map. Agron. J. 1998, 90, 552–556. [Google Scholar] [CrossRef]
- Williamson, M. Invasions. Ecography 1999, 22, 5–12. [Google Scholar] [CrossRef]
- Kolar, C.S.; Lodge, D.M. Progress in invasion biology: Predicting invaders. Trend. Ecol. Evolut. 2001, 16, 199–204. [Google Scholar] [CrossRef]
- Allen, T.R.; Kupfer, J.A. Application of spherical statistics to change vector analysis of Landsat data: Southern Appalachian spruce - fir forests. Remote Sens. Environ. 2000, 74, 482–493. [Google Scholar] [CrossRef]
- Price, J.C. How unique are spectral signatures? Remote Sens. Environ. 1994, 49, 181–186. [Google Scholar] [CrossRef]
- Carter, G.A.; Knapp, A.K. Leaf optical properties in higher plants: Linking spectral characteristics to stress and chlorophyll concentration. Amer. J. Bot. 2001, 88, 677–684. [Google Scholar] [CrossRef]
- Adams, M.L.; Philpot, W.D.; Norvell, W.A. Yellowness index: an application of spectral second derivatives to estimate chlorosis of leaves in stressed vegetation. Int. J. Remote Sens. 1999, 20, 3663–3675. [Google Scholar] [CrossRef]
- Lenk, S.; Chaerle, L.; Pfundel, E.E.; Langsdorf, G.; Hagenbeek, D.; Lichtenthaler, H.K.; Van Der Straeten, D.; Buschmann, C. Multispectral fluorescence and reflectance imaging at the leaf level and its possible applications. J. Exp. Bot. 2007, 58, 807–814. [Google Scholar] [CrossRef] [PubMed]
- Jones, H.G.; Schofield, P. Thermal and other remote sensing of plant stress. Gen. Appl. Plant Physiology 2008, (Special Issue 34), 19–32. [Google Scholar]
- Hatfield, J. L. Remote Detection of Crop Stress: Application to Plant Pathology. Phytopathology 1990, 80, 37–39. [Google Scholar] [CrossRef]
- Wisniewski, M.; Lindow, S.E.; Ashworth, E.N. Observations of ice nucleation and propagation in plants using infrared video thermography. Plant Physiol. 1997, 113, 327–334. [Google Scholar] [PubMed]
- Seymour, R.S. Pattern of respiration by intact inflorescences of the thermogenic arum lily Philodendron selloum. J. Exp. Bot. 1999, 50, 845–852. [Google Scholar] [CrossRef]
- Gillespie, T.J.; Brisco, B.; Brown, R.J.; Sofko, G.J. Radar detection of a dew event in wheat. Remote Sens. Environ. 1990, 33, 151–156. [Google Scholar] [CrossRef]
- Bouten, W.; Swart, P.J.F.; De Water, E. Microwave transmission, a new tool in forest hydrological research. J. Hydrol. 1991, 124, 119–130. [Google Scholar] [CrossRef]
- Doraiswamy, P.C.; Hatfield, J.L.; Jackson, T.L.; Akhmedov, B.; Prueger, J.; Stern, A. Crop condition and yield simulations using Landsat and MODIS. Remote Sens. Environ. 2004, 92, 548–559. [Google Scholar] [CrossRef]
- Pinter, P.J.; Hatfield, J.L.; Schepers, J.S.; Barnes, E.M.; Moran, M.S.; Daughtry, C.S.T.; Upchurch, D.R. Remote sensing for crop management. Photogramm. Eng. Remote Sens. 2003, 69, 647–664. [Google Scholar] [CrossRef]
- Lovejoy, S.; Schertzer, D.; Tessier, Y.; Gaonac, H. Multifractals and resolution-independent remote sensing algorithms: the example of ocean colour. Int. J. Remote Sens. 2001, 22, 1191–1234. [Google Scholar] [CrossRef]
- Uddin, M.; Okazaki, E.; Fukushima, H.; Turza, S.; Yumiko, Y.; Fukuda, Y. Nondestructive determination of water and protein in surimi by near-infrared spectroscopy. Food Chem. 2006, 96, 491–495. [Google Scholar] [CrossRef]
- Hastie, T.; Tibshirani, R.; Friedman, J. The Elements of Statistical Learning: Data Mining, Inference and Prediction; Springer: New York, NY, U.S.A., 2001; pp. 84–94. [Google Scholar]
- Hahn, F. Weed crop discrimination by optical reflectance. Ph.D. Thesis, University of Edinburgh, Edinburgh, U.K., 1994. [Google Scholar]
- Pettersson, H.; Aberg, L. Near infrared spectroscopy for determination of mycotoxins in cereals. Food Control 2003, 14, 229–232. [Google Scholar] [CrossRef]
- Rios-Cabrera, R.; Lopez-Juarez, I.; Sheng-Jen, V. ANN analysis in a vision approach for potato inspection. J. Appl. Res. and Technol. 2008, 6, 106–119. [Google Scholar]
- Cybenko, G. Approximation by superposition of a Sigmoidal Function, Mathematics of Control. Signal. Syst. 1989, 2, 303–314. [Google Scholar] [CrossRef]
- DeFries, R.S.; Townshend, J.R.G.; Hansen, M.C. Continuous field of vegetation characteristics at the global scale at 1 km resolution. J. Geophys. Res. 1999, 104, 16911–16925. [Google Scholar] [CrossRef]
- Campbell, B.J. Introduction to Remote Sensing, 2nd Ed. ed; Taylor and Francis: London, U.K, 1996. [Google Scholar]
- Engvall, J.L.; Tubbs, J.D.; Holmes, Q.A. Pattern recognitions of land sat data based upon temporal trend analysis. Remote Sens. Environ. 1977, 6, 303–314. [Google Scholar] [CrossRef]
- Malila, W.A. Change vector analysis: an approach for detecting forest changes with Landsat. In Proceedingg of the 6th annual symposium on machine processing of remotely sensed data, Purdue University, West Lafayette, IN, U.S.A., June 1980; pp. 326–335.
- Lambin, E.F.; Strahler, A.H. Change vector analysis in multispectral space: a tool to detect and categorized land cover change process using high temporal resolution satellite data. Remote Sens. Environ. 1994, 48, 231–244. [Google Scholar] [CrossRef]
- Pernezny, K.; Ploetz, R. Some Common Diseases of Mango in Florida. Plant Pathology Fact Sheet PP-23 University of Florida. 2000. [Google Scholar]
- Ploetz, R.C.; Benscher, D.; Vazquez, A.; Colls, A.; Nagel, J.; Schaffer, B. A reexamination of mango decline in Florida. Plant Dis. 1996, 80, 664–668. [Google Scholar] [CrossRef]
- Everett, K.R.; Stevens, P.S.; Cutting, J.G.M. Postharvest fruit rots of avocado are reduced by benomyl applications during flowering. In Proceedings of the 52nd N. Z. Plant Prot. Conf., Auckland, New Zealand, August 1999; pp. 153–156.
- Sarananda, K.H.; Wijesinghe, W.A.J.P.; Dulani, H.N.; Peiris, C.N. Effect of hot ethral-dip treatment for improving peel colour development and reducing stem-end-rot of ‘Karuthacolomban’ mango. Ann. Sri Lanka Dep. Agr. 2004, 6, 187–194. [Google Scholar]
- Everett, K.R. Stem-End Rots: Infection of ripening fruit. N. Z. Avocado Growers Assocn. Ann. Res. Rep. 2001, 1, 1–6. [Google Scholar]
- Gosbee, M.J.; Joyce, D.C.; Johnson, G.I. Partial Pressure Infiltration of Mango Fruit with Dye to Reveal the Potential Xylem Pathway for Stem-end Rot Infection. In Proceedings of International ACIAR Workshop, Chiang Mai, Thailand, May 1997; pp. 77–80.
- Everett, K.R. Infection of unripe avocado fruit by stem end rot fungi in New Zealand. Rev. Chapingo Ser. Hortic. 1999, 337–339. [Google Scholar]
- Hahn, F. Mango Anthracnose optical detection; American Society of Agricultural and Biological Engineers: St. Joseph, MI, U.S.A., 1999; Paper No. 993085. [Google Scholar]
- Hahn, F. Mango anthracnose detection. Rev. Chapingo Ser. Ingeniería Agropecuaria 2004, 7, 23–28. (In Spanish) [Google Scholar]
- Hahn, F. Automatic Detection of Black Pulp Mango In A Sorting System. In ASABE Annual International Meeting, Minneapolis, MN, U.S.A., June 2007. Paper No. 73110.
- Hahn, F. Mango firmness sorter. Biosyst. Eng. 2004, 89, 309–319. [Google Scholar] [CrossRef]
- Guthrie, J.; Walsh, K. Non-invasive assessment of pineapple and mango fruit quality using near infra-red spectroscopy. Aust. J. Exp. Agr. 1997, 37, 253–263. [Google Scholar] [CrossRef]
- Servakaranpalayam, S. Potential applications of hyperspectral imaging for the determination of total soluble solids, water content and firmness in mango. M.Sc. Thesis, McGill University, Montreal, PQ, Canada, 2006. [Google Scholar]
- Thomas, P.; Kannan, A.; Degwekar, V.H.; Ramamurthy, M.S. Non-destructive detection of seed weevil-infested mango fruits by X-ray imaging. Postharvest Biol. Technol. 1995, 5, 161–165. [Google Scholar] [CrossRef]
- Velasco, L.R.I.; Medina, C. Soft X-Ray Imaging for Non-Destructive Detection of Mango Pulp Weevil (Sternochetus Frigidus Fabr.) Infestation in Fresh Mature Green ‘Carabao’ mango(Mangifera indica L.) Fruits. Philipp. Agric. 2004, 87, 160–164. [Google Scholar]
- Yacob, Y.; Ahmad, H.; Saad, P.; Aliana, R.; Raof, A.; Ismail, S. A Comparison between X-Ray and MRI in Postharvest Non-Destructive Detection Method. In Proceedings of International Conference Information Technology and Multimedia (ICIMU’05), Cyberjaya, Malaysia, Nov 2005.
- Chen, P.; McCarthy, M.J.; Kauten, R.; Sarig, Y.; Han, S. Maturity evaluation of avocados by NMR methods. J. Agric. Eng. Res. 1993, 55, 177–187. [Google Scholar] [CrossRef]
- Clark, C.J.; McGlone, V.A.; Requejo, C.; White, A.; Woolf, A.B. Dry matter determination in ‘Hass’ avocado by NIR spectroscopy. Postharvest Biol. Technol. 2003, 29, 300–307. [Google Scholar] [CrossRef]
- Fouche, P.S. The use of low-altitude infrared RS for estimating stress conditions in tree crops. S. Afr. J. Sci. 1995, 91, 500–502. [Google Scholar]
- Fitzell, R.D.; Peak, C.M.; Damell, R.E. A model for estimating infection levels of anthracnose disease of mango. Ann. Appl. Biol. 1984, 104, 451–458. [Google Scholar] [CrossRef]
- Peak, C.M.; Fitzell, R.D.; Hahhah, R.S.; Batten, D.J. Development of a microprocessor-based data recording system for predicting plant disease based on studies of mango anthracnose. Comput. Electron. Agric. 1988, 1, 251–262. [Google Scholar] [CrossRef]
- Dodd, J.C.; Estrada, A.B.; Matcham, J.; Jeffries, P.; Jerger, M.J. The effect of climatic factors on colletotrichum gloeosporoides, causal agent of mango anthracnose in Phillipines. Plant Pathol. 1991, 40, 568–575. [Google Scholar] [CrossRef]
- Gomez, M. Alternative Strategies to Fight Apple Scab. Ph.D. Thesis, Universidade Técnica de Lisboa, Lisbon, Prtugal, 2002. [Google Scholar]
- MacHardy, W.E. Apple scab biology, epidemiology and management, 1st Ed. ed; American Photopathological Society: St Paul, MN, U.S.A., 1996; pp. 280–292. [Google Scholar]
- Becker, C.M.; Pearson, R.C. Black rot lesions on overwintered canes of Euvitis supply conidia of Guignardia bidwellii for primary inoculum in spring. Plant Dis. 1996, 80, 24–27. [Google Scholar] [CrossRef]
- Biggs, A.R.; Turechek, W.W.; Gottwald, T.R. Analysis of Fire Blight Shoot Infection Epidemics on Apple. Plant Dis. 2008, 92, 1349–1356. [Google Scholar]
- Unay, D. Multispectral image processing and pattern recognition techniques for quality inspection of apple fruits. Ph.D. Thesis, Faculte Politechnique de Mons: Mons, Mons, France, 2006. [Google Scholar]
- Throop, J.A.; Aneshansley, D.J.; Anger, B. Inspection station detects defects on apples in real time. In 1999 ASAE/CSAE-SCGR Annual International Meeting, Toronto, ON, Canada, July 1999. ASAE Paper No. 993205.
- Throop, J.A.; Aneshansley, D.J.; Anger, W.C.; Peterson, D.L. Quality evaluation of apples based on surface defects: development of an automated inspection system. Postharv. Biol. Technol. 2005, 36, 281–290. [Google Scholar]
- Unay, D.; Gosselin, B. Apple defect detection and quality classification with MLP- Neural networks. In Proceedings of PRORISC 2002; Veldhoven: The Netherlands, 2002. [Google Scholar]
- Cheng, X.; Tao, Y.; Chen, Y.R.; Luo, Y. NIR/MIR dual sensor machine vision system for online apple stem-end/calyx recognition. Trans. ASAE 2003, 46, 551–558. [Google Scholar] [CrossRef]
- Van Der Meer, F.D.; De Jong, S.M. Imaging Spectroscop; Kluwer Academic Publishers: Dordrecht, The Nteherlands, 2001. [Google Scholar]
- Machardy, W.E. Apple Scab – Biology, Epidemiology and Management; American Photopathological Society: St-Paul, MN, U.S.A., 1996; p. 545. [Google Scholar]
- Meuleman, K.; Coppin, P.; Debacker, S.; Debruyn, W.; Nackaerts, K.; Scheunders, P.; Stercks, S. Optimal hyperspectral indicators for stress detection in orchards. In Proc. EARSEL 2003; Imaging Spectroscopy workshop, Oberpfaffenhofen: Germany, May 2003; pp. 534–541. [Google Scholar]
- Stefansky, R. Applications of Meteorology to Agriculture. In WMO/CAgM Guide to Agricultural Meteorological Practices (GAMP), 3rd Ed.; Rusakova, T., Shostak, Z., Orlandini, S., Holden, N., Zoidze, E., Eds.; GAMP: China, 2007; pp. 103–113. [Google Scholar]
- Lee, R.F.; Marais, L.J.; Timmer, L.W.; Graham, J.H. Syringe injection of water into the trunk: a rapid diagnostic test for citrus blight. Plant Dis. 1984, 68, 511–513. [Google Scholar] [CrossRef]
- Brlansky, R.H.; Lee, R.F.; Collins, M.H. Structural comparison of xylem occlusions in the trunks of citrus trees with blight and other decline diseases. Phytopathology 1985, 75, 145–150. [Google Scholar] [CrossRef]
- Olsen, M.; Matheron, M.; McClure, M.; Xiong, Z. Diseases of citrus in Arizona. In Report AZ1154. The University of Arizona Cooperative Extension; College of Agriculture and Life Sciences. University of Arizona: Tucson, AZ, U.S.A., April 2000. [Google Scholar]
- Pydipati, R.; Burks, T.F.; Lee, W.S. Statistical and neural network classifiers for citrus disease detection using machine vision. Trans. ASAE 2005, 48, 2007–2014. [Google Scholar] [CrossRef]
- Miller, W.M.; Drouillard, G. Color image analysis for automatic grading of Florida Citrus. Proc. Fla. State Hort. Soc. 1995, 108, 301–305. [Google Scholar]
- Simões, A. S.; Costa, A.H.R.; Hirakawa, A.R.; Saraiva, A.M. Applying Neural Networks to Automated Visual Fruit Sorting. In Proc. of the World Congress of Computers in Agriculture and Natural Resources, Iguacu Falls, Brazil, March 2002; pp. 1–7.
- Kondo, N.; Ahmad, U.; Monta, M.; Murase, H. Machine vision based quality evaluation of Iyokan orange fruit using neural networks. Comput. Electron. Agric. 2000, 29, 135–147. [Google Scholar] [CrossRef]
- Antihus, H.G.; Yong He and Pereira, A.G. Non-destructive measurement of acidity, soluble solids and firmness of Satsuma mandarin using Vis/NIR-spectroscopy techniques. J. Food Eng. 2006, 77, 313–319. [Google Scholar]
- Antihus, H.G.; Wang, J.; Hu, G.; Pereira, A.G. Electronic nose technique potential monitoring mandarin maturity. Sens. Actuator. B 2006, 113, 347–353. [Google Scholar]
- Borengasser, M.; Gottwald, T.R.; Riley, T. Spectral reflectance of citrus canker. Proc. Fla. State Hort. Soc. 2001, 114, 77–79. [Google Scholar]
- Sighicelli, M.P.; Patsayeva, S.; Lai, A. Characterization of citrus fruit quality using reflectance spectroscopy. In Proc 31th IRSCE, San Petersburg, Russia, May 2005.
- Reis, R.F.; Timmer, L.W.; de Goes, A. Effect of Temperature, Leaf Wetness and Rainfall on the Production of Guignardia citricarpa Ascospores and on Black Spot Severity on Sweet Orange. Fit Bras. 2006, 31, 29–34. [Google Scholar] [CrossRef]
- Timmer, L.W.; Zitko, S.E. Relationships of environmental factors and inoculum levels to the incidence of postbloom fruit drop of citrus. Plant Dis. 1993, 77, 501–504. [Google Scholar] [CrossRef]
- Gausman, H.W.; Allen, W.A.; Cardenas, R.; Bowen, R.L. Detection of foot rot disease of grapefruit trees with infrared color film. J. Rio Grande Valley Hort. Soc. 1970, 24, 36–42. [Google Scholar]
- Nixon, P.R.; Escobar, D.E.; Menges, R.M. A multiband video system for quick assessment of vegetal condition and discrimination of plant species. Remote Sens. Environ. 1985, 17, 203–208. [Google Scholar] [CrossRef]
- Blazquez, C.H.; Adair, J.; Dennis, R.C.; Butts, G.D.; Brady, J.; Whittaker, H.M. Application of aerial photography and videography to citrus tree inventory. In Proc. Fla State Hort. Soc. Meet., St. Petersburg, FL, U.S.A., 1–3 November 1988; 1988; pp. 173–177. [Google Scholar]
- Craig, J.C.; Shih, S.F. The spectral response of stress conditions in citrus trees: development of methodology. In Proc. Soil Crop Sci. Soc. Fla. Annu. Meet., Daytona Beach, FL, U.S.A., September 1997; pp. 16–20.
- Dwivedi, R.S.; Rao, B.R.M. The selection of the best possible Landsat TM band combination for delineating salt affected soils. Int. J. Remote Sens. 1992, 13, 2051–2058. [Google Scholar] [CrossRef]
- Riley, J.R. Remote sensing in entomology. Ann. Rev. Entomol. 1989, 34, 247–271. [Google Scholar] [CrossRef]
- Gausman, H.W. Leaf reflectance of near-infrared. Photogramm. Eng. 1974, 40, 183–191. [Google Scholar]
- Gausman, H.W. Evaluation of factors causing reflectance differences between sun and shade leaves. Remote Sens. Environ. 1984, 15, 203–208. [Google Scholar] [CrossRef]
- McCoy, C.W.; Rogers, M.E.; Futch, S.H.; Graham, J.H.; Duncan, L.W.; Nigg, H.N. 2009 Florida Citrus Pest Management Guide: Citrus RootWeevils. Document ENY611; U.S. Department of Agriculture, Cooperative Extension Service, University of Florida, IFAS: Florida, USA, 2008.
- Mace, M.E.; Bell, A.A.; Beckman, C.H. Fungal Wilt Diseases of Plants; Academic Press: New York, NY, U.S.A., 1981. [Google Scholar]
- Holliday, P. Fungus Disease of Tropical Crops; Cambridge University Press: Cambridge, U.K., 1980. [Google Scholar]
- Lebeda, A.; Schwinn, F.J. The downy mildews—an overview of recent research progress. J. Plant Dis. Prot. 1994, 101, 225–254. [Google Scholar]
- Zitter, T.A.; Hopkins, D.L.; Thomas, C.E. Compendium of cucurbit diseases, 1st Ed. ed; APS Press: St Paul, MN, U.S.A., 1998. [Google Scholar]
- Michelmore, R.W.; Ilott, T.; Hulbert, S.H.; Farrara, B. The downy mildews, in Ingram D.S., Williams P.H., eds. In Advances in plant pathology, Vol. 6, Genetics of plant pathogenic fungi; Academic Press: London, U.K., 1988; pp. 54–79. [Google Scholar]
- Xing, J.; Ngadi, M.; Wang, N.; De Baerdemaeker, J. Wavelength Selection for Surface Defects Detection on Tomatoes by Means of a Hyperspectral Imaging System. In ASAE Annual International Meeting, Portland, OR, U.S.A., June 2006. ASAE Paper No. 063018.
- Hahn, F. Tomato maturity detection and its correlated diseases. Final Technical Report; CIAD Unidad-Culiacán: México, June 2001. (In Spanish) [Google Scholar]
- Hahn, F. Fungal spore detection on tomatoes using spectral Fourier signatures. J. Biosyst. Eng. 2002, 81, 249–259. [Google Scholar] [CrossRef]
- Hahn, F. Spectral bandwidth effect on a Rhizopus stolonifer spores detector and its on-line behavior using red tomato fruits. Can. Biosyst. Eng. 2004, 46, 3.49–3.54. [Google Scholar]
- Moini, S.; O'Brien, M. Reflectance as tomato grade category standards. Trans. ASAE 1980, 23, 1066–1067. [Google Scholar]
- Wang, J.; Zhou, Y. Electronic-nose technique: potential for monitoring maturity and shelf life of tomatoes. N. Z. J. Agr. Res. 2007, 50, 1219–1228. [Google Scholar] [CrossRef]
- Hahn, F. Rhizopus stolonifer Detection by sensing the peduncle scar. J. Biosyst. Eng. 2006, 95, 171–179. [Google Scholar] [CrossRef]
- Krause, R.A.; Massie, L.B.; Hyre, R.A. BLITECAST: A computerized forecast of potato lateblight. Plant Dis. Rept. 1975, 59, 95–98. [Google Scholar]
- Gleason, M.L.; MacNab, A.A.; Pitblado, R.E.; Ricker, M.D.; East, D.A.; Latin, R.X. Disease-warning systems for processing tomatoes in Eastern North America: Are we there yet? Plant Dis. 1995, 79, 113–121. [Google Scholar] [CrossRef]
- Gleason, M.L.; Taylor, S.E.; Loughin, T.M.; Koehler, K.J. Development and validation of an empirical-model to estimate the duration of dew periods. Plant Dis. 1994, 78, 1011–1016. [Google Scholar] [CrossRef]
- Zhang, M.; Liu, X.; O'Neill, M. Spectral discrimination of Phytophthora infestants infection on tomatoes based on principal component and cluster analyses. Int. J. Remote Sens. 2002, 23, 1095–1107. [Google Scholar] [CrossRef]
- Zhang, M.; Qin, Z.; Liu, X.; Lu, S. Detection of stress in tomatoes induced by late blight disease in California, USA, using hyperspectral remote sensing. Int. J. Appl. Earth Obs. Geoinf. 2003, 4, 295–310. [Google Scholar] [CrossRef]
- Zhang, M.; Qin, Z. Spectral analysis of tomato late blight infections for remote sensing of tomato disease stress in California. In Proceedings of the International Geosciences and Remote Sensing Symposium, IEEE, Alaska, U.S.A. 2004; VI, pp. 4091–4094. [Google Scholar]
- Xu, H.R.; Ying, Y,B.; Fu, X.P.; Zhu, S.P. Near-infrared Spectroscopy in detecting Leaf Miner Damage on Tomato Leaf. Biosyst. Eng. 2007, 96, 447–454. [Google Scholar] [CrossRef]
- Lindenthal, M.; Steiner, U.; Dehne, H-W.; Oerke, E-C. Effect of downy mildew development on transpiration of cucumber leaves visualized by digital infrared thermography. Phytopathology 2005, 95, 233–240. [Google Scholar]
- Oerke, E-C.; Steiner, U.; Dehne, H-W.; Lindenthal, M. Thermal Imaging of cucumber leaves affected by downy mildew and environmental conditions. J. Exp. Bot. 2006, 57, 2121–2132. [Google Scholar]
- Oerke, E.C.; Lindenthal, M.; Fröhling, P.; Steiner, U. Digital infrared thermography for the assessment of leaf pathogens. In: JV Stafford (ed.). In Proc. of the Fifth European Conference on Precision Agriculture, Uppsalla, Sweden, June 2005; Wageningen Academic Publishers: Wageningen, The Netherlands, 2005; pp. 91–98. [Google Scholar]
- Christ, B.J. Potato diseases in Pennsylvania; Penn State College of Agricultural Sciences Publication Distribution Center, The Pennsylvania State University: University Park, PA, U.S.A., 1988. [Google Scholar]
- Eldredge, E.P.; Holmes, Z.A.; Mosley, A.R.; Shock, C.C.; Stieber, T.D. Effects of transitory water stress on potato tuber stem-end reducing sugar and fry color. Amer. Potato J. 1996, 73, 517–530. [Google Scholar] [CrossRef]
- Hiller, L.K.; Koller, D.C.; Thornton, R.E. Physiological Disorders of Potato Tubers. In Potato Physiology; Li, P.H., Ed.; Academic Press: Orlando, FL, U.S.A., 1985; pp. 389–455. [Google Scholar]
- Rex, B.L.; Mazza, G. Cause, control, and detection of hollow heart in potatoes: a review. Amer. Potato. J. 1989, 66, 165–183. [Google Scholar] [CrossRef]
- Shock, C.C.; Holmes, Z.A.; Stieber, T.D.; Eldredge, E.P.; Zhang, P. The effect of timed water stress on quality, total solids and reducing sugar content of potatoes. Amer. Potato J. 1993, 70, 227–241. [Google Scholar] [CrossRef]
- Noordam, J.C.; Otten, G.W.; Timmermans, A.J.M.; van Zwol, B.H. High speed potato grading and quality inspection based on a colour vision system. Machine Vision Applications in Industrial Inspection VIII. Proc. SPIE 2000, 3966, 206–217. [Google Scholar]
- Tao, Y.; Heinemann, P.H.; Varghese, Z.; Morrow, C.T.; Sommer, H.J. Machine vision for colour inspection of potatoes and apples. Trans. ASAE 1995, 38, 1555–1561. [Google Scholar] [CrossRef]
- Saito, M.; Jansen, R.; Usui, Y.; Nakano, K.; Hoogmoed, W.; Bartholomeus, H. Development of non-destructive detection systems for Phytophthora infected potato tubers. In Proc. EFITA/WCCA 2005, Villa Real, Portugal, July 2005.
- Aristizábal, I.D. The magnetic resonance and its agro-industry applications, a review. Rev. Fac. Nal. Agr. Medellín 2007, 60, 4037–4066. [Google Scholar]
- Finney, E.E.; Norris, K.H. X-ray Scans for Detecting Hollow Heart in Potatoes. Amer. Potato J. 1978, 55, 95–105. [Google Scholar] [CrossRef]
- Mercer, P.C.; Bell, A.; Cooke, L.; Dowley, R.; Dunne, B.; Keane, T.; Kennedy, T.; Leonard, R. Crop and animal disease forecasting and control – regional perspectives. Holden, N.M., Ed.; In Agro-meteorological Modelling – Principles, Data and Applications; Agmet: Dublin, Ireland, 2001. [Google Scholar]
- Stevenson, W.R. Rowe, R.C., Ed.; The American Phytopathological Society: Wooster, OH, U.S.A., 1993; pp. 141–147.
- Johnson, D.A.; Martin, M.; Cummings, T.F. Effect of chemical defoliation, irrigation water, and distance from the pivot on late blight tuber rot in center-pivot irrigated potatoes in the Columbia basin. Plant Dis. 2003, 87, 977–982. [Google Scholar] [CrossRef]
- Shock, C.C.; Shock, C.A.; Saunders, L.D.; Kimberling, K.; Jensen, L. Predicting the spread and severity of potato late blight (Phytophthora infestans) in Oregon, 2002. Oregon State University Agricultural Experiment Station, Special Report 1048: Corvallis, OR, U.S.A., 2002; pp. 130–138. [Google Scholar]
- Cohen, Y.; Farkash, S.; Baider, A.; Shaw, D.S. Sprinkling irrigation enhances production of oospores of Phytophthora infestans in field-grown crops of potato. Phytopathology 2000, 90, 1105–1111. [Google Scholar]
- Curwen, D. Water management. Rowe, R.C., Ed.; In Potato Health Management; The American Phytopathological Society: Wooster, Ohio, 1993; pp. 149–158. [Google Scholar]
- Powelson, M.L.; Johnson, K.B.; Rowe, R.C. Management of diseases caused by soilborne pathogens. Rowe, R.C., Ed.; In Potato Health Management; The American Phytopathological Society: Wooster, Ohio, 1993; pp. 149–158. [Google Scholar]
- Fisher, D.; Taylor, A.; Gordon, C.; Magarey, P. Downy Mildew in vineyards. Bulletin 4708; Department of Agriculture and Food, Government of Western Australia: Melbourne, WA, Australia, 2007.
- Park, E.W.; Seem, R.C.; Gadoury, D.M.; Pearson, R.C. DMCast: a prediction model for grape downy mildew development. Vitic. Enol. Sci. 1997, 52, 182–189. [Google Scholar]
- Thomas, C.S.; Marios, J.J.; English, J.T. The effects of wind speed, temperature, and relative humidity on development of aerial mycelium and conidia of Botrytis cinerea on grape. Phytopathology 1988, 78, 260–265. [Google Scholar] [CrossRef]
- Lenk, S.; Chaerle, L.; Pfundel, E.E.; Langsdorf, G.; Hagenbeek, D.; Lichtenthaler, H.K.; Van Der Straeten, D.; Buschmann, C. Multispectral fluorescence and reflectance imaging at the leaf level and its possible applications. J. Exp. Bot. 2007, 58, 807–814. [Google Scholar] [CrossRef] [PubMed]
- Andaur, J.E.; Guesalaga, A.R.; Agosin, E.E.; Guarini, M.W.; Irarrazaval, P. Magnetic resonance imaging for nondestructive analysis of wine grapes. J. Agr. Food Chem. 2004, 52, 165–170. [Google Scholar] [CrossRef] [PubMed]
- Glidewell, M.; Williamson, B.; Goodman, B.A.; Chudek, J.A.; Hunter, G. A NMR microscopic study of grape (Vitis vinifera L.). Protoplasma 1997, 198, 27–35. [Google Scholar] [CrossRef]
- Dalla Marta, A.; Magarey, R.D.; Orlandini, S. Modelling leaf wetness duration and downy mildew simulation on grapevine in Italy. Agric. Forest Meteorol. 2005, 132, 84–95. [Google Scholar] [CrossRef]
- Holzapfel, B.; Rogiers, S.; Degaris, K.; Small, G. Ripening grapes to specification: effect of yield on colour development of Shiraz grapes in the Riverina. Australian Grapegrower Winemaker 1999, 428, 24–28. [Google Scholar]
- Holzapfel, B.; Rogiers, S.; Degaris, K.; Small, G. Identifying factors effecting grape berry ripening and berry colour development. In Proc 5th International Symposium on Cool Climate Viticulture & Oenology, Melbourne, Australia, January 2000.
- Bramley, R.G.V. Variation in grape yield and quality in a Coonawarra vineyard. In Proc of the 5th International Symposium on Cool Climate Viticulture & Oenology, Melbourne, Australi, January 2000.
- Williams, B. GPS Applications in Viticulture. In Proc of the 5th International Symposium on Cool Climate Viticulture & Oenology, Melbourne, Australia, January 2000.
- Celotti, E.; De Prati, G.C.; Cantoni, S. Rapid evaluation of the phenolic potential of red grapes at winery delivery: application to mechanical harvesting. Australian Grapegrower Winemaker 2001, 449, 151–159. [Google Scholar]
- Lamb, D.W.; Bramley, R.G.V. Managing and monitoring spatial variability in vineyard productivity. Nat. Resour. Manag. 2001, 4, 25–30. [Google Scholar]
- Granett, J.; Walker, A.; DeBenedictis, J.; Fong, G.; Lin, H.; Weber, E. California grape phylloxera more variable than expected. Calif. Agr. 1996, 50, 9–13. [Google Scholar] [CrossRef]
- Johnson, L.; Lobitz, B.; Armstrong, R.; Baldy, R.; Weber, E.; DeBenedictis, J.; Bosch, D. Airborne imaging aids vineyard canopy evaluation. Calif. Agr. 1996, 50, 14–18. [Google Scholar] [CrossRef]
- Jones, H.G.; Stoll, M.; Santos, T.; de Sousa, C.; Chaves, M.M.; Grant, O.M. Use of infrared thermography for monitoring stomatal closure in the field: application to grapevine. J. Exp. Bot. 2002, 53, 2249–2260. [Google Scholar] [CrossRef] [PubMed]
© 2009 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Hahn, F. Actual Pathogen Detection: Sensors and Algorithms - a Review. Algorithms 2009, 2, 301-338. https://doi.org/10.3390/a2010301
Hahn F. Actual Pathogen Detection: Sensors and Algorithms - a Review. Algorithms. 2009; 2(1):301-338. https://doi.org/10.3390/a2010301
Chicago/Turabian StyleHahn, Federico. 2009. "Actual Pathogen Detection: Sensors and Algorithms - a Review" Algorithms 2, no. 1: 301-338. https://doi.org/10.3390/a2010301
APA StyleHahn, F. (2009). Actual Pathogen Detection: Sensors and Algorithms - a Review. Algorithms, 2(1), 301-338. https://doi.org/10.3390/a2010301