Research on Commuting Mode Split Model Based on Dominant Transportation Distance
Abstract
1. Introduction
2. Literature Review
2.1. Influencing Factors of Commuting Mode Split
2.2. Commuting Mode Split Models
2.3. Dominant Transportation Distance for Transport Modes
2.4. Critical Research Assessment
3. Generalized Cost Function
4. Dominant Transportation Distance Model of Mode Choice
5. Empirical Research
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Liu, L.; Wang, W.; Fan, Q.; Hua, X. Calculation and application of travel mode split rate based on dominant transportation distance in small and medium-sized cities. In Proceedings of the CICTP, Xi’an, China, 17–20 December 2021. [Google Scholar]
- Liu, Y.; Shen, R.; He, M.; Li, X.; Shi, Z. Gender differences in commuting travel mode choices among young adults: A spatial heterogeneity perspective. J. Transp. Geogr. 2025, 123, 104145. [Google Scholar] [CrossRef]
- Pradonoputro, T.P.B.; Kozo, O. Understanding commuter’s motivation of transportation choice: A case study of greater Jakarta. J. Manaj. Transp. Logist. 2021, 8, 91–105. [Google Scholar] [CrossRef]
- Mao, Z.; Ettema, D.; Dijst, M. Analysis of travel time and mode choice shift for non-work stops in commuting: Case study of Beijing, China. Transportation 2018, 45, 751–766. [Google Scholar] [CrossRef]
- Ingvardson, J.B.; Thorhauge, M.; Kaplan, S.; Nielsen, O.A.; Raveau, S. Incorporating psychological needs in commute mode choice modelling: A hybrid choice framework. Transportation 2022, 49, 1861–1889. [Google Scholar] [CrossRef]
- Mayo, F.L.; Taboada, E.B. Ranking factors affecting public transport mode choice of commuters in an urban city of a developing country using analytic hierarchy process: The case of Metro Cebu, Philippines-ScienceDirect. Transp. Res. Interdiscip. Perspect. 2020, 4, 100078. [Google Scholar] [CrossRef]
- Ding, C.; Cao, X.; Wang, Y. Synergistic effects of the built environment and commuting programs on commute mode choice. Transp. Res. Part A Policy Pract. 2018, 118, 104–118. [Google Scholar] [CrossRef]
- Zhu, P.; Wang, K.; Ho, S.N.R.; Tan, X. How is commute mode choice related to built environment in a high-density urban context? Cities 2023, 134, 104180. [Google Scholar] [CrossRef]
- Cai, M.; Shen, Q.; Wang, Y.; Brown, M.; Ban, X.; Ashour, L.A. Examining commute mode choice of essential workers before and during the COVID-19 pandemic-A case study of the University of Washington. Case Stud. Transp. Policy 2024, 15, 101129. [Google Scholar] [CrossRef]
- Cervero, R.; Day, J. Suburbanization and transit-oriented development in China. Transp. Policy 2008, 15, 315–323. [Google Scholar] [CrossRef]
- Vos, J.D.; Le, H.T.K.; Kroesen, M. Does commute duration attenuate the effect of travel mode choice on commute satisfaction? Travel Behav. Soc. 2022, 28, 13–21. [Google Scholar] [CrossRef]
- Ortuzar, J.D.D.; Willumsen, L.G. Modelling Transport, 4th ed.; Wiley: Hoboken, NJ, USA, 2011. [Google Scholar]
- Scheiner, J. Interrelations between travel mode choice and trip distance: Trends in Germany 1976–2002. J. Transp. Geogr. 2010, 18, 75–84. [Google Scholar] [CrossRef]
- McFadden, D.; Train, K. Mixed MNL models for discrete response. J. Appl. Econom. 2000, 15, 447–470. [Google Scholar] [CrossRef]
- Mcfadden, D. Conditional Logit Analysis of Qualitative Choice Behavior. In Frontiers in Econometrics; North-Holland Publishing Company: Amsterdam, The Netherlands, 1974; pp. 105–142. [Google Scholar]
- Horowitz, J. The accuracy of the multinomial logit model as an approximation to the multinomial probit model of travel demand. Transp. Res. Part B Methodol. 1980, 14, 331–341. [Google Scholar] [CrossRef]
- Ai, C.; Norton, E.C. Interaction terms in logit and probit models. Econ. Lett. 2003, 80, 123–129. [Google Scholar] [CrossRef]
- Gaundry, M.J.I.; Dagenais, M.G. The dogit model. Transp. Res. Part B Methodol. 1979, 13, 105–111. [Google Scholar] [CrossRef]
- Gong, H.; Jin, W. Analysis of urban car owners commute mode choice based on evolutionary game model. J. Control Sci. Eng. 2015, 2015, 291363. [Google Scholar] [CrossRef]
- Huang, Y.; Gao, L.; Ni, A.; Liu, X. Analysis of travel mode choice and trip chain pattern relationships based on multi-day GPS data: A case study in Shanghai, China. J. Transp. Geogr. 2021, 93, 103070. [Google Scholar] [CrossRef]
- Tu, W.; Cao, R.; Yue, Y.; Zhou, B.; Li, Q.; Li, Q. Spatial variations in urban public ridership derived from GPS trajectories and smart card data. J. Transp. Geogr. 2018, 69, 45–57. [Google Scholar] [CrossRef]
- Kumar, N.; Rahman, S.S.; Dhakad, N. Fuzzy inference enabled deep reinforcement learning-based traffic light control for intelligent transportation system. IEEE Trans. Intell. Transp. Syst. 2021, 22, 4919–4928. [Google Scholar] [CrossRef]
- Krygsman, S.; Arentze, T.; Timmermans, H. Capturing tour mode and activity choice interdependencies: A co-evolutionary logit modelling approach. Transp. Res. Part A Policy Pract. 2007, 41, 913–933. [Google Scholar] [CrossRef]
- Müller, S.; Tscharaktschiew, S.; Haase, K. Travel-to-school mode choice modelling and patterns of school choice in urban areas. J. Transp. Geogr. 2008, 16, 342–357. [Google Scholar] [CrossRef]
- Wardrop, J.G. Some theoretical aspects of road traffic research. Proc. Inst. Civ. Eng. Part II 1952, 1, 325–378. [Google Scholar] [CrossRef]
- Shenzhen Urban Transport Planning Center Co., Ltd., Dongguan Geographic Information and Planning Research Center. Dongguan Comprehensive Transportation Survey Data Analysis Report; Shenzhen Urban Transport Planning Center Co., Ltd., Geographic Information and Planning Research Center: Shenzhen, China, 2016. (In Chinese) [Google Scholar]
- Department for Transport. Transport Analysis Guidance. 2024. Available online: https://www.gov.uk/guidance/transport-analysis-guidance-tag (accessed on 12 August 2025).
- Dongguan Geographic Information and Planning Research Center. Maintenance and Update of Dongguan Transportation Model Report; Dongguan Geographic Information and Planning Research Center: Dongguan, China, 2017. (In Chinese) [Google Scholar]
- Dongguan Geographic Information and Planning Research Center. Maintenance and Update of Dongguan Transportation Model Report; Dongguan Geographic Information and Planning Research Center: Dongguan, China, 2019. (In Chinese) [Google Scholar]
- Dongguan Geographic Information and Planning Research Center. Maintenance and Update of Dongguan Transportation Model Report; Dongguan Geographic Information and Planning Research Center: Dongguan, China, 2021. (In Chinese) [Google Scholar]
- Dongguan Geographic Information and Planning Research Center. Maintenance and Update of Dongguan Transportation Model Report; Dongguan Geographic Information and Planning Research Center: Dongguan, China, 2023. (In Chinese) [Google Scholar]
Transportation Modes | Walking Connection Time (h) | Waiting Time (h) | Boarding Time (h) | Average Travel Speed (h) | Parking Time (h) | Average Cost Per Kilometer (CNY) |
---|---|---|---|---|---|---|
Walk | -- | -- | -- | 5 | -- | -- |
Bicycle | 0.05 | -- | -- | 12 | -- | -- |
Motorcycle | 0.05 | -- | -- | 18 | -- | 0.2 |
Taxi | 0.20 | -- | -- | 25 | -- | Base fare for the first 3 km is CNY 8; additional fare beyond 3 km is CNY 2.5/km |
Car | 0.15 | -- | -- | 25 | 0.05 | 0.8 |
PT | 0.20 | 0.10 | 0.01 | 18 | -- | ≤24 km: CNY 2/person/ride; 24 km–36 km: CNY 3/person/ride; >36 km: CNY 4/person/ride. |
Categories | Intra-Town Bus | Inter-Town Bus | |
---|---|---|---|
Walking Time Weight | 1.5 | 1.5 | |
Waiting Time Weight | 1.5 | 1.5 | |
In-PT Time Weight | 1.0 | 1.0 | |
Boarding Penalty (min) | 0.2 | 0.2 | |
Transfer time (min) | Intra-town Bus | 3 | 3 |
Inter-town Bus | 3 | 3 | |
Fare (CNY) | 2 | ≤24 km: CNY 2/person/ride; 24 km–36 km: CNY 3/person/ride; >36 km: CNY 4 person/ride. | |
Transfer fare (CNY) | Intra-town Bus | 2 | 2 |
Inter-town Bus | 2 | 2 |
Modes | Generalized Cost Function | Explanation |
---|---|---|
Walk | -- | |
Bicycle | -- | |
Motorcycle | CA_HBW, CA_HBW, and CL_HBW have time values of 26.4 CNY/h, 20.4 CNY/h, and 18.1 CNY/h, respectively. | |
Taxi | ||
Car | ||
PT |
Modes | Dominant Transportation Distance Function | R2 | RMSE | Residual Analysis | |
---|---|---|---|---|---|
Mean | Standard Deviation | ||||
Walk | 0.8853 | 0.0085 | 0.0000 | 0.0080 | |
Bicycle | 0.9962 | 0.0063 | 0.0000 | 0.0060 | |
Motorcycle | 0.9916 | 0.0051 | 0.0000 | 0.0051 | |
Taxi | 0.9932 | 0.0003 | −0.0001 | 0.0003 | |
Car | 0.9483 | 0.0072 | 0.0003 | 0.0071 | |
PT | 0.8963 | 0.0081 | −0.0002 | 0.0080 |
Modes | Dominant Transportation Distance Function | R2 | RMSE | Residual Analysis | |
---|---|---|---|---|---|
Mean | Standard Deviation | ||||
Walk | 0.8943 | 0.0092 | −0.0004 | 0.0091 | |
Bicycle | 0.9772 | 0.0112 | −0.0003 | 0.0111 | |
Motorcycle | 0.8661 | 0.0135 | −0.0004 | 0.0134 | |
Taxi | 0.9490 | 0.0051 | −0.0002 | 0.0075 | |
Car | 0.9049 | 0.0296 | 0.0002 | 0.0037 | |
PT | 0.8909 | 0.0185 | −0.0016 | 0.0019 |
Modes | Dominant Transportation Distance Function | R2 | RMSE | Residual Analysis | |
---|---|---|---|---|---|
Mean | Standard Deviation | ||||
Walk | 0.9706 | 0.0080 | 0.0000 | 0.0075 | |
Bicycle | 0.9814 | 0.013 | 0.0000 | 0.0120 | |
Motorcycle | 0.9106 | 0.0070 | 0.0000 | 0.0068 | |
Taxi | 0.8959 | 0.0005 | 0.0003 | 0.0031 | |
Car | 0.9397 | 0.027 | 0.0001 | 0.0025 | |
PT | 0.9169 | 0.0110 | 0.0003 | 0.0011 |
Commuting Mode | Data Source | Walk | Bicycle | Motorcycle | Car | Taxi | PT |
---|---|---|---|---|---|---|---|
CA_HBW | Survey | 11% | 9% | 12% | 61% | 1% | 6% |
Model | 13% | 9% | 12% | 62% | 0% | 4% | |
NC_HBW | Survey | 39% | 35% | 16% | 2% | 1% | 7% |
Model | 40% | 36% | 17% | 1% | 0% | 6% | |
CL_HBW | Survey | 60% | 28% | 3% | 6% | 0% | 3% |
Model | 66% | 23% | 1% | 6% | 0% | 4% |
Year | Permanent Resident Population (1000 Persons) | GDP (CNY Trillion) | Per Capita Income (CNY) | Motor Vehicle Ownership (10,000 Units) |
---|---|---|---|---|
2021 | 1053.7 | 1.09 | 5175 | 365.4 |
2022 | 1043.7 | 1.14 | 5316 | 391.5 |
2023 | 1048.5 | 1.19 | 5475 | 415.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tan, J.; Teng, S.; Liu, Z.; Mao, W.; Chen, M. Research on Commuting Mode Split Model Based on Dominant Transportation Distance. Algorithms 2025, 18, 534. https://doi.org/10.3390/a18080534
Tan J, Teng S, Liu Z, Mao W, Chen M. Research on Commuting Mode Split Model Based on Dominant Transportation Distance. Algorithms. 2025; 18(8):534. https://doi.org/10.3390/a18080534
Chicago/Turabian StyleTan, Jinhui, Shuai Teng, Zongchao Liu, Wei Mao, and Minghui Chen. 2025. "Research on Commuting Mode Split Model Based on Dominant Transportation Distance" Algorithms 18, no. 8: 534. https://doi.org/10.3390/a18080534
APA StyleTan, J., Teng, S., Liu, Z., Mao, W., & Chen, M. (2025). Research on Commuting Mode Split Model Based on Dominant Transportation Distance. Algorithms, 18(8), 534. https://doi.org/10.3390/a18080534